RK3588 NPU SRAM使用说明

  • RK3588 SOC内部含有1MB的SRAM,其中有956KB可供给SOC上各个IP所使用,已支持为RKNPU指定分配使用
  • SRAM可以帮助RKNPU应用减轻DDR带宽压力,目前支持为Internal和Weight两种类型内存指定分配SRAM

---

一、板端环境要求

1、内核环境要求
* RKNPU驱动版本>=0.8.0
* 内核config需要开启CONFIG_ROCKCHIP_RKNPU_SRAM=y
* Android系统config路径如下:
shell <path-to-your-kernel>/arch/arm64/configs/rockchip_defconfig
* Linux系统config路径如下:
<path-to-your-kernel>/arch/arm64/configs/rockchip_linux_defconfig
* 内核相应DTS需要从系统SRAM中分配给RKNPU使用
* 从系统分配需求大小的SRAM给RKNPU,最大可分配956KB,且大小需要4K对齐
* 注意:默认系统中可能已为其他IP分配SRAM,比如编解码模块,各IP分配的SRAM区域不能重叠,否则会存在同时读写出现数据错乱现象
* 如下为956KB全部分配给RKNPU的例子:
```dts
syssram: sram@ff001000 {
compatible = "mmio-sram";
reg = <0x0 0xff001000 0x0 0xef000>;

    #address-cells = <1>;
    #size-cells = <1>;
    ranges = <0x0 0x0 0xff001000 0xef000>;
    /* 分配RKNPU SRAM */
    /* start address and size should be 4k algin */
    rknpu_sram: rknpu_sram@0 {
        reg = <0x0 0xef000>; // 956KB
    };
};
```
* 把分配的SRAM挂到RKNPU节点,修改如下所示的dtsi文件:
```shell
<path-to-your-kernel>/arch/arm64/boot/dts/rockchip/rk3588s.dtsi
```
```dts
rknpu: npu@fdab0000 {
    compatible = "rockchip,rk3588-rknpu";
    /* ... */
    /* 增加RKNPU sram的引用 */
    rockchip,sram = <&rknpu_sram>;
    status = "disabled";
};
```

2、RKNN SDK版本要求
* RKNPU Runtime库(librknnrt.so)版本>=1.3.4b14

---

二、使用方法

1、指定Internal使用SRAM:
* 自动大小方式,将尝试从系统分配剩余足够的SRAM给Internal使用
* export RKNN_INTERNAL_MEM_TYPE=sram
* 指定大小方式,将尝试从系统分配指定256KB大小的SRAM给Internal使用
* export RKNN_INTERNAL_MEM_TYPE=sram#256

2、指定Weight使用SRAM:
* 自动大小方式,将尝试从系统分配剩余足够的SRAM给Weight使用
* export RKNN_SEPARATE_WEIGHT_MEM=1
* export RKNN_WEIGHT_MEM_TYPE=sram
* 指定大小方式,将尝试从系统分配指定128KB大小的SRAM给Weight使用
* export RKNN_SEPARATE_WEIGHT_MEM=1
* export RKNN_WEIGHT_MEM_TYPE=sram#128

3、混合指定
* RKNPU驱动支持对SRAM内存管理,支持同时指定SRAM给Internal和Weight同时使用,如下:
* export RKNN_INTERNAL_MEM_TYPE=sram#256
* export RKNN_SEPARATE_WEIGHT_MEM=1
* export RKNN_WEIGHT_MEM_TYPE=sram#128

---

三、调试方法

1、SRAM是否启用查询
* 通过开机串口日志查看SRAM是否启用,包含为RKNPU指定SRAM的地址范围和大小信息,如下所示:
shell rk3588_s:/ # dmesg | grep rknpu -i RKNPU fdab0000.npu: RKNPU: sram region: [0x00000000ff001000, 0x00000000ff0f0000), sram size: 0xef000

2、SRAM使用情况查询
* 可通过节点查询SRAM的使用情况
* 如下为未使用SRAM的位图表,每个点表示4K大小
shell rk3588_s:/ # cat /sys/kernel/debug/rknpu/mm SRAM bitmap: "*" - used, "." - free (1bit = 4KB) [000] [................................] [001] [................................] [002] [................................] [003] [................................] [004] [................................] [005] [................................] [006] [................................] [007] [...............] SRAM total size: 978944, used: 0, free: 978944
* 如下为分配使用512KB后的SRAM位图表
shell rk3588_s:/ # cat /sys/kernel/debug/rknpu/mm SRAM bitmap: "*" - used, "." - free (1bit = 4KB) [000] [********************************] [001] [********************************] [002] [********************************] [003] [********************************] [004] [................................] [005] [................................] [006] [................................] [007] [...............] SRAM total size: 978944, used: 524288, free: 454656

3、通过RKNN API查询SRAM大小
* 通过rknn_query的RKNN_QUERY_MEM_SIZE接口查询SRAM大小信息
C++ typedef struct _rknn_mem_size { uint32_t total_weight_size; uint32_t total_internal_size; uint64_t total_dma_allocated_size; uint32_t total_sram_size; uint32_t free_sram_size; uint32_t reserved[10]; } rknn_mem_size;
* 其中,total_sram_size表示:系统给RKNPU分配的SRAM总大小
* free_sram_size表示:剩余RKNPU能使用的SRAM大小

4、查看网络SRAM的占用情况
* 板端环境中,RKNN应用运行前设置如下环境变量,可打印SRAM使用预测情况:
shell export RKNN_LOG_LEVEL=3
* Internal分配SRAM的逐层占用情况,如下日志所示:

---------------------------------------------------------------------------
Total allocated Internal SRAM Size: 524288, Addr: [0xff3e0000, 0xff460000)
---------------------------------------------------------------------------
---------------------------------------------------------------------+----------------------------------+-----------
ID  User           Tensor   DataType OrigShape      NativeShape      |     [Start       End)       Size |    SramHit
---------------------------------------------------------------------+----------------------------------+-----------
1   ConvRelu       input0   INT8     (1,3,224,224)  (1,1,224,224,3)  | 0xff3b0000 0xff3d4c00 0x00024c00 | \
2   ConvRelu       output2  INT8     (1,32,112,112) (1,2,112,112,16) | 0xff404c00 0xff466c00 0x00062000 | 0x0005b400
3   ConvRelu       output4  INT8     (1,32,112,112) (1,4,112,112,16) | 0xff466c00 0xff52ac00 0x000c4000 | 0x00000000
4   ConvRelu       output6  INT8     (1,64,112,112) (1,4,112,112,16) | 0xff52ac00*0xff5eec00 0x000c4000 | 0x00000000
5   ConvRelu       output8  INT8     (1,64,56,56)   (1,4,56,56,16)   | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
6   ConvRelu       output10 INT8     (1,128,56,56)  (1,8,56,56,16)   | 0xff411000 0xff473000 0x00062000 | 0x0004f000
7   ConvRelu       output12 INT8     (1,128,56,56)  (1,8,56,56,16)   | 0xff473000 0xff4d5000 0x00062000 | 0x00000000
8   ConvRelu       output14 INT8     (1,128,56,56)  (1,8,56,56,16)   | 0xff3e0000 0xff442000 0x00062000 | 0x00062000
9   ConvRelu       output16 INT8     (1,128,28,28)  (1,8,28,28,16)   | 0xff442000 0xff45a800 0x00018800 | 0x00018800
10  ConvRelu       output18 INT8     (1,256,28,28)  (1,16,28,28,16)  | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
11  ConvRelu       output20 INT8     (1,256,28,28)  (1,16,28,28,16)  | 0xff411000 0xff442000 0x00031000 | 0x00031000
12  ConvRelu       output22 INT8     (1,256,28,28)  (1,16,28,28,16)  | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
13  ConvRelu       output24 INT8     (1,256,14,14)  (1,16,14,14,16)  | 0xff411000 0xff41d400 0x0000c400 | 0x0000c400
14  ConvRelu       output26 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
15  ConvRelu       output28 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
16  ConvRelu       output30 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
17  ConvRelu       output32 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
18  ConvRelu       output34 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
19  ConvRelu       output36 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
20  ConvRelu       output38 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
21  ConvRelu       output40 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
22  ConvRelu       output42 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
23  ConvRelu       output44 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
24  ConvRelu       output46 INT8     (1,512,14,14)  (1,32,14,14,16)  | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
25  ConvRelu       output48 INT8     (1,512,7,7)    (1,33,7,7,16)    | 0xff3f8800 0xff3ff000 0x00006800 | 0x00006800
26  ConvRelu       output50 INT8     (1,1024,7,7)   (1,67,7,7,16)    | 0xff3e0000 0xff3ed000 0x0000d000 | 0x0000d000
27  ConvRelu       output52 INT8     (1,1024,7,7)   (1,67,7,7,16)    | 0xff3ed000 0xff3fa000 0x0000d000 | 0x0000d000
28  AveragePool    output54 INT8     (1,1024,7,7)   (1,67,7,7,16)    | 0xff3e0000 0xff3ed000 0x0000d000 | 0x0000d000
29  Conv           output55 INT8     (1,1024,1,1)   (1,64,1,1,16)    | 0xff3ed000 0xff3ed400 0x00000400 | 0x00000400
30  Softmax        output56 INT8     (1,1000,1,1)   (1,64,1,1,16)    | 0xff3e0000 0xff3e0400 0x00000400 | 0x00000400
31  OutputOperator output57 FLOAT    (1,1000,1,1)   (1,1000,1,1)     | 0xff3ae000 0xff3aefa0 0x00000fa0 | \
---------------------------------------------------------------------+----------------------------------+-----------
----------------------------------------
Total Weight Memory Size: 4260864
Total Internal Memory Size: 2157568
Predict Internal Memory RW Amount: 11068320
Predict Weight Memory RW Amount: 4260832
Predict SRAM Hit RW Amount: 6688768
----------------------------------------
  • 其中上面文本图表中的SramHit为当前层Tensor所占用的SRAM大小,一般情况下将会节省当前大小的读+写的带宽
  • Predict SRAM Hit RW Amount表示整个网络SRAM的读写预测情况,可近似估计每帧节省的带宽
  • 注意:Linux环境日志重定向到终端,Android环境日志重定向到logcat