Replace murmurhash algorithm with Robert Jenkin's hash algorithm
|
|
Upstream-Status: Pending
|
|
From test result, murmurhash algorithm does not work in big endian
|
processor, so replace it with Robert Jenkin's hash which has worked
|
in linux kernel for many years and has more adaptability.
|
|
Signed-off-by: Roy.Li <rongqing.li@windriver.com>
|
---
|
libfdproto/ostr.c | 192 +++++++++++++++++++++--------------------------------
|
1 file changed, 74 insertions(+), 118 deletions(-)
|
|
diff --git a/libfdproto/ostr.c b/libfdproto/ostr.c
|
index 8f29b48..ce1f4dd 100644
|
--- a/libfdproto/ostr.c
|
+++ b/libfdproto/ostr.c
|
@@ -430,128 +430,84 @@ after_proto:
|
|
|
/********************************************************************************************************/
|
-/* Hash function -- credits to Austin Appleby, thank you ^^ */
|
-/* See http://murmurhash.googlepages.com for more information on this function */
|
-
|
-/* the strings are NOT always aligned properly (ex: received in RADIUS message), so we use the aligned MurmurHash2 function as needed */
|
-#define _HASH_MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
|
-uint32_t fd_os_hash ( uint8_t * string, size_t len )
|
+/*
|
+ * Robert Jenkin's hash function.
|
+ * http://burtleburtle.net/bob/hash/evahash.html
|
+ * This is in the public domain.
|
+ */
|
+#define mix(a, b, c) \
|
+ do { \
|
+ a = a - b; a = a - c; a = a ^ (c >> 13); \
|
+ b = b - c; b = b - a; b = b ^ (a << 8); \
|
+ c = c - a; c = c - b; c = c ^ (b >> 13); \
|
+ a = a - b; a = a - c; a = a ^ (c >> 12); \
|
+ b = b - c; b = b - a; b = b ^ (a << 16); \
|
+ c = c - a; c = c - b; c = c ^ (b >> 5); \
|
+ a = a - b; a = a - c; a = a ^ (c >> 3); \
|
+ b = b - c; b = b - a; b = b ^ (a << 10); \
|
+ c = c - a; c = c - b; c = c ^ (b >> 15); \
|
+ } while (0)
|
+
|
+unsigned hash_rjenkins(const char *str, unsigned length)
|
{
|
- uint32_t hash = len;
|
- uint8_t * data = string;
|
-
|
- const unsigned int m = 0x5bd1e995;
|
- const int r = 24;
|
- int align = (long)string & 3;
|
-
|
- if (!align || (len < 4)) {
|
- /* In case data is aligned, MurmurHash2 function */
|
- while(len >= 4)
|
- {
|
- /* Mix 4 bytes at a time into the hash */
|
- uint32_t k = *(uint32_t *)data; /* We don't care about the byte order */
|
-
|
- _HASH_MIX(hash, k, m);
|
-
|
- data += 4;
|
- len -= 4;
|
- }
|
-
|
- /* Handle the last few bytes of the input */
|
- switch(len) {
|
- case 3: hash ^= data[2] << 16;
|
- case 2: hash ^= data[1] << 8;
|
- case 1: hash ^= data[0];
|
- hash *= m;
|
- }
|
-
|
- } else {
|
- /* Unaligned data, use alignment-safe slower version */
|
-
|
- /* Pre-load the temp registers */
|
- uint32_t t = 0, d = 0;
|
- switch(align)
|
- {
|
- case 1: t |= data[2] << 16;
|
- case 2: t |= data[1] << 8;
|
- case 3: t |= data[0];
|
- }
|
- t <<= (8 * align);
|
-
|
- data += 4-align;
|
- len -= 4-align;
|
-
|
- /* From this point, "data" can be read by chunks of 4 bytes */
|
-
|
- int sl = 8 * (4-align);
|
- int sr = 8 * align;
|
-
|
- /* Mix */
|
- while(len >= 4)
|
- {
|
- uint32_t k;
|
-
|
- d = *(unsigned int *)data;
|
- k = (t >> sr) | (d << sl);
|
-
|
- _HASH_MIX(hash, k, m);
|
-
|
- t = d;
|
-
|
- data += 4;
|
- len -= 4;
|
- }
|
-
|
- /* Handle leftover data in temp registers */
|
- d = 0;
|
- if(len >= align)
|
- {
|
- uint32_t k;
|
-
|
- switch(align)
|
- {
|
- case 3: d |= data[2] << 16;
|
- case 2: d |= data[1] << 8;
|
- case 1: d |= data[0];
|
- }
|
-
|
- k = (t >> sr) | (d << sl);
|
- _HASH_MIX(hash, k, m);
|
-
|
- data += align;
|
- len -= align;
|
-
|
- /* Handle tail bytes */
|
-
|
- switch(len)
|
- {
|
- case 3: hash ^= data[2] << 16;
|
- case 2: hash ^= data[1] << 8;
|
- case 1: hash ^= data[0];
|
- hash *= m;
|
- };
|
- }
|
- else
|
- {
|
- switch(len)
|
- {
|
- case 3: d |= data[2] << 16;
|
- case 2: d |= data[1] << 8;
|
- case 1: d |= data[0];
|
- case 0: hash ^= (t >> sr) | (d << sl);
|
- hash *= m;
|
- }
|
- }
|
-
|
+ const unsigned char *k = (const unsigned char *)str;
|
+ uint32_t a, b, c; /* the internal state */
|
+ uint32_t len; /* how many key bytes still need mixing */
|
+
|
+ /* Set up the internal state */
|
+ len = length;
|
+ a = 0x9e3779b9; /* the golden ratio; an arbitrary value */
|
+ b = a;
|
+ c = 0; /* variable initialization of internal state */
|
+
|
+ /* handle most of the key */
|
+ while (len >= 12) {
|
+ a = a + (k[0] + ((uint32_t)k[1] << 8) + ((uint32_t)k[2] << 16) +
|
+ ((uint32_t)k[3] << 24));
|
+ b = b + (k[4] + ((uint32_t)k[5] << 8) + ((uint32_t)k[6] << 16) +
|
+ ((uint32_t)k[7] << 24));
|
+ c = c + (k[8] + ((uint32_t)k[9] << 8) + ((uint32_t)k[10] << 16) +
|
+ ((uint32_t)k[11] << 24));
|
+ mix(a, b, c);
|
+ k = k + 12;
|
+ len = len - 12;
|
+ }
|
|
+ /* handle the last 11 bytes */
|
+ c = c + length;
|
+ switch (len) { /* all the case statements fall through */
|
+ case 11:
|
+ c = c + ((uint32_t)k[10] << 24);
|
+ case 10:
|
+ c = c + ((uint32_t)k[9] << 16);
|
+ case 9:
|
+ c = c + ((uint32_t)k[8] << 8);
|
+ /* the first byte of c is reserved for the length */
|
+ case 8:
|
+ b = b + ((uint32_t)k[7] << 24);
|
+ case 7:
|
+ b = b + ((uint32_t)k[6] << 16);
|
+ case 6:
|
+ b = b + ((uint32_t)k[5] << 8);
|
+ case 5:
|
+ b = b + k[4];
|
+ case 4:
|
+ a = a + ((uint32_t)k[3] << 24);
|
+ case 3:
|
+ a = a + ((uint32_t)k[2] << 16);
|
+ case 2:
|
+ a = a + ((uint32_t)k[1] << 8);
|
+ case 1:
|
+ a = a + k[0];
|
+ /* case 0: nothing left to add */
|
}
|
+ mix(a, b, c);
|
|
- /* Do a few final mixes of the hash to ensure the last few
|
- bytes are well-incorporated. */
|
- hash ^= hash >> 13;
|
- hash *= m;
|
- hash ^= hash >> 15;
|
+ return c;
|
+}
|
|
- return hash;
|
+uint32_t fd_os_hash ( uint8_t * string, size_t len )
|
+{
|
+ return hash_rjenkins(string, len);
|
}
|
|
--
|
1.7.10.4
|