/******************************************************************************
|
*
|
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
|
*
|
* This program is free software; you can redistribute it and/or modify it
|
* under the terms of version 2 of the GNU General Public License as
|
* published by the Free Software Foundation.
|
*
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
* more details.
|
*
|
* You should have received a copy of the GNU General Public License along with
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
|
*
|
*
|
******************************************************************************/
|
#define _HAL_INIT_C_
|
|
#include <drv_types.h>
|
#include <rtl8188e_hal.h>
|
|
|
#if defined(CONFIG_IOL)
|
static void iol_mode_enable(PADAPTER padapter, u8 enable)
|
{
|
u8 reg_0xf0 = 0;
|
|
if(enable)
|
{
|
//Enable initial offload
|
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
|
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN);
|
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
|
|
if(padapter->bFWReady == _FALSE)
|
{
|
printk("bFWReady == _FALSE call reset 8051...\n");
|
_8051Reset88E(padapter);
|
}
|
|
}
|
else
|
{
|
//disable initial offload
|
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
|
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN);
|
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
|
}
|
}
|
|
static s32 iol_execute(PADAPTER padapter, u8 control)
|
{
|
s32 status = _FAIL;
|
u8 reg_0x88 = 0,reg_1c7=0;
|
u32 start = 0, passing_time = 0;
|
|
u32 t1,t2;
|
control = control&0x0f;
|
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
|
//DBG_871X("%s reg_0x88:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x88, reg_0x88|control);
|
rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88|control);
|
|
t1 = start = rtw_get_current_time();
|
while(
|
//(reg_1c7 = rtw_read8(padapter, 0x1c7) >1) &&
|
(reg_0x88=rtw_read8(padapter, REG_HMEBOX_E0)) & control
|
&& (passing_time=rtw_get_passing_time_ms(start))<1000
|
) {
|
//DBG_871X("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __FUNCTION__, reg_0x88,rtw_read8(padapter, 0x1c7) );
|
//rtw_udelay_os(100);
|
}
|
|
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
|
status = (reg_0x88 & control)?_FAIL:_SUCCESS;
|
if(reg_0x88 & control<<4)
|
status = _FAIL;
|
t2= rtw_get_current_time();
|
//printk("==> step iol_execute : %5u reg-0x1c0= 0x%02x\n",rtw_get_time_interval_ms(t1,t2),rtw_read8(padapter, 0x1c0));
|
//DBG_871X("%s in %u ms, reg_0x88:0x%02x\n", __FUNCTION__, passing_time, reg_0x88);
|
|
return status;
|
}
|
|
static s32 iol_InitLLTTable(
|
PADAPTER padapter,
|
u8 txpktbuf_bndy
|
)
|
{
|
s32 rst = _SUCCESS;
|
iol_mode_enable(padapter, 1);
|
//DBG_871X("%s txpktbuf_bndy:%u\n", __FUNCTION__, txpktbuf_bndy);
|
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
|
rst = iol_execute(padapter, CMD_INIT_LLT);
|
iol_mode_enable(padapter, 0);
|
return rst;
|
}
|
|
static VOID
|
efuse_phymap_to_logical(u8 * phymap, u16 _offset, u16 _size_byte, u8 *pbuf)
|
{
|
u8 *efuseTbl = NULL;
|
u8 rtemp8;
|
u16 eFuse_Addr = 0;
|
u8 offset, wren;
|
u16 i, j;
|
u16 **eFuseWord = NULL;
|
u16 efuse_utilized = 0;
|
u8 efuse_usage = 0;
|
u8 u1temp = 0;
|
|
|
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E);
|
if(efuseTbl == NULL)
|
{
|
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
|
goto exit;
|
}
|
|
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2);
|
if(eFuseWord == NULL)
|
{
|
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
|
goto exit;
|
}
|
|
// 0. Refresh efuse init map as all oxFF.
|
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
|
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
|
eFuseWord[i][j] = 0xFFFF;
|
|
//
|
// 1. Read the first byte to check if efuse is empty!!!
|
//
|
//
|
rtemp8 = *(phymap+eFuse_Addr);
|
if(rtemp8 != 0xFF)
|
{
|
efuse_utilized++;
|
//printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
|
eFuse_Addr++;
|
}
|
else
|
{
|
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8);
|
goto exit;
|
}
|
|
|
//
|
// 2. Read real efuse content. Filter PG header and every section data.
|
//
|
while((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
|
|
// Check PG header for section num.
|
if((rtemp8 & 0x1F ) == 0x0F) //extended header
|
{
|
u1temp =( (rtemp8 & 0xE0) >> 5);
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
|
|
rtemp8 = *(phymap+eFuse_Addr);
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
|
|
if((rtemp8 & 0x0F) == 0x0F)
|
{
|
eFuse_Addr++;
|
rtemp8 = *(phymap+eFuse_Addr);
|
|
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
eFuse_Addr++;
|
}
|
continue;
|
}
|
else
|
{
|
offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
|
wren = (rtemp8 & 0x0F);
|
eFuse_Addr++;
|
}
|
}
|
else
|
{
|
offset = ((rtemp8 >> 4) & 0x0f);
|
wren = (rtemp8 & 0x0f);
|
}
|
|
if(offset < EFUSE_MAX_SECTION_88E)
|
{
|
// Get word enable value from PG header
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
|
|
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
|
{
|
// Check word enable condition in the section
|
if(!(wren & 0x01))
|
{
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
|
rtemp8 = *(phymap+eFuse_Addr);
|
eFuse_Addr++;
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
|
efuse_utilized++;
|
eFuseWord[offset][i] = (rtemp8 & 0xff);
|
|
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
|
rtemp8 = *(phymap+eFuse_Addr);
|
eFuse_Addr++;
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
|
|
efuse_utilized++;
|
eFuseWord[offset][i] |= (((u2Byte)rtemp8 << 8) & 0xff00);
|
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
}
|
|
wren >>= 1;
|
|
}
|
}
|
|
// Read next PG header
|
rtemp8 = *(phymap+eFuse_Addr);
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
|
|
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
efuse_utilized++;
|
eFuse_Addr++;
|
}
|
}
|
|
//
|
// 3. Collect 16 sections and 4 word unit into Efuse map.
|
//
|
for(i=0; i<EFUSE_MAX_SECTION_88E; i++)
|
{
|
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
|
{
|
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
|
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
|
}
|
}
|
|
|
//
|
// 4. Copy from Efuse map to output pointer memory!!!
|
//
|
for(i=0; i<_size_byte; i++)
|
{
|
pbuf[i] = efuseTbl[_offset+i];
|
}
|
|
//
|
// 5. Calculate Efuse utilization.
|
//
|
efuse_usage = (u1Byte)((efuse_utilized*100)/EFUSE_REAL_CONTENT_LEN_88E);
|
//rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized);
|
|
exit:
|
if(efuseTbl)
|
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
|
|
if(eFuseWord)
|
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
|
}
|
|
void efuse_read_phymap_from_txpktbuf(
|
ADAPTER *adapter,
|
int bcnhead, //beacon head, where FW store len(2-byte) and efuse physical map.
|
u8 *content, //buffer to store efuse physical map
|
u16 *size //for efuse content: the max byte to read. will update to byte read
|
)
|
{
|
u16 dbg_addr = 0;
|
u32 start = 0, passing_time = 0;
|
u8 reg_0x143 = 0;
|
u8 reg_0x106 = 0;
|
u32 lo32 = 0, hi32 = 0;
|
u16 len = 0, count = 0;
|
int i = 0;
|
u16 limit = *size;
|
|
u8 *pos = content;
|
|
if(bcnhead<0) //if not valid
|
bcnhead = rtw_read8(adapter, REG_TDECTRL+1);
|
|
DBG_871X("%s bcnhead:%d\n", __FUNCTION__, bcnhead);
|
|
//reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL);
|
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
|
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
|
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(adapter, 0x106));
|
|
dbg_addr = bcnhead*128/8; //8-bytes addressing
|
|
while(1)
|
{
|
//DBG_871X("%s dbg_addr:0x%x\n", __FUNCTION__, dbg_addr+i);
|
rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
|
|
//DBG_871X("%s write reg_0x143:0x00\n", __FUNCTION__);
|
rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
|
start = rtw_get_current_time();
|
while(!(reg_0x143=rtw_read8(adapter, REG_TXPKTBUF_DBG))//dbg
|
//while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0
|
&& (passing_time=rtw_get_passing_time_ms(start))<1000
|
) {
|
DBG_871X("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __FUNCTION__, reg_0x143, rtw_read8(adapter, 0x106));
|
rtw_usleep_os(100);
|
}
|
|
|
lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
|
hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
|
|
#if 0
|
DBG_871X("%s lo32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, lo32
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+2)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+3)
|
);
|
DBG_871X("%s hi32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, hi32
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+1)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+2)
|
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+3)
|
);
|
#endif
|
|
if(i==0)
|
{
|
#if 1 //for debug
|
u8 lenc[2];
|
u16 lenbak, aaabak;
|
u16 aaa;
|
lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
|
lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
|
|
aaabak = le16_to_cpup((u16*)lenc);
|
lenbak = le16_to_cpu(*((u16*)lenc));
|
aaa = le16_to_cpup((u16*)&lo32);
|
#endif
|
len = le16_to_cpu(*((u16*)&lo32));
|
|
limit = (len-2<limit)?len-2:limit;
|
|
DBG_871X("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __FUNCTION__, len, lenbak, aaa, aaabak);
|
|
_rtw_memcpy(pos, ((u8*)&lo32)+2, (limit>=count+2)?2:limit-count);
|
count+= (limit>=count+2)?2:limit-count;
|
pos=content+count;
|
|
}
|
else
|
{
|
_rtw_memcpy(pos, ((u8*)&lo32), (limit>=count+4)?4:limit-count);
|
count+=(limit>=count+4)?4:limit-count;
|
pos=content+count;
|
|
|
}
|
|
if(limit>count && len-2>count) {
|
_rtw_memcpy(pos, (u8*)&hi32, (limit>=count+4)?4:limit-count);
|
count+=(limit>=count+4)?4:limit-count;
|
pos=content+count;
|
}
|
|
if(limit<=count || len-2<=count)
|
break;
|
|
i++;
|
}
|
|
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
|
|
DBG_871X("%s read count:%u\n", __FUNCTION__, count);
|
*size = count;
|
|
}
|
|
|
static s32 iol_read_efuse(
|
PADAPTER padapter,
|
u8 txpktbuf_bndy,
|
u16 offset,
|
u16 size_byte,
|
u8 *logical_map
|
)
|
{
|
s32 status = _FAIL;
|
u8 reg_0x106 = 0;
|
u8 physical_map[512];
|
u16 size = 512;
|
int i;
|
|
|
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
|
_rtw_memset(physical_map, 0xFF, 512);
|
|
///reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL);
|
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
|
rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
|
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(padapter, 0x106));
|
|
status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
|
|
if(status == _SUCCESS)
|
efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
|
|
#if 0
|
DBG_871X_LEVEL(_drv_always_, "%s physical map\n", __FUNCTION__);
|
for(i=0;i<size;i++)
|
{
|
if (i%16==0)
|
DBG_871X_LEVEL(_drv_always_, "%02x", physical_map[i]);
|
else
|
_DBG_871X_LEVEL(_drv_always_, "%02x", physical_map[i]);
|
|
if (i%16==7)
|
_DBG_871X_LEVEL(_drv_always_, " ");
|
else if (i%16==15)
|
_DBG_871X_LEVEL(_drv_always_, "\n");
|
else
|
_DBG_871X_LEVEL(_drv_always_, " ");
|
}
|
_DBG_871X_LEVEL(_drv_always_, "\n");
|
#endif
|
|
efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
|
|
return status;
|
}
|
|
s32 rtl8188e_iol_efuse_patch(PADAPTER padapter)
|
{
|
s32 result = _SUCCESS;
|
printk("==> %s \n",__FUNCTION__);
|
|
if(rtw_IOL_applied(padapter)){
|
iol_mode_enable(padapter, 1);
|
result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
|
if(result == _SUCCESS)
|
result = iol_execute(padapter, CMD_EFUSE_PATCH);
|
|
iol_mode_enable(padapter, 0);
|
}
|
return result;
|
}
|
|
static s32 iol_ioconfig(
|
PADAPTER padapter,
|
u8 iocfg_bndy
|
)
|
{
|
s32 rst = _SUCCESS;
|
|
//DBG_871X("%s iocfg_bndy:%u\n", __FUNCTION__, iocfg_bndy);
|
rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy);
|
rst = iol_execute(padapter, CMD_IOCONFIG);
|
|
return rst;
|
}
|
|
int rtl8188e_IOL_exec_cmds_sync(ADAPTER *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms,u32 bndy_cnt)
|
{
|
|
u32 start_time = rtw_get_current_time();
|
u32 passing_time_ms;
|
u8 polling_ret,i;
|
int ret = _FAIL;
|
u32 t1,t2;
|
|
//printk("===> %s ,bndy_cnt = %d \n",__FUNCTION__,bndy_cnt);
|
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
|
goto exit;
|
#ifdef CONFIG_USB_HCI
|
{
|
struct pkt_attrib *pattrib = &xmit_frame->attrib;
|
if(rtw_usb_bulk_size_boundary(adapter,TXDESC_SIZE+pattrib->last_txcmdsz))
|
{
|
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
|
goto exit;
|
}
|
}
|
#endif //CONFIG_USB_HCI
|
|
//rtw_IOL_cmd_buf_dump(adapter,xmit_frame->attrib.pktlen+TXDESC_OFFSET,xmit_frame->buf_addr);
|
//rtw_hal_mgnt_xmit(adapter, xmit_frame);
|
//rtw_dump_xframe_sync(adapter, xmit_frame);
|
|
dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);
|
|
t1= rtw_get_current_time();
|
iol_mode_enable(adapter, 1);
|
for(i=0;i<bndy_cnt;i++){
|
u8 page_no = 0;
|
page_no = i*2 ;
|
//printk(" i = %d, page_no = %d \n",i,page_no);
|
if( (ret = iol_ioconfig(adapter, page_no)) != _SUCCESS)
|
{
|
break;
|
}
|
}
|
iol_mode_enable(adapter, 0);
|
t2 = rtw_get_current_time();
|
//printk("==> %s : %5u\n",__FUNCTION__,rtw_get_time_interval_ms(t1,t2));
|
exit:
|
//restore BCN_HEAD
|
rtw_write8(adapter, REG_TDECTRL+1, 0);
|
return ret;
|
}
|
|
void rtw_IOL_cmd_tx_pkt_buf_dump(ADAPTER *Adapter,int data_len)
|
{
|
u32 fifo_data,reg_140;
|
u32 addr,rstatus,loop=0;
|
|
u16 data_cnts = (data_len/8)+1;
|
u8 *pbuf =rtw_zvmalloc(data_len+10);
|
printk("###### %s ######\n",__FUNCTION__);
|
|
rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
|
if(pbuf){
|
for(addr=0;addr< data_cnts;addr++){
|
//printk("==> addr:0x%02x\n",addr);
|
rtw_write32(Adapter,0x140,addr);
|
rtw_usleep_os(2);
|
loop=0;
|
do{
|
rstatus=(reg_140=rtw_read32(Adapter,REG_PKTBUF_DBG_CTRL)&BIT24);
|
//printk("rstatus = %02x, reg_140:0x%08x\n",rstatus,reg_140);
|
if(rstatus){
|
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_L);
|
//printk("fifo_data_144:0x%08x\n",fifo_data);
|
_rtw_memcpy(pbuf+(addr*8),&fifo_data , 4);
|
|
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_H);
|
//printk("fifo_data_148:0x%08x\n",fifo_data);
|
_rtw_memcpy(pbuf+(addr*8+4), &fifo_data, 4);
|
|
}
|
rtw_usleep_os(2);
|
}while( !rstatus && (loop++ <10));
|
}
|
rtw_IOL_cmd_buf_dump(Adapter,data_len,pbuf);
|
rtw_vmfree(pbuf, data_len+10);
|
|
}
|
printk("###### %s ######\n",__FUNCTION__);
|
}
|
|
#endif /* defined(CONFIG_IOL) */
|
|
|
static VOID
|
_FWDownloadEnable_8188E(
|
IN PADAPTER padapter,
|
IN BOOLEAN enable
|
)
|
{
|
u8 tmp;
|
|
if(enable)
|
{
|
// MCU firmware download enable.
|
tmp = rtw_read8(padapter, REG_MCUFWDL);
|
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
|
|
// 8051 reset
|
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
|
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
|
}
|
else
|
{
|
|
// MCU firmware download disable.
|
tmp = rtw_read8(padapter, REG_MCUFWDL);
|
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
|
|
// Reserved for fw extension.
|
rtw_write8(padapter, REG_MCUFWDL+1, 0x00);
|
}
|
}
|
#define MAX_REG_BOLCK_SIZE 196
|
static int
|
_BlockWrite(
|
IN PADAPTER padapter,
|
IN PVOID buffer,
|
IN u32 buffSize
|
)
|
{
|
int ret = _SUCCESS;
|
|
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
|
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
|
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
|
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
|
u32 remainSize_p1 = 0, remainSize_p2 = 0;
|
u8 *bufferPtr = (u8*)buffer;
|
u32 i=0, offset=0;
|
#ifdef CONFIG_PCI_HCI
|
u8 remainFW[4] = {0, 0, 0, 0};
|
u8 *p = NULL;
|
#endif
|
|
#ifdef CONFIG_USB_HCI
|
blockSize_p1 = MAX_REG_BOLCK_SIZE;
|
#endif
|
|
//3 Phase #1
|
blockCount_p1 = buffSize / blockSize_p1;
|
remainSize_p1 = buffSize % blockSize_p1;
|
|
if (blockCount_p1) {
|
RT_TRACE(_module_hal_init_c_, _drv_notice_,
|
("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
|
buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
|
}
|
|
for (i = 0; i < blockCount_p1; i++)
|
{
|
#ifdef CONFIG_USB_HCI
|
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
|
#else
|
ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32*)(bufferPtr + i * blockSize_p1))));
|
#endif
|
|
if(ret == _FAIL)
|
goto exit;
|
}
|
|
#ifdef CONFIG_PCI_HCI
|
p = (u8*)((u32*)(bufferPtr + blockCount_p1 * blockSize_p1));
|
if (remainSize_p1) {
|
switch (remainSize_p1) {
|
case 0:
|
break;
|
case 3:
|
remainFW[2]=*(p+2);
|
case 2:
|
remainFW[1]=*(p+1);
|
case 1:
|
remainFW[0]=*(p);
|
ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + blockCount_p1 * blockSize_p1),
|
le32_to_cpu(*(u32*)remainFW));
|
}
|
return ret;
|
}
|
#endif
|
|
//3 Phase #2
|
if (remainSize_p1)
|
{
|
offset = blockCount_p1 * blockSize_p1;
|
|
blockCount_p2 = remainSize_p1/blockSize_p2;
|
remainSize_p2 = remainSize_p1%blockSize_p2;
|
|
if (blockCount_p2) {
|
RT_TRACE(_module_hal_init_c_, _drv_notice_,
|
("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
|
(buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2));
|
}
|
|
#ifdef CONFIG_USB_HCI
|
for (i = 0; i < blockCount_p2; i++) {
|
ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
|
|
if(ret == _FAIL)
|
goto exit;
|
}
|
#endif
|
}
|
|
//3 Phase #3
|
if (remainSize_p2)
|
{
|
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
|
|
blockCount_p3 = remainSize_p2 / blockSize_p3;
|
|
RT_TRACE(_module_hal_init_c_, _drv_notice_,
|
("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
|
(buffSize-offset), blockSize_p3, blockCount_p3));
|
|
for(i = 0 ; i < blockCount_p3 ; i++){
|
ret =rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
|
|
if(ret == _FAIL)
|
goto exit;
|
}
|
}
|
|
exit:
|
return ret;
|
}
|
|
static int
|
_PageWrite(
|
IN PADAPTER padapter,
|
IN u32 page,
|
IN PVOID buffer,
|
IN u32 size
|
)
|
{
|
u8 value8;
|
u8 u8Page = (u8) (page & 0x07) ;
|
|
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ;
|
rtw_write8(padapter, REG_MCUFWDL+2,value8);
|
|
return _BlockWrite(padapter,buffer,size);
|
}
|
|
static VOID
|
_FillDummy(
|
u8* pFwBuf,
|
u32* pFwLen
|
)
|
{
|
u32 FwLen = *pFwLen;
|
u8 remain = (u8)(FwLen%4);
|
remain = (remain==0)?0:(4-remain);
|
|
while(remain>0)
|
{
|
pFwBuf[FwLen] = 0;
|
FwLen++;
|
remain--;
|
}
|
|
*pFwLen = FwLen;
|
}
|
|
static int
|
_WriteFW(
|
IN PADAPTER padapter,
|
IN PVOID buffer,
|
IN u32 size
|
)
|
{
|
// Since we need dynamic decide method of dwonload fw, so we call this function to get chip version.
|
int ret = _SUCCESS;
|
u32 pageNums,remainSize ;
|
u32 page, offset;
|
u8 *bufferPtr = (u8*)buffer;
|
|
#ifdef CONFIG_PCI_HCI
|
// 20100120 Joseph: Add for 88CE normal chip.
|
// Fill in zero to make firmware image to dword alignment.
|
// _FillDummy(bufferPtr, &size);
|
#endif
|
|
pageNums = size / MAX_DLFW_PAGE_SIZE ;
|
//RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4 \n"));
|
remainSize = size % MAX_DLFW_PAGE_SIZE;
|
|
for (page = 0; page < pageNums; page++) {
|
offset = page * MAX_DLFW_PAGE_SIZE;
|
ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
|
|
if(ret == _FAIL)
|
goto exit;
|
}
|
if (remainSize) {
|
offset = pageNums * MAX_DLFW_PAGE_SIZE;
|
page = pageNums;
|
ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
|
|
if(ret == _FAIL)
|
goto exit;
|
|
}
|
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
|
|
exit:
|
return ret;
|
}
|
|
void _MCUIO_Reset88E(PADAPTER padapter,u8 bReset)
|
{
|
u8 u1bTmp;
|
|
if(bReset==_TRUE){
|
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL);
|
rtw_write8(padapter,REG_RSV_CTRL, (u1bTmp&(~BIT1)));
|
// Reset MCU IO Wrapper- sugggest by SD1-Gimmy
|
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
|
rtw_write8(padapter,REG_RSV_CTRL+1, (u1bTmp&(~BIT3)));
|
}else{
|
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL);
|
rtw_write8(padapter,REG_RSV_CTRL, (u1bTmp&(~BIT1)));
|
// Enable MCU IO Wrapper
|
u1bTmp = rtw_read8(padapter, REG_RSV_CTRL+1);
|
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp|BIT3);
|
}
|
|
}
|
|
void _8051Reset88E(PADAPTER padapter)
|
{
|
u8 u1bTmp;
|
|
_MCUIO_Reset88E(padapter,_TRUE);
|
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
|
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
|
_MCUIO_Reset88E(padapter,_FALSE);
|
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
|
|
DBG_871X("=====> _8051Reset88E(): 8051 reset success .\n");
|
}
|
|
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
|
{
|
s32 ret = _FAIL;
|
u32 value32;
|
u32 start = rtw_get_current_time();
|
u32 cnt = 0;
|
|
/* polling CheckSum report */
|
do {
|
cnt++;
|
value32 = rtw_read32(adapter, REG_MCUFWDL);
|
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_RUN(adapter))
|
break;
|
rtw_yield_os();
|
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
|
|
if (!(value32 & FWDL_ChkSum_rpt)) {
|
goto exit;
|
}
|
|
if (rtw_fwdl_test_trigger_chksum_fail())
|
goto exit;
|
|
ret = _SUCCESS;
|
|
exit:
|
DBG_871X("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
|
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
|
|
return ret;
|
}
|
|
static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
|
{
|
s32 ret = _FAIL;
|
u32 value32;
|
u32 start = rtw_get_current_time();
|
u32 cnt = 0;
|
|
value32 = rtw_read32(adapter, REG_MCUFWDL);
|
value32 |= MCUFWDL_RDY;
|
value32 &= ~WINTINI_RDY;
|
rtw_write32(adapter, REG_MCUFWDL, value32);
|
|
_8051Reset88E(adapter);
|
|
/* polling for FW ready */
|
do {
|
cnt++;
|
value32 = rtw_read32(adapter, REG_MCUFWDL);
|
if (value32 & WINTINI_RDY || RTW_CANNOT_RUN(adapter))
|
break;
|
rtw_yield_os();
|
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
|
|
if (!(value32 & WINTINI_RDY)) {
|
goto exit;
|
}
|
|
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
|
goto exit;
|
|
ret = _SUCCESS;
|
|
exit:
|
DBG_871X("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
|
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
|
return ret;
|
}
|
|
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
|
|
|
#ifdef CONFIG_FILE_FWIMG
|
extern char *rtw_fw_file_path;
|
extern char *rtw_fw_wow_file_path;
|
u8 FwBuffer8188E[FW_8188E_SIZE];
|
#endif //CONFIG_FILE_FWIMG
|
|
//
|
// Description:
|
// Download 8192C firmware code.
|
//
|
//
|
s32 rtl8188e_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw)
|
{
|
s32 rtStatus = _SUCCESS;
|
u8 write_fw = 0;
|
u32 fwdl_start_time;
|
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
|
|
PRT_FIRMWARE_8188E pFirmware = NULL;
|
PRT_8188E_FIRMWARE_HDR pFwHdr = NULL;
|
|
u8 *pFirmwareBuf;
|
u32 FirmwareLen,tmp_fw_len=0;
|
#ifdef CONFIG_FILE_FWIMG
|
u8 *fwfilepath;
|
#endif // CONFIG_FILE_FWIMG
|
|
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
|
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
|
#endif
|
|
RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __FUNCTION__));
|
pFirmware = (PRT_FIRMWARE_8188E)rtw_zmalloc(sizeof(RT_FIRMWARE_8188E));
|
if(!pFirmware)
|
{
|
rtStatus = _FAIL;
|
goto exit;
|
}
|
|
|
// RT_TRACE(_module_hal_init_c_, _drv_err_, ("%s: %s\n",__FUNCTION__, pFwImageFileName));
|
|
#ifdef CONFIG_FILE_FWIMG
|
#ifdef CONFIG_WOWLAN
|
if (bUsedWoWLANFw)
|
{
|
fwfilepath = rtw_fw_wow_file_path;
|
}
|
else
|
#endif // CONFIG_WOWLAN
|
{
|
fwfilepath = rtw_fw_file_path;
|
}
|
#endif // CONFIG_FILE_FWIMG
|
|
#ifdef CONFIG_FILE_FWIMG
|
if(rtw_is_file_readable(fwfilepath) == _TRUE)
|
{
|
DBG_871X("%s accquire FW from file:%s\n", __FUNCTION__, fwfilepath);
|
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
|
}
|
else
|
#endif //CONFIG_FILE_FWIMG
|
{
|
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
|
}
|
|
switch(pFirmware->eFWSource)
|
{
|
case FW_SOURCE_IMG_FILE:
|
#ifdef CONFIG_FILE_FWIMG
|
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer8188E, FW_8188E_SIZE);
|
pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
|
pFirmware->szFwBuffer = FwBuffer8188E;
|
#endif //CONFIG_FILE_FWIMG
|
break;
|
case FW_SOURCE_HEADER_FILE:
|
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
|
if(bUsedWoWLANFw) {
|
#ifdef CONFIG_SFW_SUPPORTED
|
if (IS_VENDOR_8188E_I_CUT_SERIES(padapter)) {
|
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_WoWLAN_2,
|
(u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
|
} else
|
#endif
|
{
|
if (!pwrpriv->wowlan_ap_mode) {
|
ODM_ConfigFWWithHeaderFile(
|
&pHalData->odmpriv,
|
CONFIG_FW_WoWLAN,
|
(u8 *)&(pFirmware->szFwBuffer),
|
&(pFirmware->ulFwLength));
|
DBG_871X("%s fw:%s, size: %d\n", __func__,
|
"WoWLAN", pFirmware->ulFwLength);
|
} else {
|
ODM_ConfigFWWithHeaderFile(
|
&pHalData->odmpriv,
|
CONFIG_FW_AP,
|
(u8 *)&(pFirmware->szFwBuffer),
|
&(pFirmware->ulFwLength));
|
DBG_871X("%s fw: %s, size: %d\n", __func__,
|
"AP_WoWLAN", pFirmware->ulFwLength);
|
}
|
}
|
|
}else
|
#endif //CONFIG_WOWLAN
|
{
|
#ifdef CONFIG_SFW_SUPPORTED
|
if(IS_VENDOR_8188E_I_CUT_SERIES(padapter))
|
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_NIC_2,
|
(u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
|
else
|
#endif
|
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_NIC,
|
(u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
|
DBG_871X("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
|
}
|
break;
|
}
|
|
tmp_fw_len = IS_VENDOR_8188E_I_CUT_SERIES(padapter)?FW_8188E_SIZE_2:FW_8188E_SIZE;
|
|
if (pFirmware->ulFwLength > tmp_fw_len) {
|
rtStatus = _FAIL;
|
DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, tmp_fw_len);
|
goto exit;
|
}
|
|
pFirmwareBuf = pFirmware->szFwBuffer;
|
FirmwareLen = pFirmware->ulFwLength;
|
|
// To Check Fw header. Added by tynli. 2009.12.04.
|
pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmwareBuf;
|
|
pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
|
pHalData->FirmwareSubVersion = pFwHdr->Subversion;
|
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
|
|
DBG_871X("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n",
|
__FUNCTION__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature
|
,pFwHdr->Month,pFwHdr->Date,pFwHdr->Hour,pFwHdr->Minute);
|
|
if (IS_FW_HEADER_EXIST_88E(pFwHdr))
|
{
|
// Shift 32 bytes for FW header
|
pFirmwareBuf = pFirmwareBuf + 32;
|
FirmwareLen = FirmwareLen - 32;
|
}
|
|
// Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
|
// or it will cause download Fw fail. 2010.02.01. by tynli.
|
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) //8051 RAM code
|
{
|
rtw_write8(padapter, REG_MCUFWDL, 0x00);
|
_8051Reset88E(padapter);
|
}
|
|
_FWDownloadEnable_8188E(padapter, _TRUE);
|
fwdl_start_time = rtw_get_current_time();
|
while (!RTW_CANNOT_RUN(padapter)
|
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500))
|
{
|
/* reset FWDL chksum */
|
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
|
|
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
|
if (rtStatus != _SUCCESS)
|
continue;
|
|
rtStatus = polling_fwdl_chksum(padapter, 5, 50);
|
if (rtStatus == _SUCCESS)
|
break;
|
}
|
_FWDownloadEnable_8188E(padapter, _FALSE);
|
if(_SUCCESS != rtStatus)
|
goto fwdl_stat;
|
|
rtStatus = _FWFreeToGo(padapter, 10, 200);
|
if (_SUCCESS != rtStatus)
|
goto fwdl_stat;
|
|
fwdl_stat:
|
DBG_871X("FWDL %s. write_fw:%u, %dms\n"
|
, (rtStatus == _SUCCESS)?"success":"fail"
|
, write_fw
|
, rtw_get_passing_time_ms(fwdl_start_time)
|
);
|
|
exit:
|
if (pFirmware)
|
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8188E));
|
|
return rtStatus;
|
}
|
|
void rtl8188e_InitializeFirmwareVars(PADAPTER padapter)
|
{
|
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
|
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
|
|
// Init Fw LPS related.
|
pwrpriv->bFwCurrentInPSMode = _FALSE;
|
|
//Init H2C cmd.
|
rtw_write8(padapter, REG_HMETFR, 0x0f);
|
|
// Init H2C counter. by tynli. 2009.12.09.
|
pHalData->LastHMEBoxNum = 0;
|
}
|
|
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
|
//===========================================
|
|
//
|
// Description: Prepare some information to Fw for WoWLAN.
|
// (1) Download wowlan Fw.
|
// (2) Download RSVD page packets.
|
// (3) Enable AP offload if needed.
|
//
|
// 2011.04.12 by tynli.
|
//
|
VOID
|
SetFwRelatedForWoWLAN8188ES(
|
IN PADAPTER padapter,
|
IN u8 bHostIsGoingtoSleep
|
)
|
{
|
int status=_FAIL;
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
u8 bRecover = _FALSE;
|
//
|
// 1. Before WoWLAN we need to re-download WoWLAN Fw.
|
//
|
status = rtl8188e_FirmwareDownload(padapter, bHostIsGoingtoSleep);
|
if(status != _SUCCESS) {
|
DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware failed!!\n");
|
return;
|
} else {
|
DBG_871X("ConfigFwRelatedForWoWLAN8188ES(): Re-Download Firmware Success !!\n");
|
}
|
//
|
// 2. Re-Init the variables about Fw related setting.
|
//
|
rtl8188e_InitializeFirmwareVars(padapter);
|
}
|
#endif /*CONFIG_WOWLAN || CONFIG_AP_WOWLAN*/
|
|
//===========================================================
|
// Efuse related code
|
//===========================================================
|
enum{
|
VOLTAGE_V25 = 0x03,
|
LDOE25_SHIFT = 28 ,
|
};
|
|
static BOOLEAN
|
hal_EfusePgPacketWrite2ByteHeader(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest);
|
static BOOLEAN
|
hal_EfusePgPacketWrite1ByteHeader(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest);
|
static BOOLEAN
|
hal_EfusePgPacketWriteData(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest);
|
|
static VOID
|
hal_EfusePowerSwitch_RTL8188E(
|
IN PADAPTER pAdapter,
|
IN u8 bWrite,
|
IN u8 PwrState)
|
{
|
u8 tempval;
|
u16 tmpV16;
|
|
if (PwrState == _TRUE)
|
{
|
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
|
#if 0
|
// 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid
|
tmpV16 = rtw_read16(pAdapter,REG_SYS_ISO_CTRL);
|
if( ! (tmpV16 & PWC_EV12V ) ){
|
tmpV16 |= PWC_EV12V ;
|
rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16);
|
}
|
#endif
|
// Reset: 0x0000h[28], default valid
|
tmpV16 = rtw_read16(pAdapter,REG_SYS_FUNC_EN);
|
if( !(tmpV16 & FEN_ELDR) ){
|
tmpV16 |= FEN_ELDR ;
|
rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
|
}
|
|
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
|
tmpV16 = rtw_read16(pAdapter,REG_SYS_CLKR);
|
if( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) ){
|
tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
|
rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
|
}
|
|
if(bWrite == _TRUE)
|
{
|
// Enable LDO 2.5V before read/write action
|
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
|
if(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)){
|
tempval &= 0x87;
|
tempval |= 0x38; // 0x34[30:27] = 0b'0111, Use LDO 2.25V, Suggested by SD1 Pisa
|
}
|
else{
|
tempval &= 0x0F;
|
tempval |= (VOLTAGE_V25 << 4);
|
}
|
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
|
}
|
}
|
else
|
{
|
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
|
|
if(bWrite == _TRUE){
|
// Disable LDO 2.5V after read/write action
|
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
|
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
|
}
|
}
|
}
|
|
static VOID
|
rtl8188e_EfusePowerSwitch(
|
IN PADAPTER pAdapter,
|
IN u8 bWrite,
|
IN u8 PwrState)
|
{
|
hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState);
|
}
|
|
|
|
static bool efuse_read_phymap(
|
PADAPTER Adapter,
|
u8 *pbuf, //buffer to store efuse physical map
|
u16 *size //the max byte to read. will update to byte read
|
)
|
{
|
u8 *pos = pbuf;
|
u16 limit = *size;
|
u16 addr = 0;
|
bool reach_end = _FALSE;
|
|
//
|
// Refresh efuse init map as all 0xFF.
|
//
|
_rtw_memset(pbuf, 0xFF, limit);
|
|
|
//
|
// Read physical efuse content.
|
//
|
while(addr < limit)
|
{
|
ReadEFuseByte(Adapter, addr, pos, _FALSE);
|
if(*pos != 0xFF)
|
{
|
pos++;
|
addr++;
|
}
|
else
|
{
|
reach_end = _TRUE;
|
break;
|
}
|
}
|
|
*size = addr;
|
|
return reach_end;
|
|
}
|
|
static VOID
|
Hal_EfuseReadEFuse88E(
|
PADAPTER Adapter,
|
u16 _offset,
|
u16 _size_byte,
|
u8 *pbuf,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
//u8 efuseTbl[EFUSE_MAP_LEN_88E];
|
u8 *efuseTbl = NULL;
|
u8 rtemp8[1];
|
u16 eFuse_Addr = 0;
|
u8 offset, wren;
|
u16 i, j;
|
//u16 eFuseWord[EFUSE_MAX_SECTION_88E][EFUSE_MAX_WORD_UNIT];
|
u16 **eFuseWord = NULL;
|
u16 efuse_utilized = 0;
|
u8 efuse_usage = 0;
|
u8 u1temp = 0;
|
|
//
|
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
|
//
|
if((_offset + _size_byte)>EFUSE_MAP_LEN_88E)
|
{// total E-Fuse table is 512bytes
|
DBG_8192C("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n",_offset, _size_byte);
|
goto exit;
|
}
|
|
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E);
|
if(efuseTbl == NULL)
|
{
|
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
|
goto exit;
|
}
|
|
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2);
|
if(eFuseWord == NULL)
|
{
|
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
|
goto exit;
|
}
|
|
// 0. Refresh efuse init map as all oxFF.
|
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
|
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
|
eFuseWord[i][j] = 0xFFFF;
|
|
//
|
// 1. Read the first byte to check if efuse is empty!!!
|
//
|
//
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
if(*rtemp8 != 0xFF)
|
{
|
efuse_utilized++;
|
//DBG_8192C("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
|
eFuse_Addr++;
|
}
|
else
|
{
|
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
|
goto exit;
|
}
|
|
|
//
|
// 2. Read real efuse content. Filter PG header and every section data.
|
//
|
while((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
|
|
// Check PG header for section num.
|
if((*rtemp8 & 0x1F ) == 0x0F) //extended header
|
{
|
u1temp =( (*rtemp8 & 0xE0) >> 5);
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
|
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
|
|
if((*rtemp8 & 0x0F) == 0x0F)
|
{
|
eFuse_Addr++;
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
|
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
eFuse_Addr++;
|
}
|
continue;
|
}
|
else
|
{
|
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
|
wren = (*rtemp8 & 0x0F);
|
eFuse_Addr++;
|
}
|
}
|
else
|
{
|
offset = ((*rtemp8 >> 4) & 0x0f);
|
wren = (*rtemp8 & 0x0f);
|
}
|
|
if(offset < EFUSE_MAX_SECTION_88E)
|
{
|
// Get word enable value from PG header
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
|
|
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
|
{
|
// Check word enable condition in the section
|
if(!(wren & 0x01))
|
{
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
eFuse_Addr++;
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
|
efuse_utilized++;
|
eFuseWord[offset][i] = (*rtemp8 & 0xff);
|
|
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
eFuse_Addr++;
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
|
|
efuse_utilized++;
|
eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00);
|
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
}
|
|
wren >>= 1;
|
|
}
|
}
|
else{//deal with error offset,skip error data
|
DBG_871X_LEVEL(_drv_always_, "invalid offset:0x%02x \n",offset);
|
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++){
|
// Check word enable condition in the section
|
if(!(wren & 0x01)){
|
eFuse_Addr++;
|
efuse_utilized++;
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
eFuse_Addr++;
|
efuse_utilized++;
|
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
|
break;
|
}
|
}
|
}
|
// Read next PG header
|
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
|
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
|
|
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
|
{
|
efuse_utilized++;
|
eFuse_Addr++;
|
}
|
}
|
|
//
|
// 3. Collect 16 sections and 4 word unit into Efuse map.
|
//
|
for(i=0; i<EFUSE_MAX_SECTION_88E; i++)
|
{
|
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
|
{
|
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
|
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
|
}
|
}
|
|
|
//
|
// 4. Copy from Efuse map to output pointer memory!!!
|
//
|
for(i=0; i<_size_byte; i++)
|
{
|
pbuf[i] = efuseTbl[_offset+i];
|
}
|
|
//
|
// 5. Calculate Efuse utilization.
|
//
|
efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_88E);
|
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
|
|
exit:
|
if(efuseTbl)
|
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
|
|
if(eFuseWord)
|
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
|
}
|
|
|
static BOOLEAN
|
Hal_EfuseSwitchToBank(
|
IN PADAPTER pAdapter,
|
IN u8 bank,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
BOOLEAN bRet = _FALSE;
|
u32 value32=0;
|
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Efuse switch bank to %d\n", bank));
|
if(bPseudoTest)
|
{
|
fakeEfuseBank = bank;
|
bRet = _TRUE;
|
}
|
else
|
{
|
bRet = _TRUE;
|
}
|
return bRet;
|
}
|
|
|
|
static VOID
|
ReadEFuseByIC(
|
PADAPTER Adapter,
|
u8 efuseType,
|
u16 _offset,
|
u16 _size_byte,
|
u8 *pbuf,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
|
#ifdef DBG_IOL_READ_EFUSE_MAP
|
u8 logical_map[512];
|
#endif
|
|
#ifdef CONFIG_IOL_READ_EFUSE_MAP
|
if(!bPseudoTest )//&& rtw_IOL_applied(Adapter))
|
{
|
int ret = _FAIL;
|
if(rtw_IOL_applied(Adapter))
|
{
|
rtw_hal_power_on(Adapter);
|
|
iol_mode_enable(Adapter, 1);
|
#ifdef DBG_IOL_READ_EFUSE_MAP
|
iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map);
|
#else
|
ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
|
#endif
|
iol_mode_enable(Adapter, 0);
|
|
if(_SUCCESS == ret)
|
goto exit;
|
}
|
}
|
#endif
|
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
|
|
exit:
|
|
#ifdef DBG_IOL_READ_EFUSE_MAP
|
if(_rtw_memcmp(logical_map, pHalData->efuse_eeprom_data, 0x130) == _FALSE)
|
{
|
int i;
|
DBG_871X("%s compare first 0x130 byte fail\n", __FUNCTION__);
|
for(i=0;i<512;i++)
|
{
|
if(i%16==0)
|
DBG_871X("0x%03x: ", i);
|
DBG_871X("%02x ", logical_map[i]);
|
if(i%16==15)
|
DBG_871X("\n");
|
}
|
DBG_871X("\n");
|
}
|
#endif
|
|
return;
|
}
|
|
static VOID
|
ReadEFuse_Pseudo(
|
PADAPTER Adapter,
|
u8 efuseType,
|
u16 _offset,
|
u16 _size_byte,
|
u8 *pbuf,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
|
}
|
|
static VOID
|
rtl8188e_ReadEFuse(
|
PADAPTER Adapter,
|
u8 efuseType,
|
u16 _offset,
|
u16 _size_byte,
|
u8 *pbuf,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
if(bPseudoTest)
|
{
|
ReadEFuse_Pseudo(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
|
}
|
else
|
{
|
ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
|
}
|
}
|
|
//Do not support BT
|
VOID
|
Hal_EFUSEGetEfuseDefinition88E(
|
IN PADAPTER pAdapter,
|
IN u1Byte efuseType,
|
IN u1Byte type,
|
OUT PVOID pOut
|
)
|
{
|
switch(type)
|
{
|
case TYPE_EFUSE_MAX_SECTION:
|
{
|
u8* pMax_section;
|
pMax_section = (u8*)pOut;
|
*pMax_section = EFUSE_MAX_SECTION_88E;
|
}
|
break;
|
case TYPE_EFUSE_REAL_CONTENT_LEN:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (u16*)pOut;
|
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
|
}
|
break;
|
case TYPE_EFUSE_CONTENT_LEN_BANK:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (u16*)pOut;
|
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
|
}
|
break;
|
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (u16*)pOut;
|
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (u16*)pOut;
|
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
case TYPE_EFUSE_MAP_LEN:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (u16*)pOut;
|
*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
|
}
|
break;
|
case TYPE_EFUSE_PROTECT_BYTES_BANK:
|
{
|
u8* pu1Tmp;
|
pu1Tmp = (u8*)pOut;
|
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
default:
|
{
|
u8* pu1Tmp;
|
pu1Tmp = (u8*)pOut;
|
*pu1Tmp = 0;
|
}
|
break;
|
}
|
}
|
VOID
|
Hal_EFUSEGetEfuseDefinition_Pseudo88E(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u8 type,
|
OUT PVOID pOut
|
)
|
{
|
switch(type)
|
{
|
case TYPE_EFUSE_MAX_SECTION:
|
{
|
u8* pMax_section;
|
pMax_section = (pu1Byte)pOut;
|
*pMax_section = EFUSE_MAX_SECTION_88E;
|
}
|
break;
|
case TYPE_EFUSE_REAL_CONTENT_LEN:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (pu2Byte)pOut;
|
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
|
}
|
break;
|
case TYPE_EFUSE_CONTENT_LEN_BANK:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (pu2Byte)pOut;
|
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
|
}
|
break;
|
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (pu2Byte)pOut;
|
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (pu2Byte)pOut;
|
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
case TYPE_EFUSE_MAP_LEN:
|
{
|
u16* pu2Tmp;
|
pu2Tmp = (pu2Byte)pOut;
|
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_88E;
|
}
|
break;
|
case TYPE_EFUSE_PROTECT_BYTES_BANK:
|
{
|
u8* pu1Tmp;
|
pu1Tmp = (u8*)pOut;
|
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
|
}
|
break;
|
default:
|
{
|
u8* pu1Tmp;
|
pu1Tmp = (u8*)pOut;
|
*pu1Tmp = 0;
|
}
|
break;
|
}
|
}
|
|
|
static VOID
|
rtl8188e_EFUSE_GetEfuseDefinition(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u8 type,
|
OUT void *pOut,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
if(bPseudoTest)
|
{
|
Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut);
|
}
|
else
|
{
|
Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut);
|
}
|
}
|
|
static u8
|
Hal_EfuseWordEnableDataWrite( IN PADAPTER pAdapter,
|
IN u16 efuse_addr,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
u16 tmpaddr = 0;
|
u16 start_addr = efuse_addr;
|
u8 badworden = 0x0F;
|
u8 tmpdata[8];
|
|
_rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE);
|
//RT_TRACE(COMP_EFUSE, DBG_LOUD, ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
|
|
if(!(word_en&BIT0))
|
{
|
tmpaddr = start_addr;
|
efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
|
efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
|
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[0], bPseudoTest);
|
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[1], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
if((data[0]!=tmpdata[0])||(data[1]!=tmpdata[1])){
|
badworden &= (~BIT0);
|
}
|
}
|
if(!(word_en&BIT1))
|
{
|
tmpaddr = start_addr;
|
efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
|
efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
|
efuse_OneByteRead(pAdapter,tmpaddr , &tmpdata[2], bPseudoTest);
|
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[3], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
if((data[2]!=tmpdata[2])||(data[3]!=tmpdata[3])){
|
badworden &=( ~BIT1);
|
}
|
}
|
if(!(word_en&BIT2))
|
{
|
tmpaddr = start_addr;
|
efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
|
efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
|
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[4], bPseudoTest);
|
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[5], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
if((data[4]!=tmpdata[4])||(data[5]!=tmpdata[5])){
|
badworden &=( ~BIT2);
|
}
|
}
|
if(!(word_en&BIT3))
|
{
|
tmpaddr = start_addr;
|
efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
|
efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
|
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[6], bPseudoTest);
|
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[7], bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
if((data[6]!=tmpdata[6])||(data[7]!=tmpdata[7])){
|
badworden &=( ~BIT3);
|
}
|
}
|
return badworden;
|
}
|
|
static u8
|
Hal_EfuseWordEnableDataWrite_Pseudo( IN PADAPTER pAdapter,
|
IN u16 efuse_addr,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
u8 ret=0;
|
|
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
|
|
return ret;
|
}
|
|
static u8
|
rtl8188e_Efuse_WordEnableDataWrite( IN PADAPTER pAdapter,
|
IN u16 efuse_addr,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
u8 ret=0;
|
|
if(bPseudoTest)
|
{
|
ret = Hal_EfuseWordEnableDataWrite_Pseudo(pAdapter, efuse_addr, word_en, data, bPseudoTest);
|
}
|
else
|
{
|
ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
|
}
|
|
return ret;
|
}
|
|
|
static u16
|
hal_EfuseGetCurrentSize_8188e(IN PADAPTER pAdapter,
|
IN BOOLEAN bPseudoTest)
|
{
|
int bContinual = _TRUE;
|
|
u16 efuse_addr = 0;
|
u8 hoffset=0,hworden=0;
|
u8 efuse_data,word_cnts=0;
|
|
if(bPseudoTest)
|
{
|
efuse_addr = (u16)(fakeEfuseUsedBytes);
|
}
|
else
|
{
|
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
|
}
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));
|
|
while ( bContinual &&
|
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
|
AVAILABLE_EFUSE_ADDR(efuse_addr))
|
{
|
if(efuse_data!=0xFF)
|
{
|
if((efuse_data&0x1F) == 0x0F) //extended header
|
{
|
hoffset = efuse_data;
|
efuse_addr++;
|
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
|
if((efuse_data & 0x0F) == 0x0F)
|
{
|
efuse_addr++;
|
continue;
|
}
|
else
|
{
|
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
|
hworden = efuse_data & 0x0F;
|
}
|
}
|
else
|
{
|
hoffset = (efuse_data>>4) & 0x0F;
|
hworden = efuse_data & 0x0F;
|
}
|
word_cnts = Efuse_CalculateWordCnts(hworden);
|
//read next header
|
efuse_addr = efuse_addr + (word_cnts*2)+1;
|
}
|
else
|
{
|
bContinual = _FALSE ;
|
}
|
}
|
|
if(bPseudoTest)
|
{
|
fakeEfuseUsedBytes = efuse_addr;
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes));
|
}
|
else
|
{
|
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr));
|
}
|
|
return efuse_addr;
|
}
|
|
static u16
|
Hal_EfuseGetCurrentSize_Pseudo(IN PADAPTER pAdapter,
|
IN BOOLEAN bPseudoTest)
|
{
|
u16 ret=0;
|
|
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
|
|
return ret;
|
}
|
|
|
static u16
|
rtl8188e_EfuseGetCurrentSize(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN BOOLEAN bPseudoTest)
|
{
|
u16 ret=0;
|
|
if(bPseudoTest)
|
{
|
ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest);
|
}
|
else
|
{
|
ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
|
|
}
|
|
return ret;
|
}
|
|
|
static int
|
hal_EfusePgPacketRead_8188e(
|
IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
u8 ReadState = PG_STATE_HEADER;
|
|
int bContinual = _TRUE;
|
int bDataEmpty = _TRUE ;
|
|
u8 efuse_data,word_cnts = 0;
|
u16 efuse_addr = 0;
|
u8 hoffset = 0,hworden = 0;
|
u8 tmpidx = 0;
|
u8 tmpdata[8];
|
u8 max_section = 0;
|
u8 tmp_header = 0;
|
|
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (PVOID)&max_section, bPseudoTest);
|
|
if(data==NULL)
|
return _FALSE;
|
if(offset>max_section)
|
return _FALSE;
|
|
_rtw_memset((PVOID)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
|
_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
|
|
|
//
|
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
|
// Skip dummy parts to prevent unexpected data read from Efuse.
|
// By pass right now. 2009.02.19.
|
//
|
while(bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr) )
|
{
|
//------- Header Read -------------
|
if(ReadState & PG_STATE_HEADER)
|
{
|
if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
|
{
|
if(EXT_HEADER(efuse_data))
|
{
|
tmp_header = efuse_data;
|
efuse_addr++;
|
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
|
if(!ALL_WORDS_DISABLED(efuse_data))
|
{
|
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
|
hworden = efuse_data & 0x0F;
|
}
|
else
|
{
|
DBG_8192C("Error, All words disabled\n");
|
efuse_addr++;
|
continue;
|
}
|
}
|
else
|
{
|
hoffset = (efuse_data>>4) & 0x0F;
|
hworden = efuse_data & 0x0F;
|
}
|
word_cnts = Efuse_CalculateWordCnts(hworden);
|
bDataEmpty = _TRUE ;
|
|
if(hoffset==offset)
|
{
|
for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++)
|
{
|
if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) )
|
{
|
tmpdata[tmpidx] = efuse_data;
|
if(efuse_data!=0xff)
|
{
|
bDataEmpty = _FALSE;
|
}
|
}
|
}
|
if(bDataEmpty==_FALSE){
|
ReadState = PG_STATE_DATA;
|
}else{//read next header
|
efuse_addr = efuse_addr + (word_cnts*2)+1;
|
ReadState = PG_STATE_HEADER;
|
}
|
}
|
else{//read next header
|
efuse_addr = efuse_addr + (word_cnts*2)+1;
|
ReadState = PG_STATE_HEADER;
|
}
|
|
}
|
else{
|
bContinual = _FALSE ;
|
}
|
}
|
//------- Data section Read -------------
|
else if(ReadState & PG_STATE_DATA)
|
{
|
efuse_WordEnableDataRead(hworden,tmpdata,data);
|
efuse_addr = efuse_addr + (word_cnts*2)+1;
|
ReadState = PG_STATE_HEADER;
|
}
|
|
}
|
|
if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) &&
|
(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff))
|
return _FALSE;
|
else
|
return _TRUE;
|
|
}
|
|
static int
|
Hal_EfusePgPacketRead( IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret=0;
|
|
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
|
|
|
return ret;
|
}
|
|
static int
|
Hal_EfusePgPacketRead_Pseudo( IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret=0;
|
|
ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
|
|
return ret;
|
}
|
|
static int
|
rtl8188e_Efuse_PgPacketRead( IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret=0;
|
|
if(bPseudoTest)
|
{
|
ret = Hal_EfusePgPacketRead_Pseudo(pAdapter, offset, data, bPseudoTest);
|
}
|
else
|
{
|
ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest);
|
}
|
|
return ret;
|
}
|
|
static BOOLEAN
|
hal_EfuseFixHeaderProcess(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN PPGPKT_STRUCT pFixPkt,
|
IN u16 *pAddr,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
u8 originaldata[8], badworden=0;
|
u16 efuse_addr=*pAddr;
|
u32 PgWriteSuccess=0;
|
|
_rtw_memset((PVOID)originaldata, 0xff, 8);
|
|
if(Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest))
|
{ //check if data exist
|
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);
|
|
if(badworden != 0xf) // write fail
|
{
|
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
|
|
if(!PgWriteSuccess)
|
return _FALSE;
|
else
|
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
|
}
|
else
|
{
|
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
|
}
|
}
|
else
|
{
|
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
|
}
|
*pAddr = efuse_addr;
|
return _TRUE;
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWrite2ByteHeader(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest)
|
{
|
BOOLEAN bRet=_FALSE, bContinual=_TRUE;
|
u16 efuse_addr=*pAddr, efuse_max_available_len=0;
|
u8 pg_header=0, tmp_header=0, pg_header_temp=0;
|
u8 repeatcnt=0;
|
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 2byte header\n"));
|
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (PVOID)&efuse_max_available_len, bPseudoTest);
|
|
while(efuse_addr < efuse_max_available_len)
|
{
|
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
|
//RTPRINT(FEEPROM, EFUSE_PG, ("pg_header = 0x%x\n", pg_header));
|
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
while(tmp_header == 0xFF || pg_header != tmp_header)
|
{
|
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for pg_header!!\n"));
|
return _FALSE;
|
}
|
|
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
|
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
|
}
|
|
//to write ext_header
|
if(tmp_header == pg_header)
|
{
|
efuse_addr++;
|
pg_header_temp = pg_header;
|
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
|
|
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
while(tmp_header == 0xFF || pg_header != tmp_header)
|
{
|
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for ext_header!!\n"));
|
return _FALSE;
|
}
|
|
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
|
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
|
}
|
|
if((tmp_header & 0x0F) == 0x0F) //word_en PG fail
|
{
|
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for word_en!!\n"));
|
return _FALSE;
|
}
|
else
|
{
|
efuse_addr++;
|
continue;
|
}
|
}
|
else if(pg_header != tmp_header) //offset PG fail
|
{
|
PGPKT_STRUCT fixPkt;
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for offset PG fail, need to cover the existed data\n"));
|
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
|
fixPkt.word_en = tmp_header & 0x0F;
|
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
|
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
|
return _FALSE;
|
}
|
else
|
{
|
bRet = _TRUE;
|
break;
|
}
|
}
|
else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header
|
{
|
efuse_addr+=2;
|
continue;
|
}
|
}
|
|
*pAddr = efuse_addr;
|
return bRet;
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWrite1ByteHeader(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest)
|
{
|
BOOLEAN bRet=_FALSE;
|
u8 pg_header=0, tmp_header=0;
|
u16 efuse_addr=*pAddr;
|
u8 repeatcnt=0;
|
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 1byte header\n"));
|
pg_header = ((pTargetPkt->offset << 4) & 0xf0) |pTargetPkt->word_en;
|
|
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 0);
|
|
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
|
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT26, 1);
|
|
while(tmp_header == 0xFF || pg_header != tmp_header)
|
{
|
if(repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
|
{
|
return _FALSE;
|
}
|
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
|
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
|
}
|
|
if(pg_header == tmp_header)
|
{
|
bRet = _TRUE;
|
}
|
else
|
{
|
PGPKT_STRUCT fixPkt;
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for fixed PG packet, need to cover the existed data\n"));
|
fixPkt.offset = (tmp_header>>4) & 0x0F;
|
fixPkt.word_en = tmp_header & 0x0F;
|
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
|
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
|
return _FALSE;
|
}
|
|
*pAddr = efuse_addr;
|
return bRet;
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWriteData(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest)
|
{
|
BOOLEAN bRet=_FALSE;
|
u16 efuse_addr=*pAddr;
|
u8 badworden=0;
|
u32 PgWriteSuccess=0;
|
|
badworden = 0x0f;
|
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
|
if(badworden == 0x0F)
|
{
|
// write ok
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData ok!!\n"));
|
return _TRUE;
|
}
|
else
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData Fail!!\n"));
|
//reorganize other pg packet
|
|
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
|
|
if(!PgWriteSuccess)
|
return _FALSE;
|
else
|
return _TRUE;
|
}
|
|
return bRet;
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWriteHeader(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest)
|
{
|
BOOLEAN bRet=_FALSE;
|
|
if(pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
|
{
|
bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
|
}
|
else
|
{
|
bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
|
}
|
|
return bRet;
|
}
|
|
static BOOLEAN
|
wordEnMatched(
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN PPGPKT_STRUCT pCurPkt,
|
IN u8 *pWden
|
)
|
{
|
u8 match_word_en = 0x0F; // default all words are disabled
|
u8 i;
|
|
// check if the same words are enabled both target and current PG packet
|
if( ((pTargetPkt->word_en & BIT0) == 0) &&
|
((pCurPkt->word_en & BIT0) == 0) )
|
{
|
match_word_en &= ~BIT0; // enable word 0
|
}
|
if( ((pTargetPkt->word_en & BIT1) == 0) &&
|
((pCurPkt->word_en & BIT1) == 0) )
|
{
|
match_word_en &= ~BIT1; // enable word 1
|
}
|
if( ((pTargetPkt->word_en & BIT2) == 0) &&
|
((pCurPkt->word_en & BIT2) == 0) )
|
{
|
match_word_en &= ~BIT2; // enable word 2
|
}
|
if( ((pTargetPkt->word_en & BIT3) == 0) &&
|
((pCurPkt->word_en & BIT3) == 0) )
|
{
|
match_word_en &= ~BIT3; // enable word 3
|
}
|
|
*pWden = match_word_en;
|
|
if(match_word_en != 0xf)
|
return _TRUE;
|
else
|
return _FALSE;
|
}
|
|
static BOOLEAN
|
hal_EfuseCheckIfDatafollowed(
|
IN PADAPTER pAdapter,
|
IN u8 word_cnts,
|
IN u16 startAddr,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
BOOLEAN bRet=_FALSE;
|
u8 i, efuse_data;
|
|
for(i=0; i<(word_cnts*2) ; i++)
|
{
|
if(efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF))
|
bRet = _TRUE;
|
}
|
|
return bRet;
|
}
|
|
static BOOLEAN
|
hal_EfusePartialWriteCheck(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN u16 *pAddr,
|
IN PPGPKT_STRUCT pTargetPkt,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
BOOLEAN bRet=_FALSE;
|
u8 i, efuse_data=0, cur_header=0;
|
u8 new_wden=0, matched_wden=0, badworden=0;
|
u16 startAddr=0, efuse_max_available_len=0, efuse_max=0;
|
PGPKT_STRUCT curPkt;
|
|
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (PVOID)&efuse_max_available_len, bPseudoTest);
|
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&efuse_max, bPseudoTest);
|
|
if(efuseType == EFUSE_WIFI)
|
{
|
if(bPseudoTest)
|
{
|
startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
|
}
|
else
|
{
|
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
|
startAddr%=EFUSE_REAL_CONTENT_LEN;
|
}
|
}
|
else
|
{
|
if(bPseudoTest)
|
{
|
startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
|
}
|
else
|
{
|
startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
|
}
|
}
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePartialWriteCheck(), startAddr=%d\n", startAddr));
|
|
while(1)
|
{
|
if(startAddr >= efuse_max_available_len)
|
{
|
bRet = _FALSE;
|
break;
|
}
|
|
if(efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF))
|
{
|
if(EXT_HEADER(efuse_data))
|
{
|
cur_header = efuse_data;
|
startAddr++;
|
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
|
if(ALL_WORDS_DISABLED(efuse_data))
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Error condition, all words disabled"));
|
bRet = _FALSE;
|
break;
|
}
|
else
|
{
|
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
|
curPkt.word_en = efuse_data & 0x0F;
|
}
|
}
|
else
|
{
|
cur_header = efuse_data;
|
curPkt.offset = (cur_header>>4) & 0x0F;
|
curPkt.word_en = cur_header & 0x0F;
|
}
|
|
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
|
// if same header is found but no data followed
|
// write some part of data followed by the header.
|
if( (curPkt.offset == pTargetPkt->offset) &&
|
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
|
wordEnMatched(pTargetPkt, &curPkt, &matched_wden) )
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Need to partial write data by the previous wrote header\n"));
|
// Here to write partial data
|
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
|
if(badworden != 0x0F)
|
{
|
u32 PgWriteSuccess=0;
|
// if write fail on some words, write these bad words again
|
|
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
|
|
if(!PgWriteSuccess)
|
{
|
bRet = _FALSE; // write fail, return
|
break;
|
}
|
}
|
// partial write ok, update the target packet for later use
|
for(i=0; i<4; i++)
|
{
|
if((matched_wden & (0x1<<i)) == 0) // this word has been written
|
{
|
pTargetPkt->word_en |= (0x1<<i); // disable the word
|
}
|
}
|
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
|
}
|
// read from next header
|
startAddr = startAddr + (curPkt.word_cnts*2) +1;
|
}
|
else
|
{
|
// not used header, 0xff
|
*pAddr = startAddr;
|
//RTPRINT(FEEPROM, EFUSE_PG, ("Started from unused header offset=%d\n", startAddr));
|
bRet = _TRUE;
|
break;
|
}
|
}
|
return bRet;
|
}
|
|
static BOOLEAN
|
hal_EfusePgCheckAvailableAddr(
|
IN PADAPTER pAdapter,
|
IN u8 efuseType,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
u16 efuse_max_available_len=0;
|
|
//Change to check TYPE_EFUSE_MAP_LEN ,beacuse 8188E raw 256,logic map over 256.
|
EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&efuse_max_available_len, _FALSE);
|
|
//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&efuse_max_available_len, bPseudoTest);
|
//RTPRINT(FEEPROM, EFUSE_PG, ("efuse_max_available_len = %d\n", efuse_max_available_len));
|
|
if(Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len)
|
{
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgCheckAvailableAddr error!!\n"));
|
return _FALSE;
|
}
|
return _TRUE;
|
}
|
|
static VOID
|
hal_EfuseConstructPGPkt(
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *pData,
|
IN PPGPKT_STRUCT pTargetPkt
|
|
)
|
{
|
_rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8)*8);
|
pTargetPkt->offset = offset;
|
pTargetPkt->word_en= word_en;
|
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
|
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
|
|
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseConstructPGPkt(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts));
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWrite_BT(
|
IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *pData,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
PGPKT_STRUCT targetPkt;
|
u16 startAddr=0;
|
u8 efuseType=EFUSE_BT;
|
|
if(!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
|
return _FALSE;
|
|
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
|
|
if(!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
if(!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
if(!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
return _TRUE;
|
}
|
|
static BOOLEAN
|
hal_EfusePgPacketWrite_8188e(
|
IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *pData,
|
IN BOOLEAN bPseudoTest
|
)
|
{
|
PGPKT_STRUCT targetPkt;
|
u16 startAddr=0;
|
u8 efuseType=EFUSE_WIFI;
|
|
if(!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
|
return _FALSE;
|
|
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
|
|
if(!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
if(!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
if(!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
|
return _FALSE;
|
|
return _TRUE;
|
}
|
|
|
static int
|
Hal_EfusePgPacketWrite_Pseudo(IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret;
|
|
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
|
|
return ret;
|
}
|
|
static int
|
Hal_EfusePgPacketWrite(IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret=0;
|
ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
|
|
|
return ret;
|
}
|
|
static int
|
rtl8188e_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
|
IN u8 offset,
|
IN u8 word_en,
|
IN u8 *data,
|
IN BOOLEAN bPseudoTest)
|
{
|
int ret;
|
|
if(bPseudoTest)
|
{
|
ret = Hal_EfusePgPacketWrite_Pseudo(pAdapter, offset, word_en, data, bPseudoTest);
|
}
|
else
|
{
|
ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
|
}
|
return ret;
|
}
|
|
static void read_chip_version_8188e(PADAPTER padapter)
|
{
|
u32 value32;
|
HAL_DATA_TYPE *pHalData;
|
|
pHalData = GET_HAL_DATA(padapter);
|
|
value32 = rtw_read32(padapter, REG_SYS_CFG);
|
pHalData->VersionID.ICType = CHIP_8188E ;
|
pHalData->VersionID.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
|
|
pHalData->VersionID.RFType = RF_TYPE_1T1R;
|
pHalData->VersionID.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
|
pHalData->VersionID.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
|
|
// For regulator mode. by tynli. 2011.01.14
|
pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
|
|
pHalData->VersionID.ROMVer = 0; // ROM code version.
|
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
|
|
rtw_hal_config_rftype(padapter);
|
|
#if 1
|
dump_chip_info(pHalData->VersionID);
|
#endif
|
|
}
|
|
void rtl8188e_start_thread(_adapter *padapter)
|
{
|
#if defined(CONFIG_SDIO_HCI) || defined (CONFIG_GSPI_HCI)
|
#ifndef CONFIG_SDIO_TX_TASKLET
|
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
|
|
xmitpriv->SdioXmitThread = kthread_run(rtl8188es_xmit_thread, padapter, "RTWHALXT");
|
if (IS_ERR(xmitpriv->SdioXmitThread))
|
{
|
RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8188es_xmit_thread FAIL!!\n", __FUNCTION__));
|
}
|
#endif
|
#endif
|
}
|
|
void rtl8188e_stop_thread(_adapter *padapter)
|
{
|
#if defined(CONFIG_SDIO_HCI) || defined (CONFIG_GSPI_HCI)
|
#ifndef CONFIG_SDIO_TX_TASKLET
|
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
|
|
// stop xmit_buf_thread
|
if (xmitpriv->SdioXmitThread ) {
|
_rtw_up_sema(&xmitpriv->SdioXmitSema);
|
/*_rtw_down_sema(&xmitpriv->SdioXmitTerminateSema);*/
|
rtw_wait_for_thread_stop(&xmitpriv->sdio_xmit_thread_comp);
|
xmitpriv->SdioXmitThread = 0;
|
}
|
#endif
|
#endif
|
}
|
void hal_notch_filter_8188e(_adapter *adapter, bool enable)
|
{
|
if (enable) {
|
DBG_871X("Enable notch filter\n");
|
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
|
} else {
|
DBG_871X("Disable notch filter\n");
|
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
|
}
|
}
|
|
void UpdateHalRAMask8188E(PADAPTER padapter, u32 mac_id, u8 rssi_level)
|
{
|
u32 mask,rate_bitmap;
|
u8 shortGIrate = _FALSE;
|
struct sta_info *psta;
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
|
if (mac_id >= NUM_STA) //CAM_SIZE
|
{
|
return;
|
}
|
|
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
|
if(psta == NULL)
|
{
|
return;
|
}
|
|
shortGIrate = query_ra_short_GI(psta);
|
|
mask = psta->ra_mask;
|
|
rate_bitmap = 0xffffffff;
|
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
|
|
|
DBG_871X("%s => mac_id:%d, rate_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
|
__FUNCTION__,mac_id,psta->raid,psta->wireless_mode,mask,rssi_level,rate_bitmap);
|
|
mask &= rate_bitmap;
|
|
if(pHalData->fw_ractrl == _TRUE)
|
{
|
u8 arg[4] ={0};
|
|
arg[0] = mac_id;//MACID
|
arg[1] = psta->raid;
|
arg[2] = shortGIrate;
|
arg[3] = psta->init_rate;
|
rtl8188e_set_raid_cmd(padapter, mask,arg);
|
}
|
else
|
{
|
|
#if(RATE_ADAPTIVE_SUPPORT == 1)
|
|
ODM_RA_UpdateRateInfo_8188E(
|
&(pHalData->odmpriv),
|
mac_id,
|
psta->raid,
|
mask,
|
shortGIrate
|
);
|
|
#endif
|
}
|
}
|
|
void rtl8188e_init_default_value(_adapter *adapter)
|
{
|
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
|
|
/* hal capability values */
|
hal_data->macid_num = MACID_NUM_88E;
|
hal_data->cam_entry_num = CAM_ENTRY_NUM_88E;
|
adapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
|
}
|
|
void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
|
{
|
pHalFunc->dm_init = &rtl8188e_init_dm_priv;
|
pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv;
|
|
pHalFunc->read_chip_version = read_chip_version_8188e;
|
|
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8188E;
|
|
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E;
|
pHalFunc->set_channel_handler = &PHY_SwChnl8188E;
|
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8188E;
|
|
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8188E;
|
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8188E;
|
|
pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;
|
|
pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid;
|
|
pHalFunc->run_thread= &rtl8188e_start_thread;
|
pHalFunc->cancel_thread= &rtl8188e_stop_thread;
|
|
#ifdef CONFIG_ANTENNA_DIVERSITY
|
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E;
|
pHalFunc->AntDivCompareHandler = &AntDivCompare8188E;
|
#endif
|
|
pHalFunc->read_bbreg = &PHY_QueryBBReg8188E;
|
pHalFunc->write_bbreg = &PHY_SetBBReg8188E;
|
pHalFunc->read_rfreg = &PHY_QueryRFReg8188E;
|
pHalFunc->write_rfreg = &PHY_SetRFReg8188E;
|
|
|
// Efuse related function
|
pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch;
|
pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse;
|
pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition;
|
pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize;
|
pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead;
|
pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite;
|
pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite;
|
|
#ifdef DBG_CONFIG_ERROR_DETECT
|
pHalFunc->sreset_init_value = &sreset_init_value;
|
pHalFunc->sreset_reset_value = &sreset_reset_value;
|
pHalFunc->silentreset = &sreset_reset;
|
pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check;
|
pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check;
|
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
|
pHalFunc->sreset_inprogress= &sreset_inprogress;
|
#endif //DBG_CONFIG_ERROR_DETECT
|
|
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
|
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
|
|
#ifdef CONFIG_IOL
|
pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync;
|
#endif
|
|
pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
|
pHalFunc->fill_h2c_cmd = &FillH2CCmd_88E;
|
pHalFunc->fill_fake_txdesc = &rtl8188e_fill_fake_txdesc;
|
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
|
pHalFunc->hal_set_wowlan_fw = &SetFwRelatedForWoWLAN8188ES;
|
#endif
|
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8188E;
|
}
|
|
u8 GetEEPROMSize8188E(PADAPTER padapter)
|
{
|
u8 size = 0;
|
u32 cr;
|
|
cr = rtw_read16(padapter, REG_9346CR);
|
// 6: EEPROM used is 93C46, 4: boot from E-Fuse.
|
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
|
|
MSG_8192C("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
|
|
return size;
|
}
|
|
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_PCI_HCI) || defined(CONFIG_GSPI_HCI)
|
//-------------------------------------------------------------------------
|
//
|
// LLT R/W/Init function
|
//
|
//-------------------------------------------------------------------------
|
s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data)
|
{
|
s32 status = _SUCCESS;
|
s8 count = POLLING_LLT_THRESHOLD;
|
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
|
|
rtw_write32(padapter, REG_LLT_INIT, value);
|
|
//polling
|
do {
|
value = rtw_read32(padapter, REG_LLT_INIT);
|
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
|
break;
|
}
|
} while (--count);
|
|
if(count<=0){
|
DBG_871X("Failed to polling write LLT done at address %d!\n", address);
|
status = _FAIL;
|
}
|
|
return status;
|
}
|
|
u8 _LLTRead(PADAPTER padapter, u32 address)
|
{
|
s32 count = POLLING_LLT_THRESHOLD;
|
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
|
u16 LLTReg = REG_LLT_INIT;
|
|
|
rtw_write32(padapter, LLTReg, value);
|
|
//polling and get value
|
do {
|
value = rtw_read32(padapter, LLTReg);
|
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
|
return (u8)value;
|
}
|
} while (--count);
|
|
if (count <=0 ) {
|
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling read LLT done at address %d!\n", address));
|
}
|
|
|
return 0xFF;
|
}
|
|
s32 InitLLTTable(PADAPTER padapter, u8 txpktbuf_bndy)
|
{
|
s32 status = _FAIL;
|
u32 i;
|
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8188E(padapter);// 176, 22k
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
|
#if defined(CONFIG_IOL_LLT)
|
if(rtw_IOL_applied(padapter))
|
{
|
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
|
}
|
else
|
#endif
|
{
|
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
|
status = _LLTWrite(padapter, i, i + 1);
|
if (_SUCCESS != status) {
|
return status;
|
}
|
}
|
|
// end of list
|
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
|
if (_SUCCESS != status) {
|
return status;
|
}
|
|
// Make the other pages as ring buffer
|
// This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer.
|
// Otherwise used as local loopback buffer.
|
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
|
status = _LLTWrite(padapter, i, (i + 1));
|
if (_SUCCESS != status) {
|
return status;
|
}
|
}
|
|
// Let last entry point to the start entry of ring buffer
|
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
|
if (_SUCCESS != status) {
|
return status;
|
}
|
}
|
|
return status;
|
}
|
#endif
|
|
|
void
|
Hal_InitPGData88E(PADAPTER padapter)
|
{
|
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
u32 i;
|
u16 value16;
|
|
if(_FALSE == pHalData->bautoload_fail_flag)
|
{ // autoload OK.
|
if (is_boot_from_eeprom(padapter))
|
{
|
// Read all Content from EEPROM or EFUSE.
|
for(i = 0; i < HWSET_MAX_SIZE; i += 2)
|
{
|
// value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1)));
|
// *((u16*)(&PROMContent[i])) = value16;
|
}
|
}
|
else
|
{
|
// Read EFUSE real map to shadow.
|
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
|
}
|
}
|
else
|
{//autoload fail
|
RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
|
// pHalData->AutoloadFailFlag = _TRUE;
|
//update to default value 0xFF
|
if (!is_boot_from_eeprom(padapter))
|
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
|
}
|
|
#ifdef CONFIG_EFUSE_CONFIG_FILE
|
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
|
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
|
DBG_871X_LEVEL(_drv_err_, "invalid phy efuse and read from file fail, will use driver default!!\n");
|
}
|
#endif
|
}
|
|
void
|
Hal_EfuseParseIDCode88E(
|
IN PADAPTER padapter,
|
IN u8 *hwinfo
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
u16 EEPROMId;
|
|
|
// Checl 0x8129 again for making sure autoload status!!
|
EEPROMId = le16_to_cpu(*((u16*)hwinfo));
|
if (EEPROMId != RTL_EEPROM_ID)
|
{
|
DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
|
pHalData->bautoload_fail_flag = _TRUE;
|
}
|
else
|
{
|
pHalData->bautoload_fail_flag = _FALSE;
|
}
|
|
DBG_871X("EEPROM ID=0x%04x\n", EEPROMId);
|
}
|
|
static void
|
Hal_ReadPowerValueFromPROM_8188E(
|
IN PADAPTER padapter,
|
IN PTxPowerInfo24G pwrInfo24G,
|
IN u8* PROMContent,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_88E, group,TxCount=0;
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
|
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
|
|
if(AutoLoadFail)
|
{
|
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
|
{
|
//2.4G default value
|
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
|
{
|
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
|
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
|
}
|
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
|
{
|
if(TxCount==0)
|
{
|
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
|
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
|
}
|
else
|
{
|
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
|
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
|
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
|
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
|
}
|
}
|
|
|
}
|
|
//pHalData->bNOPG = TRUE;
|
return;
|
}
|
|
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
|
{
|
//2.4G default value
|
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
|
{
|
//printk(" IndexCCK_Base rfPath:%d group:%d,eeAddr:0x%02x ",rfPath,group,eeAddr);
|
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
|
//printk(" IndexCCK_Base:%02x \n",pwrInfo24G->IndexCCK_Base[rfPath][group] );
|
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
|
{
|
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
|
// pHalData->bNOPG = TRUE;
|
}
|
}
|
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
|
{
|
//printk(" IndexBW40_Base rfPath:%d group:%d,eeAddr:0x%02x ",rfPath,group,eeAddr);
|
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
|
//printk(" IndexBW40_Base: %02x \n",pwrInfo24G->IndexBW40_Base[rfPath][group] );
|
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
|
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
|
}
|
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++)
|
{
|
if(TxCount==0)
|
{
|
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
|
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
|
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
|
|
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
|
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
|
|
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
|
eeAddr++;
|
} else{
|
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
|
if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
|
|
|
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
|
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
|
eeAddr++;
|
|
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
|
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
|
|
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
|
if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) /*4bit sign number to 8 bit sign number*/
|
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
|
|
eeAddr++;
|
}
|
}
|
|
}
|
|
|
}
|
|
static u8
|
Hal_GetChnlGroup(
|
IN u8 chnl
|
)
|
{
|
u8 group=0;
|
|
if (chnl < 3) // Cjanel 1-3
|
group = 0;
|
else if (chnl < 9) // Channel 4-9
|
group = 1;
|
else // Channel 10-14
|
group = 2;
|
|
return group;
|
}
|
static u8
|
Hal_GetChnlGroup88E(
|
IN u8 chnl,
|
OUT u8* pGroup
|
)
|
{
|
u8 bIn24G=_TRUE;
|
|
if(chnl<=14)
|
{
|
bIn24G=_TRUE;
|
|
if (chnl < 3) // Chanel 1-2
|
*pGroup = 0;
|
else if (chnl < 6) // Channel 3-5
|
*pGroup = 1;
|
else if(chnl <9) // Channel 6-8
|
*pGroup = 2;
|
else if(chnl <12) // Channel 9-11
|
*pGroup = 3;
|
else if(chnl <14) // Channel 12-13
|
*pGroup = 4;
|
else if(chnl ==14) // Channel 14
|
*pGroup = 5;
|
else
|
{
|
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 2.4 G, but Channel %d in Group not found \n",chnl));
|
}
|
}
|
else
|
{
|
bIn24G=_FALSE;
|
|
if (chnl <=40)
|
*pGroup = 0;
|
else if (chnl <=48)
|
*pGroup = 1;
|
else if(chnl <=56)
|
*pGroup = 2;
|
else if(chnl <=64)
|
*pGroup = 3;
|
else if(chnl <=104)
|
*pGroup = 4;
|
else if(chnl <=112)
|
*pGroup = 5;
|
else if(chnl <=120)
|
*pGroup = 5;
|
else if(chnl <=128)
|
*pGroup = 6;
|
else if(chnl <=136)
|
*pGroup = 7;
|
else if(chnl <=144)
|
*pGroup = 8;
|
else if(chnl <=153)
|
*pGroup = 9;
|
else if(chnl <=161)
|
*pGroup = 10;
|
else if(chnl <=177)
|
*pGroup = 11;
|
else
|
{
|
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("==>Hal_GetChnlGroup88E in 5G, but Channel %d in Group not found \n",chnl));
|
}
|
|
}
|
//RT_TRACE(COMP_EFUSE,DBG_LOUD,("<==Hal_GetChnlGroup88E, Channel = %d, bIn24G =%d,\n",chnl,bIn24G));
|
return bIn24G;
|
}
|
|
void Hal_ReadPowerSavingMode88E(
|
PADAPTER padapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
|
u8 tmpvalue;
|
|
if(AutoLoadFail){
|
pwrctl->bHWPowerdown = _FALSE;
|
pwrctl->bSupportRemoteWakeup = _FALSE;
|
}
|
else {
|
|
//hw power down mode selection , 0:rf-off / 1:power down
|
|
if(padapter->registrypriv.hwpdn_mode==2)
|
pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4);
|
else
|
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
|
|
// decide hw if support remote wakeup function
|
// if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume
|
#ifdef CONFIG_USB_HCI
|
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?_TRUE :_FALSE;
|
#endif //CONFIG_USB_HCI
|
|
DBG_8192C("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n",__FUNCTION__,
|
pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
|
|
DBG_8192C("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n",padapter->registrypriv.power_mgnt,padapter->registrypriv.usbss_enable);
|
|
}
|
|
}
|
|
void
|
Hal_ReadTxPowerInfo88E(
|
IN PADAPTER padapter,
|
IN u8* PROMContent,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
TxPowerInfo24G pwrInfo24G;
|
u8 rfPath, ch, group=0, rfPathMax=1;
|
u8 pwr, diff,bIn24G,TxCount;
|
|
|
Hal_ReadPowerValueFromPROM_8188E(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
|
|
if(!AutoLoadFail)
|
pHalData->bTXPowerDataReadFromEEPORM = TRUE;
|
|
//for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
|
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
|
{
|
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER ; ch++)
|
{
|
bIn24G = Hal_GetChnlGroup88E(ch+1,&group);
|
if(bIn24G)
|
{
|
|
pHalData->Index24G_CCK_Base[rfPath][ch]=pwrInfo24G.IndexCCK_Base[rfPath][group];
|
|
if(ch==(14-1))
|
pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][4];
|
else
|
pHalData->Index24G_BW40_Base[rfPath][ch]=pwrInfo24G.IndexBW40_Base[rfPath][group];
|
}
|
|
if(bIn24G)
|
{
|
DBG_871X("======= Path %d, Channel %d =======\n",rfPath,ch+1 );
|
DBG_871X("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch+1 ,pHalData->Index24G_CCK_Base[rfPath][ch]);
|
DBG_871X("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch+1 ,pHalData->Index24G_BW40_Base[rfPath][ch]);
|
}
|
}
|
|
for(TxCount=0;TxCount<MAX_TX_COUNT_8188E;TxCount++)
|
{
|
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
|
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
|
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
|
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
|
#if DBG
|
DBG_871X("======= TxCount %d =======\n",TxCount );
|
DBG_871X("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
|
DBG_871X("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
|
DBG_871X("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
|
DBG_871X("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
|
#endif
|
}
|
}
|
|
|
// 2010/10/19 MH Add Regulator recognize for EU.
|
if(!AutoLoadFail)
|
{
|
struct registry_priv *registry_par = &padapter->registrypriv;
|
|
if(PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
|
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
|
else
|
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); //bit0~2
|
|
}
|
else
|
{
|
pHalData->EEPROMRegulatory = 0;
|
}
|
DBG_871X("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
|
|
}
|
|
|
VOID
|
Hal_EfuseParseXtal_8188E(
|
IN PADAPTER pAdapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
|
|
if(!AutoLoadFail)
|
{
|
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
|
if(pHalData->CrystalCap == 0xFF)
|
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
|
}
|
else
|
{
|
pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
|
}
|
DBG_871X("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
|
}
|
|
void
|
Hal_EfuseParseBoardType88E(
|
IN PADAPTER pAdapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
|
|
if (!AutoLoadFail) {
|
pHalData->InterfaceSel = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5);
|
if(hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
|
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION&0xE0)>>5;
|
}
|
else {
|
pHalData->InterfaceSel = 0;
|
}
|
DBG_871X("Board Type: 0x%2x\n", pHalData->InterfaceSel);
|
}
|
|
void
|
Hal_EfuseParseEEPROMVer88E(
|
IN PADAPTER padapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
|
if(!AutoLoadFail){
|
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
|
if(pHalData->EEPROMVersion == 0xFF)
|
pHalData->EEPROMVersion = EEPROM_Default_Version;
|
}
|
else{
|
pHalData->EEPROMVersion = 1;
|
}
|
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
|
pHalData->EEPROMVersion));
|
}
|
|
void
|
rtl8188e_EfuseParseChnlPlan(
|
IN PADAPTER padapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
|
padapter
|
, hwinfo?hwinfo[EEPROM_ChannelPlan_88E]:0xFF
|
, padapter->registrypriv.channel_plan
|
, RT_CHANNEL_DOMAIN_WORLD_NULL
|
, AutoLoadFail
|
);
|
|
DBG_871X("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
|
}
|
|
void
|
Hal_EfuseParseCustomerID88E(
|
IN PADAPTER padapter,
|
IN u8* hwinfo,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
|
|
if (!AutoLoadFail)
|
{
|
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_88E];
|
//pHalData->EEPROMSubCustomerID = hwinfo[EEPROM_CustomID_88E];
|
}
|
else
|
{
|
pHalData->EEPROMCustomerID = 0;
|
pHalData->EEPROMSubCustomerID = 0;
|
}
|
DBG_871X("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
|
//DBG_871X("EEPROM SubCustomer ID: 0x%02x\n", pHalData->EEPROMSubCustomerID);
|
}
|
|
|
void
|
Hal_ReadAntennaDiversity88E(
|
IN PADAPTER pAdapter,
|
IN u8* PROMContent,
|
IN BOOLEAN AutoLoadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
|
struct registry_priv *registry_par = &pAdapter->registrypriv;
|
|
if(!AutoLoadFail)
|
{
|
// Antenna Diversity setting.
|
if(registry_par->antdiv_cfg == 2)// 2:By EFUSE
|
{
|
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
|
if(PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
|
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;;
|
}
|
else
|
{
|
pHalData->AntDivCfg = registry_par->antdiv_cfg ; // 0:OFF , 1:ON, 2:By EFUSE
|
}
|
|
if(registry_par->antdiv_type == 0)// If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead.
|
{
|
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
|
if (pHalData->TRxAntDivType == 0xFF)
|
pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; // For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port)
|
}
|
else{
|
pHalData->TRxAntDivType = registry_par->antdiv_type ;
|
}
|
|
if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
|
pHalData->AntDivCfg = 1; // 0xC1[3] is ignored.
|
}
|
else
|
{
|
pHalData->AntDivCfg = 0;
|
}
|
|
DBG_871X("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n",pHalData->AntDivCfg, pHalData->TRxAntDivType);
|
|
|
}
|
|
void
|
Hal_ReadThermalMeter_88E(
|
IN PADAPTER Adapter,
|
IN u8* PROMContent,
|
IN BOOLEAN AutoloadFail
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
u1Byte tempval;
|
|
//
|
// ThermalMeter from EEPROM
|
//
|
if(!AutoloadFail)
|
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
|
else
|
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
|
// pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0]
|
|
if(pHalData->EEPROMThermalMeter == 0xff || AutoloadFail)
|
{
|
pHalData->odmpriv.RFCalibrateInfo.bAPKThermalMeterIgnore = _TRUE;
|
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
|
}
|
|
//pHalData->ThermalMeter[0] = pHalData->EEPROMThermalMeter;
|
DBG_871X("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
|
|
}
|
|
#ifdef CONFIG_RF_GAIN_OFFSET
|
void Hal_ReadRFGainOffset(
|
IN PADAPTER Adapter,
|
IN u8* PROMContent,
|
IN BOOLEAN AutoloadFail)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
u8 thermal_offset=0;
|
//
|
// BB_RF Gain Offset from EEPROM
|
//
|
|
if (!AutoloadFail) {
|
pHalData->EEPROMRFGainOffset =PROMContent[EEPROM_RF_GAIN_OFFSET];
|
|
if((pHalData->EEPROMRFGainOffset != 0xFF) &&
|
(pHalData->EEPROMRFGainOffset & BIT4)){
|
pHalData->EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
|
}else{
|
pHalData->EEPROMRFGainOffset = 0;
|
pHalData->EEPROMRFGainVal = 0;
|
}
|
|
DBG_871X("pHalData->EEPROMRFGainVal=%x\n", pHalData->EEPROMRFGainVal);
|
} else {
|
pHalData->EEPROMRFGainVal=EFUSE_Read1Byte(Adapter,EEPROM_RF_GAIN_VAL);
|
|
if(pHalData->EEPROMRFGainVal != 0xFF)
|
pHalData->EEPROMRFGainOffset = BIT4;
|
else
|
pHalData->EEPROMRFGainOffset = 0;
|
DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
|
}
|
//
|
// BB_RF Thermal Offset from EEPROM
|
//
|
if( (pHalData->EEPROMRFGainOffset!= 0xFF) &&
|
(pHalData->EEPROMRFGainOffset & BIT4))
|
{
|
|
thermal_offset = EFUSE_Read1Byte(Adapter, EEPROM_THERMAL_OFFSET);
|
if( thermal_offset != 0xFF){
|
if(thermal_offset & BIT0)
|
pHalData->EEPROMThermalMeter += ((thermal_offset>>1) & 0x0F);
|
else
|
pHalData->EEPROMThermalMeter -= ((thermal_offset>>1) & 0x0F);
|
|
DBG_871X("%s =>thermal_offset:0x%02x pHalData->EEPROMThermalMeter=0x%02x\n",__FUNCTION__ ,thermal_offset,pHalData->EEPROMThermalMeter);
|
}
|
}
|
|
DBG_871X("%s => EEPRORFGainOffset = 0x%02x,EEPROMRFGainVal=0x%02x,thermal_offset:0x%02x \n",
|
__FUNCTION__, pHalData->EEPROMRFGainOffset,pHalData->EEPROMRFGainVal,thermal_offset);
|
|
}
|
|
#endif //CONFIG_RF_GAIN_OFFSET
|
|
BOOLEAN HalDetectPwrDownMode88E(PADAPTER Adapter)
|
{
|
u8 tmpvalue = 0;
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
|
|
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue);
|
|
// 2010/08/25 MH INF priority > PDN Efuse value.
|
if(tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
|
{
|
pHalData->pwrdown = _TRUE;
|
}
|
else
|
{
|
pHalData->pwrdown = _FALSE;
|
}
|
|
DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
|
|
return pHalData->pwrdown;
|
} // HalDetectPwrDownMode
|
|
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
|
void Hal_DetectWoWMode(PADAPTER pAdapter)
|
{
|
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
|
}
|
#endif
|
|
//====================================================================================
|
//
|
// 20100209 Joseph:
|
// This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
|
// We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
|
// the value of the register via atomic operation.
|
// This prevents from race condition when setting this register.
|
// The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
|
//
|
void SetBcnCtrlReg(
|
PADAPTER padapter,
|
u8 SetBits,
|
u8 ClearBits)
|
{
|
PHAL_DATA_TYPE pHalData;
|
|
|
pHalData = GET_HAL_DATA(padapter);
|
|
pHalData->RegBcnCtrlVal |= SetBits;
|
pHalData->RegBcnCtrlVal &= ~ClearBits;
|
|
#if 0
|
//#ifdef CONFIG_SDIO_HCI
|
if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
|
pHalData->RegBcnCtrlVal |= EN_TXBCN_RPT;
|
#endif
|
|
rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
|
}
|
|
void _InitTransferPageSize(PADAPTER padapter)
|
{
|
// Tx page size is always 128.
|
|
u8 value8;
|
value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
|
rtw_write8(padapter, REG_PBP, value8);
|
}
|
|
void ResumeTxBeacon(PADAPTER padapter)
|
{
|
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
|
|
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
|
// which should be read from register to a global variable.
|
|
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
|
|
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6);
|
/*TBTT hold time :4ms */
|
rtw_write16(padapter, REG_TBTT_PROHIBIT + 1,
|
(rtw_read16(padapter, REG_TBTT_PROHIBIT + 1) & (~0xFFF)) | (TBTT_PROBIHIT_HOLD_TIME));
|
|
}
|
|
void StopTxBeacon(PADAPTER padapter)
|
{
|
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
|
|
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
|
// which should be read from register to a global variable.
|
|
RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
|
|
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6));
|
pHalData->RegFwHwTxQCtrl &= (~BIT6);
|
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
|
|
/*CheckFwRsvdPageContent(padapter); // 2010.06.23. Added by tynli.*/
|
}
|
|
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
|
{
|
u32 value_rcr, rcr_bits;
|
u16 value_rxfltmap2;
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
|
|
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
|
|
/* Leave IPS */
|
rtw_pm_set_ips(Adapter, IPS_NONE);
|
LeaveAllPowerSaveMode(Adapter);
|
|
/* Receive all type */
|
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
|
|
/* Append FCS */
|
rcr_bits |= RCR_APPFCS;
|
|
#if 0
|
/*
|
CRC and ICV packet will drop in recvbuf2recvframe()
|
We no turn on it.
|
*/
|
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
|
#endif
|
|
/* Receive all data frames */
|
value_rxfltmap2 = 0xFFFF;
|
|
value_rcr = rcr_bits;
|
rtw_write32(Adapter, REG_RCR, value_rcr);
|
|
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
|
|
#if 0
|
/* tx pause */
|
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
|
#endif
|
} else {
|
/* do nothing */
|
}
|
|
}
|
|
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
u8 val8;
|
u8 mode = *((u8 *)val);
|
static u8 isMonitor = _FALSE;
|
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
|
if (isMonitor == _TRUE) {
|
/* reset RCR */
|
rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
|
isMonitor = _FALSE;
|
}
|
|
DBG_871X( ADPT_FMT "Port-%d set opmode = %d\n",ADPT_ARG(Adapter),
|
get_iface_type(Adapter), mode);
|
|
if (mode == _HW_STATE_MONITOR_) {
|
isMonitor = _TRUE;
|
/* set net_type */
|
Set_MSR(Adapter, _HW_STATE_NOLINK_);
|
|
hw_var_set_monitor(Adapter, variable, val);
|
return;
|
}
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
// disable Port1 TSF update
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
|
|
// set net_type
|
Set_MSR(Adapter, mode);
|
|
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
|
{
|
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
|
{
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
|
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_88E);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
|
#endif
|
|
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,0, (IMR_TBDER_88E|IMR_TBDOK_88E));
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK));
|
#endif
|
|
#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
#endif //CONFIG_INTERRUPT_BASED_TXBCN
|
|
StopTxBeacon(Adapter);
|
#if defined(CONFIG_PCI_HCI)
|
UpdateInterruptMask8188EE( Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
|
#endif
|
}
|
|
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function
|
//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
|
}
|
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
|
{
|
//Beacon is polled to TXBUF
|
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR)|BIT(8));
|
|
ResumeTxBeacon(Adapter);
|
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
|
//BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1
|
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
|
}
|
else if(mode == _HW_STATE_AP_)
|
{
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,IMR_BCNDMAINT0_88E, 0);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
|
#endif
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,(IMR_TBDER_88E|IMR_TBDOK_88E), 0);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK), 0);
|
#endif
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
|
#endif //CONFIG_INTERRUPT_BASED_TXBCN
|
|
ResumeTxBeacon(Adapter);
|
|
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
|
|
//Beacon is polled to TXBUF
|
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR)|BIT(8));
|
|
//Set RCR
|
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
|
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,Reject ICV_ERROR packets
|
|
//enable to rx data frame
|
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
|
//enable to rx ps-poll
|
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
|
|
//Beacon Control related register for first time
|
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
|
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);// 5ms
|
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
|
rtw_write8(Adapter, REG_ATIMWND_1, 0x0c); // 13 ms for port1
|
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
|
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x8004);
|
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
|
|
//reset TSF2
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
|
|
|
//BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1
|
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
|
//enable BCN1 Function for if2
|
//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
|
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1)));
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
|
rtw_write8(Adapter, REG_BCN_CTRL,
|
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
|
#endif
|
//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
|
//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5));
|
//rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3));
|
|
//dis BCN0 ATIM WND if if1 is station
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(0));
|
|
#ifdef CONFIG_TSF_RESET_OFFLOAD
|
// Reset TSF for STA+AP concurrent mode
|
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
|
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
|
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
|
__FUNCTION__, __LINE__);
|
}
|
#endif // CONFIG_TSF_RESET_OFFLOAD
|
#if defined(CONFIG_PCI_HCI)
|
UpdateInterruptMask8188EE( Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
|
#endif
|
}
|
}
|
else // (Adapter->iface_type == IFACE_PORT1)
|
#endif //CONFIG_CONCURRENT_MODE
|
{
|
// disable Port0 TSF update
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
|
|
// set net_type
|
Set_MSR(Adapter, mode);
|
|
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
|
{
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
|
#endif //CONFIG_CONCURRENT_MODE
|
{
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_88E);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
|
#endif
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,0, (IMR_TBDER_88E|IMR_TBDOK_88E));
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK));
|
#endif
|
#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
|
#endif //CONFIG_INTERRUPT_BASED_TXBCN
|
StopTxBeacon(Adapter);
|
#if defined(CONFIG_PCI_HCI)
|
UpdateInterruptMask8188EE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
|
#endif
|
}
|
|
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
|
//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
|
}
|
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
|
{
|
//Beacon is polled to TXBUF
|
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
|
|
ResumeTxBeacon(Adapter);
|
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
|
//BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0
|
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
|
}
|
else if(mode == _HW_STATE_AP_)
|
{
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,IMR_BCNDMAINT0_88E, 0);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
|
#endif
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
#if defined(CONFIG_USB_HCI)
|
UpdateInterruptMask8188EU(Adapter,_TRUE ,(IMR_TBDER_88E|IMR_TBDOK_88E), 0);
|
#elif defined(CONFIG_SDIO_HCI)
|
UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK|SDIO_HIMR_TXBCNERR_MSK), 0);
|
#endif
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
|
|
#endif //CONFIG_INTERRUPT_BASED_TXBCN
|
|
ResumeTxBeacon(Adapter);
|
|
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
|
|
//Beacon is polled to TXBUF
|
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR)|BIT(8));
|
|
//Set RCR
|
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
|
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
|
//enable to rx data frame
|
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
|
//enable to rx ps-poll
|
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
|
|
//Beacon Control related register for first time
|
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
|
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);// 5ms
|
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
|
rtw_write8(Adapter, REG_ATIMWND, 0x0c); // 13ms
|
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
|
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x8004);
|
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
|
|
//reset TSF
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
|
|
//BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0
|
rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM)|BIT(3)|BIT(4));
|
|
//enable BCN0 Function for if1
|
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
|
#if defined(CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR)
|
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | EN_TXBCN_RPT|BIT(1)));
|
#else
|
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION |BIT(1)));
|
#endif
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
|
rtw_write8(Adapter, REG_BCN_CTRL_1,
|
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
|
#endif
|
|
//dis BCN1 ATIM WND if if2 is station
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(0));
|
#ifdef CONFIG_TSF_RESET_OFFLOAD
|
// Reset TSF for STA+AP concurrent mode
|
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
|
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
|
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
|
__FUNCTION__, __LINE__);
|
}
|
#endif // CONFIG_TSF_RESET_OFFLOAD
|
#if defined(CONFIG_PCI_HCI)
|
UpdateInterruptMask8188EE( Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
|
#endif
|
}
|
}
|
}
|
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
u8 idx = 0;
|
u32 reg_macid;
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
reg_macid = REG_MACID1;
|
}
|
else
|
#endif
|
{
|
reg_macid = REG_MACID;
|
}
|
|
for(idx = 0 ; idx < 6; idx++)
|
{
|
rtw_write8(GET_PRIMARY_ADAPTER(Adapter), (reg_macid+idx), val[idx]);
|
}
|
|
}
|
|
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
u8 idx = 0;
|
u32 reg_bssid;
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
reg_bssid = REG_BSSID1;
|
}
|
else
|
#endif
|
{
|
reg_bssid = REG_BSSID;
|
}
|
|
for(idx = 0 ; idx < 6; idx++)
|
{
|
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
|
}
|
|
}
|
|
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
u32 bcn_ctrl_reg;
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
bcn_ctrl_reg = REG_BCN_CTRL_1;
|
}
|
else
|
#endif
|
{
|
bcn_ctrl_reg = REG_BCN_CTRL;
|
}
|
|
if(*((u8 *)val))
|
{
|
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
|
}
|
else
|
{
|
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
|
}
|
|
|
}
|
|
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
#ifdef CONFIG_CONCURRENT_MODE
|
u64 tsf;
|
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
|
|
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
|
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
|
|
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
|
{
|
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
|
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
|
StopTxBeacon(Adapter);
|
}
|
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
//disable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
|
|
rtw_write32(Adapter, REG_TSFTR1, tsf);
|
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
|
|
|
//enable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
|
|
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
|
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
|
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
|
) {
|
//disable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
|
|
rtw_write32(Adapter, REG_TSFTR, tsf);
|
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
|
|
//enable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
|
#ifdef CONFIG_TSF_RESET_OFFLOAD
|
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
|
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
|
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
|
__FUNCTION__, __LINE__);
|
|
#endif // CONFIG_TSF_RESET_OFFLOAD
|
}
|
|
}
|
else
|
{
|
//disable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
|
|
rtw_write32(Adapter, REG_TSFTR, tsf);
|
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
|
|
//enable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
|
|
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
|
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
|
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
|
) {
|
//disable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
|
|
rtw_write32(Adapter, REG_TSFTR1, tsf);
|
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
|
|
//enable related TSF function
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
|
#ifdef CONFIG_TSF_RESET_OFFLOAD
|
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
|
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
|
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
|
__FUNCTION__, __LINE__);
|
#endif // CONFIG_TSF_RESET_OFFLOAD
|
}
|
|
}
|
|
|
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
|
{
|
//pHalData->RegTxPause &= (~STOP_BCNQ);
|
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
|
ResumeTxBeacon(Adapter);
|
}
|
#endif
|
}
|
|
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
#ifdef CONFIG_CONCURRENT_MODE
|
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
|
|
|
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
|
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
|
|
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
//reset TSF1
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
|
|
//disable update TSF1
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
|
|
// disable Port1's beacon function
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
|
}
|
else
|
{
|
//reset TSF
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
|
|
//disable update TSF
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
|
}
|
#endif
|
}
|
|
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
#ifdef CONFIG_CONCURRENT_MODE
|
struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
|
struct mlme_priv *pmlmepriv=&(Adapter->mlmepriv);
|
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
u32 value_rcr, rcr_clear_bit, value_rxfltmap2;
|
u8 ap_num;
|
|
rtw_dev_iface_status(Adapter, NULL, NULL, NULL, &ap_num, NULL);
|
|
#ifdef CONFIG_FIND_BEST_CHANNEL
|
|
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
|
|
/* Receive all data frames */
|
value_rxfltmap2 = 0xFFFF;
|
|
#else /* CONFIG_FIND_BEST_CHANNEL */
|
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
|
//config RCR to receive different BSSID & not to receive data frame
|
value_rxfltmap2 = 0;
|
|
#endif /* CONFIG_FIND_BEST_CHANNEL */
|
|
if( (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
|
#ifdef CONFIG_CONCURRENT_MODE
|
|| (check_buddy_fwstate(Adapter, WIFI_AP_STATE) == _TRUE)
|
#endif
|
){
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
}
|
#ifdef CONFIG_TDLS
|
// TDLS will clear RCR_CBSSID_DATA bit for connection.
|
else if (Adapter->tdlsinfo.link_established == _TRUE)
|
{
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
}
|
#endif // CONFIG_TDLS
|
|
value_rcr = rtw_read32(Adapter, REG_RCR);
|
if(*((u8 *)val))//under sitesurvey
|
{
|
//config RCR to receive different BSSID & not to receive data frame
|
value_rcr &= ~(rcr_clear_bit);
|
rtw_write32(Adapter, REG_RCR, value_rcr);
|
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
|
|
//disable update TSF
|
if((pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE)
|
{
|
if(Adapter->iface_type == IFACE_PORT1)
|
{
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
|
}
|
else
|
{
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
|
}
|
}
|
|
if (ap_num)
|
StopTxBeacon(Adapter);
|
|
}
|
else//sitesurvey done
|
{
|
//enable to rx data frame
|
//write32(Adapter, REG_RCR, read32(padapter, REG_RCR)|RCR_ADF);
|
if(check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE))
|
|| check_buddy_fwstate(Adapter, (_FW_LINKED|WIFI_AP_STATE)))
|
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
|
|
//enable update TSF
|
if(Adapter->iface_type == IFACE_PORT1)
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
|
else
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
|
|
value_rcr |= rcr_clear_bit;
|
rtw_write32(Adapter, REG_RCR, value_rcr);
|
|
if (ap_num) {
|
int i;
|
_adapter *iface;
|
|
ResumeTxBeacon(Adapter);
|
for (i = 0; i < dvobj->iface_nums; i++) {
|
iface = dvobj->padapters[i];
|
if (!iface)
|
continue;
|
|
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == _TRUE
|
&& check_fwstate(&iface->mlmepriv, WIFI_ASOC_STATE) == _TRUE
|
) {
|
iface->mlmepriv.update_bcn = _TRUE;
|
#ifndef CONFIG_INTERRUPT_BASED_TXBCN
|
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
|
tx_beacon_hdl(iface, NULL);
|
#endif
|
#endif
|
}
|
}
|
}
|
}
|
#endif
|
}
|
|
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
|
{
|
#ifdef CONFIG_CONCURRENT_MODE
|
u8 RetryLimit = 0x30;
|
u8 type = *((u8 *)val);
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
|
|
if(type == 0) // prepare to join
|
{
|
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
|
check_buddy_fwstate(Adapter, _FW_LINKED))
|
{
|
StopTxBeacon(Adapter);
|
}
|
|
//enable to rx data frame.Accept all data frame
|
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
|
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
|
|
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
|
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
|
else
|
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
|
|
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
|
{
|
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
|
}
|
else // Ad-hoc Mode
|
{
|
RetryLimit = 0x7;
|
}
|
}
|
else if(type == 1) //joinbss_event call back when join res < 0
|
{
|
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
|
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
|
|
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
|
check_buddy_fwstate(Adapter, _FW_LINKED))
|
{
|
ResumeTxBeacon(Adapter);
|
|
//reset TSF 1/2 after ResumeTxBeacon
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
|
|
}
|
}
|
else if(type == 2) //sta add event call back
|
{
|
|
//enable update TSF
|
if(Adapter->iface_type == IFACE_PORT1)
|
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
|
else
|
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
|
|
|
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
|
{
|
//fixed beacon issue for 8191su...........
|
rtw_write8(Adapter,0x542 ,0x02);
|
RetryLimit = 0x7;
|
}
|
|
|
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
|
check_buddy_fwstate(Adapter, _FW_LINKED))
|
{
|
ResumeTxBeacon(Adapter);
|
|
//reset TSF 1/2 after ResumeTxBeacon
|
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
|
}
|
|
}
|
|
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
|
|
#endif
|
}
|
|
|
|
void SetHwReg8188E(_adapter *adapter, u8 variable, u8 *val)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
|
DM_ODM_T *podmpriv = &pHalData->odmpriv;
|
_func_enter_;
|
|
switch (variable) {
|
case HW_VAR_MEDIA_STATUS:
|
{
|
u8 val8;
|
|
val8 = rtw_read8(adapter, MSR)&0x0c;
|
val8 |= *((u8 *)val);
|
rtw_write8(adapter, MSR, val8);
|
}
|
break;
|
case HW_VAR_MEDIA_STATUS1:
|
{
|
u8 val8;
|
|
val8 = rtw_read8(adapter, MSR)&0x03;
|
val8 |= *((u8 *)val) <<2;
|
rtw_write8(adapter, MSR, val8);
|
}
|
break;
|
case HW_VAR_SET_OPMODE:
|
hw_var_set_opmode(adapter, variable, val);
|
break;
|
case HW_VAR_MAC_ADDR:
|
hw_var_set_macaddr(adapter, variable, val);
|
break;
|
case HW_VAR_BSSID:
|
hw_var_set_bssid(adapter, variable, val);
|
break;
|
case HW_VAR_BASIC_RATE:
|
{
|
struct mlme_ext_info *mlmext_info = &adapter->mlmeextpriv.mlmext_info;
|
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
|
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
|
u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
|
|
HalSetBrateCfg(adapter, val, &BrateCfg);
|
input_b = BrateCfg;
|
|
/* apply force and allow mask */
|
BrateCfg |= rrsr_2g_force_mask;
|
BrateCfg &= rrsr_2g_allow_mask;
|
masked = BrateCfg;
|
|
/* IOT consideration */
|
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
|
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
|
if((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
|
BrateCfg |= RRSR_6M;
|
}
|
ioted = BrateCfg;
|
|
pHalData->BasicRateSet = BrateCfg;
|
|
DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
|
|
// Set RRSR rate table.
|
rtw_write16(adapter, REG_RRSR, BrateCfg);
|
rtw_write8(adapter, REG_RRSR+2, rtw_read8(adapter, REG_RRSR+2)&0xf0);
|
|
rtw_hal_set_hwreg(adapter, HW_VAR_INIT_RTS_RATE, (u8*)&BrateCfg);
|
}
|
break;
|
case HW_VAR_TXPAUSE:
|
rtw_write8(adapter, REG_TXPAUSE, *((u8 *)val));
|
break;
|
case HW_VAR_BCN_FUNC:
|
hw_var_set_bcn_func(adapter, variable, val);
|
break;
|
|
case HW_VAR_CORRECT_TSF:
|
#ifdef CONFIG_CONCURRENT_MODE
|
hw_var_set_correct_tsf(adapter, variable, val);
|
#else
|
{
|
u64 tsf;
|
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
|
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
|
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
|
|
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
|
{
|
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
|
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
|
StopTxBeacon(adapter);
|
}
|
|
//disable related TSF function
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)&(~BIT(3)));
|
|
rtw_write32(adapter, REG_TSFTR, tsf);
|
rtw_write32(adapter, REG_TSFTR+4, tsf>>32);
|
|
//enable related TSF function
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)|BIT(3));
|
|
|
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
|
{
|
//pHalData->RegTxPause &= (~STOP_BCNQ);
|
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
|
ResumeTxBeacon(adapter);
|
}
|
}
|
#endif
|
break;
|
|
case HW_VAR_CHECK_BSSID:
|
if(*((u8 *)val))
|
{
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
|
}
|
else
|
{
|
u32 val32;
|
|
val32 = rtw_read32(adapter, REG_RCR);
|
|
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
|
|
rtw_write32(adapter, REG_RCR, val32);
|
}
|
break;
|
|
case HW_VAR_MLME_DISCONNECT:
|
#ifdef CONFIG_CONCURRENT_MODE
|
hw_var_set_mlme_disconnect(adapter, variable, val);
|
#else
|
{
|
//Set RCR to not to receive data frame when NO LINK state
|
//rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF);
|
//reject all data frames
|
rtw_write16(adapter, REG_RXFLTMAP2,0x00);
|
|
//reset TSF
|
rtw_write8(adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1)));
|
|
//disable update TSF
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)|BIT(4));
|
}
|
#endif
|
break;
|
|
case HW_VAR_MLME_SITESURVEY:
|
#ifdef CONFIG_CONCURRENT_MODE
|
hw_var_set_mlme_sitesurvey(adapter, variable, val);
|
#else
|
{
|
u32 value_rcr, rcr_clear_bit, value_rxfltmap2;
|
#ifdef CONFIG_FIND_BEST_CHANNEL
|
|
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
|
|
/* Receive all data frames */
|
value_rxfltmap2 = 0xFFFF;
|
|
#else /* CONFIG_FIND_BEST_CHANNEL */
|
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
|
//config RCR to receive different BSSID & not to receive data frame
|
value_rxfltmap2 = 0;
|
|
#endif /* CONFIG_FIND_BEST_CHANNEL */
|
|
if (check_fwstate(&adapter->mlmepriv, WIFI_AP_STATE) == _TRUE) {
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
}
|
#ifdef CONFIG_TDLS
|
// TDLS will clear RCR_CBSSID_DATA bit for connection.
|
else if (adapter->tdlsinfo.link_established == _TRUE) {
|
rcr_clear_bit = RCR_CBSSID_BCN;
|
}
|
#endif // CONFIG_TDLS
|
|
value_rcr = rtw_read32(adapter, REG_RCR);
|
if(*((u8 *)val))//under sitesurvey
|
{
|
//config RCR to receive different BSSID & not to receive data frame
|
value_rcr &= ~(rcr_clear_bit);
|
rtw_write32(adapter, REG_RCR, value_rcr);
|
rtw_write16(adapter, REG_RXFLTMAP2, value_rxfltmap2);
|
|
//disable update TSF
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)|BIT(4));
|
}
|
else//sitesurvey done
|
{
|
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
|
if ((is_client_associated_to_ap(adapter) == _TRUE) ||
|
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) )
|
{
|
//enable to rx data frame
|
//rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
|
rtw_write16(adapter, REG_RXFLTMAP2,0xFFFF);
|
|
//enable update TSF
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)&(~BIT(4)));
|
}
|
else if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
|
{
|
//rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_ADF);
|
rtw_write16(adapter, REG_RXFLTMAP2,0xFFFF);
|
|
//enable update TSF
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)&(~BIT(4)));
|
}
|
|
value_rcr |= rcr_clear_bit;
|
if(((pmlmeinfo->state&0x03) != WIFI_FW_AP_STATE) && (adapter->in_cta_test)) {
|
u32 v = rtw_read32(adapter, REG_RCR);
|
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF
|
rtw_write32(adapter, REG_RCR, v);
|
} else {
|
rtw_write32(adapter, REG_RCR, value_rcr);
|
}
|
}
|
}
|
#endif
|
break;
|
|
case HW_VAR_MLME_JOIN:
|
#ifdef CONFIG_CONCURRENT_MODE
|
hw_var_set_mlme_join(adapter, variable, val);
|
#else
|
{
|
u8 RetryLimit = 0x30;
|
u8 type = *((u8 *)val);
|
struct mlme_priv *pmlmepriv = &adapter->mlmepriv;
|
|
if(type == 0) // prepare to join
|
{
|
//enable to rx data frame.Accept all data frame
|
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
|
rtw_write16(adapter, REG_RXFLTMAP2,0xFFFF);
|
|
if(adapter->in_cta_test)
|
{
|
u32 v = rtw_read32(adapter, REG_RCR);
|
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF
|
rtw_write32(adapter, REG_RCR, v);
|
}
|
else
|
{
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
|
}
|
|
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
|
{
|
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
|
}
|
else // Ad-hoc Mode
|
{
|
RetryLimit = 0x7;
|
}
|
}
|
else if(type == 1) //joinbss_event call back when join res < 0
|
{
|
rtw_write16(adapter, REG_RXFLTMAP2,0x00);
|
}
|
else if(type == 2) //sta add event call back
|
{
|
//enable update TSF
|
rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL)&(~BIT(4)));
|
|
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
|
{
|
RetryLimit = 0x7;
|
}
|
}
|
|
rtw_write16(adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
|
}
|
#endif
|
break;
|
|
case HW_VAR_ON_RCR_AM:
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)|RCR_AM);
|
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(adapter, REG_RCR));
|
break;
|
case HW_VAR_OFF_RCR_AM:
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)& (~RCR_AM));
|
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(adapter, REG_RCR));
|
break;
|
case HW_VAR_BEACON_INTERVAL:
|
rtw_write16(adapter, REG_BCN_INTERVAL, *((u16 *)val));
|
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
{
|
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
|
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
|
u16 bcn_interval = *((u16 *)val);
|
if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE){
|
DBG_8192C("%s==> bcn_interval:%d, eraly_int:%d \n",__FUNCTION__,bcn_interval,bcn_interval>>1);
|
rtw_write8(adapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio
|
}
|
}
|
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
|
|
break;
|
case HW_VAR_SLOT_TIME:
|
{
|
rtw_write8(adapter, REG_SLOT, val[0]);
|
}
|
break;
|
case HW_VAR_ACK_PREAMBLE:
|
{
|
u8 regTmp;
|
u8 bShortPreamble = *( (PBOOLEAN)val );
|
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
|
regTmp = (pHalData->nCur40MhzPrimeSC)<<5;
|
rtw_write8(adapter, REG_RRSR+2, regTmp);
|
|
regTmp = rtw_read8(adapter,REG_WMAC_TRXPTCL_CTL+2);
|
if(bShortPreamble)
|
regTmp |= BIT1;
|
else
|
regTmp &= (~BIT1);
|
rtw_write8(adapter,REG_WMAC_TRXPTCL_CTL+2,regTmp);
|
}
|
break;
|
case HW_VAR_CAM_EMPTY_ENTRY:
|
{
|
u8 ucIndex = *((u8 *)val);
|
u8 i;
|
u32 ulCommand=0;
|
u32 ulContent=0;
|
u32 ulEncAlgo=CAM_AES;
|
|
for(i=0;i<CAM_CONTENT_COUNT;i++)
|
{
|
// filled id in CAM config 2 byte
|
if( i == 0)
|
{
|
ulContent |=(ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
|
//ulContent |= CAM_VALID;
|
}
|
else
|
{
|
ulContent = 0;
|
}
|
// polling bit, and No Write enable, and address
|
ulCommand= CAM_CONTENT_COUNT*ucIndex+i;
|
ulCommand= ulCommand | CAM_POLLINIG|CAM_WRITE;
|
// write content 0 is equall to mark invalid
|
rtw_write32(adapter, WCAMI, ulContent); //delay_ms(40);
|
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx \n",ulContent));
|
rtw_write32(adapter, RWCAM, ulCommand); //delay_ms(40);
|
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx \n",ulCommand));
|
}
|
}
|
break;
|
case HW_VAR_CAM_INVALID_ALL:
|
rtw_write32(adapter, RWCAM, BIT(31)|BIT(30));
|
break;
|
case HW_VAR_CAM_WRITE:
|
{
|
u32 cmd;
|
u32 *cam_val = (u32 *)val;
|
rtw_write32(adapter, WCAMI, cam_val[0]);
|
|
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
|
rtw_write32(adapter, RWCAM, cmd);
|
}
|
break;
|
case HW_VAR_AC_PARAM_VO:
|
rtw_write32(adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
|
break;
|
case HW_VAR_AC_PARAM_VI:
|
rtw_write32(adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
|
break;
|
case HW_VAR_AC_PARAM_BE:
|
pHalData->AcParam_BE = ((u32 *)(val))[0];
|
rtw_write32(adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
|
break;
|
case HW_VAR_AC_PARAM_BK:
|
rtw_write32(adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
|
break;
|
case HW_VAR_ACM_CTRL:
|
{
|
u8 acm_ctrl = *((u8 *)val);
|
u8 AcmCtrl = rtw_read8( adapter, REG_ACMHWCTRL);
|
|
if(acm_ctrl > 1)
|
AcmCtrl = AcmCtrl | 0x1;
|
|
if(acm_ctrl & BIT(3))
|
AcmCtrl |= AcmHw_VoqEn;
|
else
|
AcmCtrl &= (~AcmHw_VoqEn);
|
|
if(acm_ctrl & BIT(2))
|
AcmCtrl |= AcmHw_ViqEn;
|
else
|
AcmCtrl &= (~AcmHw_ViqEn);
|
|
if(acm_ctrl & BIT(1))
|
AcmCtrl |= AcmHw_BeqEn;
|
else
|
AcmCtrl &= (~AcmHw_BeqEn);
|
|
DBG_871X("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl );
|
rtw_write8(adapter, REG_ACMHWCTRL, AcmCtrl );
|
}
|
break;
|
case HW_VAR_AMPDU_FACTOR:
|
{
|
u8 RegToSet_Normal[4]={0x41,0xa8,0x72, 0xb9};
|
u8 RegToSet_BT[4]={0x31,0x74,0x42, 0x97};
|
u8 FactorToSet;
|
u8 *pRegToSet;
|
u8 index = 0;
|
|
#ifdef CONFIG_BT_COEXIST
|
if( (pHalData->bt_coexist.BT_Coexist) &&
|
(pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4) )
|
pRegToSet = RegToSet_BT; // 0x97427431;
|
else
|
#endif
|
pRegToSet = RegToSet_Normal; // 0xb972a841;
|
|
FactorToSet = *((u8 *)val);
|
if(FactorToSet <= 3)
|
{
|
FactorToSet = (1<<(FactorToSet + 2));
|
if(FactorToSet>0xf)
|
FactorToSet = 0xf;
|
|
for(index=0; index<4; index++)
|
{
|
if((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
|
pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
|
|
if((pRegToSet[index] & 0x0f) > FactorToSet)
|
pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
|
|
rtw_write8(adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
|
}
|
|
//RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_FACTOR: %#x\n", FactorToSet));
|
}
|
}
|
break;
|
case HW_VAR_H2C_FW_PWRMODE:
|
{
|
u8 psmode = (*(u8 *)val);
|
|
// Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power
|
// saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang.
|
if (psmode != PS_MODE_ACTIVE)
|
{
|
ODM_RF_Saving(podmpriv, _TRUE);
|
}
|
rtl8188e_set_FwPwrMode_cmd(adapter, psmode);
|
}
|
break;
|
case HW_VAR_H2C_FW_JOINBSSRPT:
|
{
|
u8 mstatus = (*(u8 *)val);
|
rtl8188e_set_FwJoinBssReport_cmd(adapter, mstatus);
|
}
|
break;
|
#ifdef CONFIG_P2P_PS
|
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
|
{
|
u8 p2p_ps_state = (*(u8 *)val);
|
rtl8188e_set_p2p_ps_offload_cmd(adapter, p2p_ps_state);
|
}
|
break;
|
#endif //CONFIG_P2P_PS
|
#ifdef CONFIG_TDLS
|
case HW_VAR_TDLS_WRCR:
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)&(~RCR_CBSSID_DATA ));
|
break;
|
case HW_VAR_TDLS_RS_RCR:
|
rtw_write32(adapter, REG_RCR, rtw_read32(adapter, REG_RCR)|(RCR_CBSSID_DATA));
|
break;
|
#endif //CONFIG_TDLS
|
#ifdef CONFIG_BT_COEXIST
|
case HW_VAR_BT_SET_COEXIST:
|
{
|
u8 bStart = (*(u8 *)val);
|
rtl8192c_set_dm_bt_coexist(adapter, bStart);
|
}
|
break;
|
case HW_VAR_BT_ISSUE_DELBA:
|
{
|
u8 dir = (*(u8 *)val);
|
rtl8192c_issue_delete_ba(adapter, dir);
|
}
|
break;
|
#endif
|
#if (RATE_ADAPTIVE_SUPPORT==1)
|
case HW_VAR_RPT_TIMER_SETTING:
|
{
|
u16 min_rpt_time = (*(u16 *)val);
|
|
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
|
|
ODM_RA_Set_TxRPT_Time(podmpriv,min_rpt_time);
|
}
|
break;
|
#endif
|
|
#ifdef CONFIG_SW_ANTENNA_DIVERSITY
|
case HW_VAR_ANTENNA_DIVERSITY_LINK:
|
//odm_SwAntDivRestAfterLink8192C(Adapter);
|
ODM_SwAntDivRestAfterLink(podmpriv);
|
break;
|
#endif
|
#ifdef CONFIG_ANTENNA_DIVERSITY
|
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
|
{
|
u8 Optimum_antenna = (*(u8 *)val);
|
u8 Ant ;
|
//switch antenna to Optimum_antenna
|
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
|
if(pHalData->CurAntenna != Optimum_antenna)
|
{
|
Ant = (Optimum_antenna==2)?MAIN_ANT:AUX_ANT;
|
ODM_UpdateRxIdleAnt(&pHalData->odmpriv, Ant);
|
|
pHalData->CurAntenna = Optimum_antenna ;
|
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
|
}
|
}
|
break;
|
#endif
|
case HW_VAR_EFUSE_BYTES: // To set EFUE total used bytes, added by Roger, 2008.12.22.
|
pHalData->EfuseUsedBytes = *((u16 *)val);
|
break;
|
case HW_VAR_FIFO_CLEARN_UP:
|
{
|
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter);
|
u8 trycnt = 100;
|
|
//pause tx
|
rtw_write8(adapter,REG_TXPAUSE,0xff);
|
|
//keep sn
|
adapter->xmitpriv.nqos_ssn = rtw_read16(adapter,REG_NQOS_SEQ);
|
|
if(pwrpriv->bkeepfwalive != _TRUE)
|
{
|
//RX DMA stop
|
rtw_write32(adapter,REG_RXPKT_NUM,(rtw_read32(adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
|
do{
|
if(!(rtw_read32(adapter,REG_RXPKT_NUM)&RXDMA_IDLE))
|
break;
|
}while(trycnt--);
|
if(trycnt ==0)
|
DBG_8192C("Stop RX DMA failed...... \n");
|
|
//RQPN Load 0
|
rtw_write16(adapter,REG_RQPN_NPQ,0x0);
|
rtw_write32(adapter,REG_RQPN,0x80000000);
|
rtw_mdelay_os(10);
|
}
|
}
|
break;
|
|
case HW_VAR_RESTORE_HW_SEQ:
|
/* restore Sequence No. */
|
rtw_write8(adapter, 0x4dc, adapter->xmitpriv.nqos_ssn);
|
break;
|
|
case HW_VAR_APFM_ON_MAC:
|
pHalData->bMacPwrCtrlOn = *val;
|
DBG_871X("%s: bMacPwrCtrlOn=%d\n", __func__, pHalData->bMacPwrCtrlOn);
|
break;
|
#if (RATE_ADAPTIVE_SUPPORT == 1)
|
case HW_VAR_TX_RPT_MAX_MACID:
|
{
|
if(pHalData->fw_ractrl == _FALSE){
|
u8 maxMacid = *val;
|
DBG_8192C("### MacID(%d),Set Max Tx RPT MID(%d)\n",maxMacid,maxMacid+1);
|
rtw_write8(adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
|
}
|
}
|
break;
|
#endif // (RATE_ADAPTIVE_SUPPORT == 1)
|
case HW_VAR_H2C_MEDIA_STATUS_RPT:
|
{
|
rtl8188e_set_FwMediaStatus_cmd(adapter , (*(u16 *)val));
|
}
|
break;
|
case HW_VAR_BCN_VALID:
|
//BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw
|
rtw_write8(adapter, REG_TDECTRL+2, rtw_read8(adapter, REG_TDECTRL+2) | BIT0);
|
break;
|
|
|
case HW_VAR_CHECK_TXBUF:
|
{
|
u8 retry_limit;
|
u16 val16;
|
u32 reg_200 = 0, reg_204 = 0;
|
u32 init_reg_200 = 0, init_reg_204 = 0;
|
u32 start = rtw_get_current_time();
|
u32 pass_ms;
|
int i = 0;
|
|
retry_limit = 0x01;
|
|
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
|
rtw_write16(adapter, REG_RL, val16);
|
|
while (rtw_get_passing_time_ms(start) < 2000
|
&& !RTW_CANNOT_RUN(adapter)
|
) {
|
reg_200 = rtw_read32(adapter, 0x200);
|
reg_204 = rtw_read32(adapter, 0x204);
|
|
if (i == 0) {
|
init_reg_200 = reg_200;
|
init_reg_204 = reg_204;
|
}
|
|
i++;
|
if ((reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
|
//DBG_871X("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __FUNCTION__, reg_204, reg_200, i);
|
rtw_msleep_os(10);
|
} else {
|
break;
|
}
|
}
|
|
pass_ms = rtw_get_passing_time_ms(start);
|
|
if (RTW_CANNOT_RUN(adapter))
|
;
|
else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
|
DBG_871X_LEVEL(_drv_always_, "%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
|
DBG_871X_LEVEL(_drv_always_, "%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x (0x%08x, 0x%08x)\n",
|
__FUNCTION__, reg_200, reg_204, init_reg_200, init_reg_204);
|
//rtw_warn_on(1);
|
} else {
|
DBG_871X("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
|
}
|
|
retry_limit = 0x30;
|
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
|
rtw_write16(adapter, REG_RL, val16);
|
}
|
break;
|
case HW_VAR_RESP_SIFS:
|
{
|
struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv;
|
|
if((pmlmeext->cur_wireless_mode==WIRELESS_11G) ||
|
(pmlmeext->cur_wireless_mode==WIRELESS_11BG))//WIRELESS_MODE_G){
|
{
|
val[0] = 0x0a;
|
val[1] = 0x0a;
|
} else {
|
val[0] = 0x0e;
|
val[1] = 0x0e;
|
}
|
|
// SIFS for OFDM Data ACK
|
rtw_write8(adapter, REG_SIFS_CTX+1, val[0]);
|
// SIFS for OFDM consecutive tx like CTS data!
|
rtw_write8(adapter, REG_SIFS_TRX+1, val[1]);
|
|
rtw_write8(adapter, REG_SPEC_SIFS+1, val[0]);
|
rtw_write8(adapter, REG_MAC_SPEC_SIFS+1, val[0]);
|
|
//RESP_SIFS for OFDM
|
rtw_write8(adapter, REG_RESP_SIFS_OFDM, val[0]);
|
rtw_write8(adapter, REG_RESP_SIFS_OFDM+1, val[0]);
|
}
|
break;
|
|
case HW_VAR_MACID_SLEEP:
|
{
|
u32 reg_macid_sleep;
|
u8 bit_shift;
|
u8 id = *(u8*)val;
|
u32 val32;
|
|
if (id < 32){
|
reg_macid_sleep = REG_MACID_PAUSE_0;
|
bit_shift = id;
|
} else if (id < 64) {
|
reg_macid_sleep = REG_MACID_PAUSE_1;
|
bit_shift = id-32;
|
} else {
|
rtw_warn_on(1);
|
break;
|
}
|
|
val32 = rtw_read32(adapter, reg_macid_sleep);
|
DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid=%d, org reg_0x%03x=0x%08X\n",
|
FUNC_ADPT_ARG(adapter), id, reg_macid_sleep, val32);
|
|
if (val32 & BIT(bit_shift))
|
break;
|
|
val32 |= BIT(bit_shift);
|
rtw_write32(adapter, reg_macid_sleep, val32);
|
}
|
break;
|
|
case HW_VAR_MACID_WAKEUP:
|
{
|
u32 reg_macid_sleep;
|
u8 bit_shift;
|
u8 id = *(u8*)val;
|
u32 val32;
|
|
if (id < 32){
|
reg_macid_sleep = REG_MACID_PAUSE_0;
|
bit_shift = id;
|
} else if (id < 64) {
|
reg_macid_sleep = REG_MACID_PAUSE_1;
|
bit_shift = id-32;
|
} else {
|
rtw_warn_on(1);
|
break;
|
}
|
|
val32 = rtw_read32(adapter, reg_macid_sleep);
|
DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid=%d, org reg_0x%03x=0x%08X\n",
|
FUNC_ADPT_ARG(adapter), id, reg_macid_sleep, val32);
|
|
if (!(val32 & BIT(bit_shift)))
|
break;
|
|
val32 &= ~BIT(bit_shift);
|
rtw_write32(adapter, reg_macid_sleep, val32);
|
}
|
break;
|
|
default:
|
SetHwReg(adapter, variable, val);
|
break;
|
}
|
|
_func_exit_;
|
}
|
|
struct qinfo_88e {
|
u32 head:8;
|
u32 pkt_num:8;
|
u32 tail:8;
|
u32 ac:2;
|
u32 macid:6;
|
};
|
|
struct bcn_qinfo_88e {
|
u16 head:8;
|
u16 pkt_num:8;
|
};
|
|
void dump_qinfo_88e(void *sel, struct qinfo_88e *info, const char *tag)
|
{
|
//if (info->pkt_num)
|
DBG_871X_SEL_NL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
|
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
|
);
|
}
|
|
void dump_bcn_qinfo_88e(void *sel, struct bcn_qinfo_88e *info, const char *tag)
|
{
|
//if (info->pkt_num)
|
DBG_871X_SEL_NL(sel, "%shead:0x%02x, pkt_num:%u\n"
|
, tag ? tag : "", info->head, info->pkt_num
|
);
|
}
|
|
void dump_mac_qinfo_88e(void *sel, _adapter *adapter)
|
{
|
u32 q0_info;
|
u32 q1_info;
|
u32 q2_info;
|
u32 q3_info;
|
/*
|
u32 q4_info;
|
u32 q5_info;
|
u32 q6_info;
|
u32 q7_info;
|
*/
|
u32 mg_q_info;
|
u32 hi_q_info;
|
u16 bcn_q_info;
|
|
q0_info = rtw_read32(adapter, REG_Q0_INFO);
|
q1_info = rtw_read32(adapter, REG_Q1_INFO);
|
q2_info = rtw_read32(adapter, REG_Q2_INFO);
|
q3_info = rtw_read32(adapter, REG_Q3_INFO);
|
/*
|
q4_info = rtw_read32(adapter, REG_Q4_INFO);
|
q5_info = rtw_read32(adapter, REG_Q5_INFO);
|
q6_info = rtw_read32(adapter, REG_Q6_INFO);
|
q7_info = rtw_read32(adapter, REG_Q7_INFO);
|
*/
|
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
|
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
|
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
|
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q0_info, "Q0 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q1_info, "Q1 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q2_info, "Q2 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q3_info, "Q3 ");
|
/*
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q4_info, "Q4 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q5_info, "Q5 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q6_info, "Q6 ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&q7_info, "Q7 ");
|
*/
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&mg_q_info, "MG ");
|
dump_qinfo_88e(sel, (struct qinfo_88e *)&hi_q_info, "HI ");
|
dump_bcn_qinfo_88e(sel, (struct bcn_qinfo_88e *)&bcn_q_info, "BCN ");
|
}
|
|
void GetHwReg8188E(_adapter *adapter, u8 variable, u8 *val)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
|
|
_func_enter_;
|
|
switch (variable) {
|
case HW_VAR_SYS_CLKR:
|
*val = rtw_read8(adapter, REG_SYS_CLKR);
|
break;
|
|
case HW_VAR_TXPAUSE:
|
val[0] = rtw_read8(adapter, REG_TXPAUSE);
|
break;
|
case HW_VAR_BCN_VALID:
|
//BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2
|
val[0] = (BIT0 & rtw_read8(adapter, REG_TDECTRL+2))?_TRUE:_FALSE;
|
break;
|
case HW_VAR_FWLPS_RF_ON:
|
{
|
//When we halt NIC, we should check if FW LPS is leave.
|
if(adapter_to_pwrctl(adapter)->rf_pwrstate == rf_off)
|
{
|
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
|
// because Fw is unload.
|
val[0] = _TRUE;
|
}
|
else
|
{
|
u32 valRCR;
|
valRCR = rtw_read32(adapter, REG_RCR);
|
valRCR &= 0x00070000;
|
if(valRCR)
|
val[0] = _FALSE;
|
else
|
val[0] = _TRUE;
|
}
|
}
|
break;
|
#ifdef CONFIG_ANTENNA_DIVERSITY
|
case HW_VAR_CURRENT_ANTENNA:
|
val[0] = pHalData->CurAntenna;
|
break;
|
#endif
|
case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
|
*((u16 *)(val)) = pHalData->EfuseUsedBytes;
|
break;
|
case HW_VAR_APFM_ON_MAC:
|
*val = pHalData->bMacPwrCtrlOn;
|
break;
|
case HW_VAR_CHK_HI_QUEUE_EMPTY:
|
*val = ((rtw_read32(adapter, REG_HGQ_INFO)&0x0000ff00)==0) ? _TRUE:_FALSE;
|
break;
|
case HW_VAR_DUMP_MAC_QUEUE_INFO:
|
dump_mac_qinfo_88e(val, adapter);
|
break;
|
default:
|
GetHwReg(adapter, variable, val);
|
break;
|
}
|
|
_func_exit_;
|
}
|
|
u8
|
GetHalDefVar8188E(
|
IN PADAPTER Adapter,
|
IN HAL_DEF_VARIABLE eVariable,
|
IN PVOID pValue
|
)
|
{
|
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
|
u8 bResult = _SUCCESS;
|
|
switch(eVariable)
|
{
|
case HAL_DEF_IS_SUPPORT_ANT_DIV:
|
#ifdef CONFIG_ANTENNA_DIVERSITY
|
*((u8 *)pValue) = (pHalData->AntDivCfg==0)?_FALSE:_TRUE;
|
#endif
|
break;
|
case HAL_DEF_CURRENT_ANTENNA:
|
#ifdef CONFIG_ANTENNA_DIVERSITY
|
*(( u8*)pValue) = pHalData->CurAntenna;
|
#endif
|
break;
|
case HAL_DEF_DRVINFO_SZ:
|
*(( u32*)pValue) = DRVINFO_SZ;
|
break;
|
case HAL_DEF_MAX_RECVBUF_SZ:
|
#ifdef CONFIG_SDIO_HCI
|
*((u32 *)pValue) = MAX_RX_DMA_BUFFER_SIZE_88E(Adapter);
|
#else
|
*((u32 *)pValue) = MAX_RECVBUF_SZ;
|
#endif
|
break;
|
case HAL_DEF_RX_PACKET_OFFSET:
|
*(( u32*)pValue) = RXDESC_SIZE + DRVINFO_SZ*8;
|
break;
|
#if (RATE_ADAPTIVE_SUPPORT == 1)
|
case HAL_DEF_RA_DECISION_RATE:
|
{
|
u8 MacID = *((u8*)pValue);
|
*((u8*)pValue) = ODM_RA_GetDecisionRate_8188E(&(pHalData->odmpriv), MacID);
|
}
|
break;
|
|
case HAL_DEF_RA_SGI:
|
{
|
u8 MacID = *((u8*)pValue);
|
*((u8*)pValue) = ODM_RA_GetShortGI_8188E(&(pHalData->odmpriv), MacID);
|
}
|
break;
|
#endif
|
|
|
case HAL_DEF_PT_PWR_STATUS:
|
#if(POWER_TRAINING_ACTIVE==1)
|
{
|
u8 MacID = *((u8*)pValue);
|
*((u8*)pValue) = ODM_RA_GetHwPwrStatus_8188E(&(pHalData->odmpriv), MacID);
|
}
|
#endif //(POWER_TRAINING_ACTIVE==1)
|
break;
|
case HAL_DEF_EXPLICIT_BEAMFORMEE:
|
case HAL_DEF_EXPLICIT_BEAMFORMER:
|
*((u8 *)pValue) = _FALSE;
|
break;
|
|
case HW_DEF_RA_INFO_DUMP:
|
|
{
|
u8 mac_id = *((u8*)pValue);
|
u8 bLinked = _FALSE;
|
#ifdef CONFIG_CONCURRENT_MODE
|
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
|
#endif //CONFIG_CONCURRENT_MODE
|
|
if(rtw_linked_check(Adapter))
|
bLinked = _TRUE;
|
|
#ifdef CONFIG_CONCURRENT_MODE
|
if(pbuddy_adapter && rtw_linked_check(pbuddy_adapter))
|
bLinked = _TRUE;
|
#endif
|
|
if(bLinked){
|
DBG_871X("============ RA status - Mac_id:%d ===================\n",mac_id);
|
if(pHalData->fw_ractrl == _FALSE){
|
#if (RATE_ADAPTIVE_SUPPORT == 1)
|
DBG_8192C("Mac_id:%d ,RSSI:%d(%%) ,PTStage = %d\n",
|
mac_id,pHalData->odmpriv.RAInfo[mac_id].RssiStaRA,pHalData->odmpriv.RAInfo[mac_id].PTStage);
|
|
DBG_8192C("RateID = %d,RAUseRate = 0x%08x,RateSGI = %d, DecisionRate = %s\n",
|
pHalData->odmpriv.RAInfo[mac_id].RateID,
|
pHalData->odmpriv.RAInfo[mac_id].RAUseRate,
|
pHalData->odmpriv.RAInfo[mac_id].RateSGI,
|
HDATA_RATE(pHalData->odmpriv.RAInfo[mac_id].DecisionRate));
|
#endif // (RATE_ADAPTIVE_SUPPORT == 1)
|
}else{
|
u8 cur_rate = rtw_read8(Adapter,REG_ADAPTIVE_DATA_RATE_0+mac_id);
|
u8 sgi = (cur_rate & BIT7)?_TRUE:_FALSE;
|
cur_rate &= 0x7f;
|
DBG_8192C("Mac_id:%d ,SGI:%d ,Rate:%s \n",mac_id,sgi,HDATA_RATE(cur_rate));
|
}
|
}
|
}
|
|
break;
|
case HAL_DEF_TX_PAGE_SIZE:
|
*(( u32*)pValue) = PAGE_SIZE_128;
|
break;
|
case HAL_DEF_TX_PAGE_BOUNDARY:
|
if (!Adapter->registrypriv.wifi_spec)
|
*(u8*)pValue = TX_PAGE_BOUNDARY_88E(Adapter);
|
else
|
*(u8*)pValue = WMM_NORMAL_TX_PAGE_BOUNDARY_88E(Adapter);
|
break;
|
case HAL_DEF_MACID_SLEEP:
|
*(u8*)pValue = _TRUE; // support macid sleep
|
break;
|
case HAL_DEF_RX_DMA_SZ_WOW:
|
*(u32 *)pValue = RX_DMA_SIZE_88E(Adapter) - RESV_FMWF;
|
break;
|
case HAL_DEF_RX_DMA_SZ:
|
*(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_88E(Adapter);
|
break;
|
case HAL_DEF_RX_PAGE_SIZE:
|
*(u32 *)pValue = PAGE_SIZE_128;
|
break;
|
default:
|
bResult = GetHalDefVar(Adapter, eVariable, pValue);
|
break;
|
}
|
|
return bResult;
|
}
|