// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2010-2021 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
/**
|
* DOC: Base kernel memory APIs, Linux implementation.
|
*/
|
|
#include <linux/compat.h>
|
#include <linux/kernel.h>
|
#include <linux/bug.h>
|
#include <linux/mm.h>
|
#include <linux/mman.h>
|
#include <linux/fs.h>
|
#include <linux/version.h>
|
#include <linux/dma-mapping.h>
|
#if (KERNEL_VERSION(4, 8, 0) > LINUX_VERSION_CODE)
|
#include <linux/dma-attrs.h>
|
#endif /* LINUX_VERSION_CODE < 4.8.0 */
|
#include <linux/dma-buf.h>
|
#include <linux/shrinker.h>
|
#include <linux/cache.h>
|
#include <linux/memory_group_manager.h>
|
|
#include <mali_kbase.h>
|
#include <mali_kbase_mem_linux.h>
|
#include <tl/mali_kbase_tracepoints.h>
|
#include <uapi/gpu/arm/bifrost/mali_kbase_ioctl.h>
|
#include <mmu/mali_kbase_mmu.h>
|
#include <mali_kbase_caps.h>
|
#include <mali_kbase_trace_gpu_mem.h>
|
#include <mali_kbase_reset_gpu.h>
|
|
#if ((KERNEL_VERSION(5, 3, 0) <= LINUX_VERSION_CODE) || \
|
(KERNEL_VERSION(5, 0, 0) > LINUX_VERSION_CODE))
|
/* Enable workaround for ion for kernels prior to v5.0.0 and from v5.3.0
|
* onwards.
|
*
|
* For kernels prior to v4.12, workaround is needed as ion lacks the cache
|
* maintenance in begin_cpu_access and end_cpu_access methods.
|
*
|
* For kernels prior to v4.17.2, workaround is needed to avoid the potentially
|
* disruptive warnings which can come if begin_cpu_access and end_cpu_access
|
* methods are not called in pairs.
|
* Note that some long term maintenance kernel versions (e.g. 4.9.x, 4.14.x)
|
* only require this workaround on their earlier releases. However it is still
|
* safe to use it on such releases, and it simplifies the version check.
|
*
|
* For kernels later than v4.17.2, workaround is needed as ion can potentially
|
* end up calling dma_sync_sg_for_* for a dma-buf importer that hasn't mapped
|
* the attachment. This would result in a kernel panic as ion populates the
|
* dma_address when the attachment is mapped and kernel derives the physical
|
* address for cache maintenance from the dma_address.
|
* With some multi-threaded tests it has been seen that the same dma-buf memory
|
* gets imported twice on Mali DDK side and so the problem of sync happening
|
* with an importer having an unmapped attachment comes at the time of 2nd
|
* import. The same problem can if there is another importer of dma-buf
|
* memory.
|
*
|
* Workaround can be safely disabled for kernels between v5.0.0 and v5.2.2,
|
* as all the above stated issues are not there.
|
*
|
* dma_sync_sg_for_* calls will be made directly as a workaround using the
|
* Kbase's attachment to dma-buf that was previously mapped.
|
*/
|
#define KBASE_MEM_ION_SYNC_WORKAROUND
|
#endif
|
|
#define IR_THRESHOLD_STEPS (256u)
|
|
#if MALI_USE_CSF
|
static int kbase_csf_cpu_mmap_user_reg_page(struct kbase_context *kctx,
|
struct vm_area_struct *vma);
|
static int kbase_csf_cpu_mmap_user_io_pages(struct kbase_context *kctx,
|
struct vm_area_struct *vma);
|
#endif
|
|
static int kbase_vmap_phy_pages(struct kbase_context *kctx,
|
struct kbase_va_region *reg, u64 offset_bytes, size_t size,
|
struct kbase_vmap_struct *map);
|
static void kbase_vunmap_phy_pages(struct kbase_context *kctx,
|
struct kbase_vmap_struct *map);
|
|
static int kbase_tracking_page_setup(struct kbase_context *kctx, struct vm_area_struct *vma);
|
|
static int kbase_mem_shrink_gpu_mapping(struct kbase_context *kctx,
|
struct kbase_va_region *reg,
|
u64 new_pages, u64 old_pages);
|
|
/* Retrieve the associated region pointer if the GPU address corresponds to
|
* one of the event memory pages. The enclosing region, if found, shouldn't
|
* have been marked as free.
|
*/
|
static struct kbase_va_region *kbase_find_event_mem_region(
|
struct kbase_context *kctx, u64 gpu_addr)
|
{
|
#if MALI_USE_CSF
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
struct kbase_va_region *reg;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
list_for_each_entry(reg, &kctx->csf.event_pages_head, link) {
|
if ((reg->start_pfn <= gpu_pfn) &&
|
(gpu_pfn < (reg->start_pfn + reg->nr_pages))) {
|
if (WARN_ON(reg->flags & KBASE_REG_FREE))
|
return NULL;
|
|
if (WARN_ON(!(reg->flags & KBASE_REG_CSF_EVENT)))
|
return NULL;
|
|
return reg;
|
}
|
}
|
#endif
|
|
return NULL;
|
}
|
|
/**
|
* kbase_phy_alloc_mapping_init - Initialize the kernel side permanent mapping
|
* of the physical allocation belonging to a
|
* region
|
* @kctx: The kernel base context @reg belongs to.
|
* @reg: The region whose physical allocation is to be mapped
|
* @vsize: The size of the requested region, in pages
|
* @size: The size in pages initially committed to the region
|
*
|
* Return: 0 on success, otherwise an error code indicating failure
|
*
|
* Maps the physical allocation backing a non-free @reg, so it may be
|
* accessed directly from the kernel. This is only supported for physical
|
* allocations of type KBASE_MEM_TYPE_NATIVE, and will fail for other types of
|
* physical allocation.
|
*
|
* The mapping is stored directly in the allocation that backs @reg. The
|
* refcount is not incremented at this point. Instead, use of the mapping should
|
* be surrounded by kbase_phy_alloc_mapping_get() and
|
* kbase_phy_alloc_mapping_put() to ensure it does not disappear whilst the
|
* client is accessing it.
|
*
|
* Both cached and uncached regions are allowed, but any sync operations are the
|
* responsibility of the client using the permanent mapping.
|
*
|
* A number of checks are made to ensure that a region that needs a permanent
|
* mapping can actually be supported:
|
* - The region must be created as fully backed
|
* - The region must not be growable
|
*
|
* This function will fail if those checks are not satisfied.
|
*
|
* On success, the region will also be forced into a certain kind:
|
* - It will no longer be growable
|
*/
|
static int kbase_phy_alloc_mapping_init(struct kbase_context *kctx,
|
struct kbase_va_region *reg, size_t vsize, size_t size)
|
{
|
size_t size_bytes = (size << PAGE_SHIFT);
|
struct kbase_vmap_struct *kern_mapping;
|
int err = 0;
|
|
/* Can only map in regions that are always fully committed
|
* Don't setup the mapping twice
|
* Only support KBASE_MEM_TYPE_NATIVE allocations
|
*/
|
if (vsize != size || reg->cpu_alloc->permanent_map != NULL ||
|
reg->cpu_alloc->type != KBASE_MEM_TYPE_NATIVE)
|
return -EINVAL;
|
|
if (size > (KBASE_PERMANENTLY_MAPPED_MEM_LIMIT_PAGES -
|
atomic_read(&kctx->permanent_mapped_pages))) {
|
dev_warn(kctx->kbdev->dev, "Request for %llu more pages mem needing a permanent mapping would breach limit %lu, currently at %d pages",
|
(u64)size,
|
KBASE_PERMANENTLY_MAPPED_MEM_LIMIT_PAGES,
|
atomic_read(&kctx->permanent_mapped_pages));
|
return -ENOMEM;
|
}
|
|
kern_mapping = kzalloc(sizeof(*kern_mapping), GFP_KERNEL);
|
if (!kern_mapping)
|
return -ENOMEM;
|
|
err = kbase_vmap_phy_pages(kctx, reg, 0u, size_bytes, kern_mapping);
|
if (err < 0)
|
goto vmap_fail;
|
|
/* No support for growing or shrinking mapped regions */
|
reg->flags &= ~KBASE_REG_GROWABLE;
|
|
reg->cpu_alloc->permanent_map = kern_mapping;
|
atomic_add(size, &kctx->permanent_mapped_pages);
|
|
return 0;
|
vmap_fail:
|
kfree(kern_mapping);
|
return err;
|
}
|
|
void kbase_phy_alloc_mapping_term(struct kbase_context *kctx,
|
struct kbase_mem_phy_alloc *alloc)
|
{
|
WARN_ON(!alloc->permanent_map);
|
kbase_vunmap_phy_pages(kctx, alloc->permanent_map);
|
kfree(alloc->permanent_map);
|
|
alloc->permanent_map = NULL;
|
|
/* Mappings are only done on cpu_alloc, so don't need to worry about
|
* this being reduced a second time if a separate gpu_alloc is
|
* freed
|
*/
|
WARN_ON(alloc->nents > atomic_read(&kctx->permanent_mapped_pages));
|
atomic_sub(alloc->nents, &kctx->permanent_mapped_pages);
|
}
|
|
void *kbase_phy_alloc_mapping_get(struct kbase_context *kctx,
|
u64 gpu_addr,
|
struct kbase_vmap_struct **out_kern_mapping)
|
{
|
struct kbase_va_region *reg;
|
void *kern_mem_ptr = NULL;
|
struct kbase_vmap_struct *kern_mapping;
|
u64 mapping_offset;
|
|
WARN_ON(!kctx);
|
WARN_ON(!out_kern_mapping);
|
|
kbase_gpu_vm_lock(kctx);
|
|
/* First do a quick lookup in the list of event memory regions */
|
reg = kbase_find_event_mem_region(kctx, gpu_addr);
|
|
if (!reg) {
|
reg = kbase_region_tracker_find_region_enclosing_address(
|
kctx, gpu_addr);
|
}
|
|
if (kbase_is_region_invalid_or_free(reg))
|
goto out_unlock;
|
|
kern_mapping = reg->cpu_alloc->permanent_map;
|
if (kern_mapping == NULL)
|
goto out_unlock;
|
|
mapping_offset = gpu_addr - (reg->start_pfn << PAGE_SHIFT);
|
|
/* Refcount the allocations to prevent them disappearing */
|
WARN_ON(reg->cpu_alloc != kern_mapping->cpu_alloc);
|
WARN_ON(reg->gpu_alloc != kern_mapping->gpu_alloc);
|
(void)kbase_mem_phy_alloc_get(kern_mapping->cpu_alloc);
|
(void)kbase_mem_phy_alloc_get(kern_mapping->gpu_alloc);
|
|
kern_mem_ptr = (void *)(uintptr_t)((uintptr_t)kern_mapping->addr + mapping_offset);
|
*out_kern_mapping = kern_mapping;
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return kern_mem_ptr;
|
}
|
|
void kbase_phy_alloc_mapping_put(struct kbase_context *kctx,
|
struct kbase_vmap_struct *kern_mapping)
|
{
|
WARN_ON(!kctx);
|
WARN_ON(!kern_mapping);
|
|
WARN_ON(kctx != kern_mapping->cpu_alloc->imported.native.kctx);
|
WARN_ON(kern_mapping != kern_mapping->cpu_alloc->permanent_map);
|
|
kbase_mem_phy_alloc_put(kern_mapping->cpu_alloc);
|
kbase_mem_phy_alloc_put(kern_mapping->gpu_alloc);
|
|
/* kern_mapping and the gpu/cpu phy allocs backing it must not be used
|
* from now on
|
*/
|
}
|
|
struct kbase_va_region *kbase_mem_alloc(struct kbase_context *kctx,
|
u64 va_pages, u64 commit_pages,
|
u64 extension, u64 *flags, u64 *gpu_va)
|
{
|
int zone;
|
struct kbase_va_region *reg;
|
struct rb_root *rbtree;
|
struct device *dev;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
KBASE_DEBUG_ASSERT(flags);
|
KBASE_DEBUG_ASSERT(gpu_va);
|
|
dev = kctx->kbdev->dev;
|
dev_dbg(dev,
|
"Allocating %lld va_pages, %lld commit_pages, %lld extension, 0x%llX flags\n",
|
va_pages, commit_pages, extension, *flags);
|
|
#if MALI_USE_CSF
|
*gpu_va = 0; /* return 0 on failure */
|
#else
|
if (!(*flags & BASE_MEM_FLAG_MAP_FIXED))
|
*gpu_va = 0; /* return 0 on failure */
|
else
|
dev_err(dev,
|
"Keeping requested GPU VA of 0x%llx\n",
|
(unsigned long long)*gpu_va);
|
#endif
|
|
if (!kbase_check_alloc_flags(*flags)) {
|
dev_warn(dev,
|
"kbase_mem_alloc called with bad flags (%llx)",
|
(unsigned long long)*flags);
|
goto bad_flags;
|
}
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
if (unlikely(kbase_ctx_flag(kctx, KCTX_INFINITE_CACHE))) {
|
/* Mask coherency flags if infinite cache is enabled to prevent
|
* the skipping of syncs from BASE side.
|
*/
|
*flags &= ~(BASE_MEM_COHERENT_SYSTEM_REQUIRED |
|
BASE_MEM_COHERENT_SYSTEM);
|
}
|
#endif
|
|
if ((*flags & BASE_MEM_UNCACHED_GPU) != 0 &&
|
(*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0) {
|
/* Remove COHERENT_SYSTEM_REQUIRED flag if uncached GPU mapping is requested */
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM_REQUIRED;
|
}
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0 &&
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
dev_warn(dev, "kbase_mem_alloc call required coherent mem when unavailable");
|
goto bad_flags;
|
}
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM) != 0 &&
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
/* Remove COHERENT_SYSTEM flag if coherent mem is unavailable */
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM;
|
}
|
|
if (kbase_check_alloc_sizes(kctx, *flags, va_pages, commit_pages,
|
extension))
|
goto bad_sizes;
|
|
#ifdef CONFIG_MALI_MEMORY_FULLY_BACKED
|
/* Ensure that memory is fully physically-backed. */
|
if (*flags & BASE_MEM_GROW_ON_GPF)
|
commit_pages = va_pages;
|
#endif
|
|
/* find out which VA zone to use */
|
if (*flags & BASE_MEM_SAME_VA) {
|
rbtree = &kctx->reg_rbtree_same;
|
zone = KBASE_REG_ZONE_SAME_VA;
|
} else if ((*flags & BASE_MEM_PROT_GPU_EX) && kbase_has_exec_va_zone(kctx)) {
|
rbtree = &kctx->reg_rbtree_exec;
|
zone = KBASE_REG_ZONE_EXEC_VA;
|
} else {
|
rbtree = &kctx->reg_rbtree_custom;
|
zone = KBASE_REG_ZONE_CUSTOM_VA;
|
}
|
|
reg = kbase_alloc_free_region(rbtree, PFN_DOWN(*gpu_va),
|
va_pages, zone);
|
|
if (!reg) {
|
dev_err(dev, "Failed to allocate free region");
|
goto no_region;
|
}
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
goto invalid_flags;
|
|
if (kbase_reg_prepare_native(reg, kctx,
|
base_mem_group_id_get(*flags)) != 0) {
|
dev_err(dev, "Failed to prepare region");
|
goto prepare_failed;
|
}
|
|
if (unlikely(reg->cpu_alloc != reg->gpu_alloc))
|
*flags |= BASE_MEM_KERNEL_SYNC;
|
|
/* make sure base knows if the memory is actually cached or not */
|
if (reg->flags & KBASE_REG_CPU_CACHED)
|
*flags |= BASE_MEM_CACHED_CPU;
|
else
|
*flags &= ~BASE_MEM_CACHED_CPU;
|
|
if (*flags & BASE_MEM_GROW_ON_GPF) {
|
unsigned int const ir_threshold = atomic_read(
|
&kctx->kbdev->memdev.ir_threshold);
|
|
reg->threshold_pages = ((va_pages * ir_threshold) +
|
(IR_THRESHOLD_STEPS / 2)) / IR_THRESHOLD_STEPS;
|
} else
|
reg->threshold_pages = 0;
|
|
if (*flags & BASE_MEM_GROW_ON_GPF) {
|
/* kbase_check_alloc_sizes() already checks extension is valid for
|
* assigning to reg->extension
|
*/
|
reg->extension = extension;
|
#if !MALI_USE_CSF
|
} else if (*flags & BASE_MEM_TILER_ALIGN_TOP) {
|
reg->extension = extension;
|
#endif /* !MALI_USE_CSF */
|
} else {
|
reg->extension = 0;
|
}
|
|
if (kbase_alloc_phy_pages(reg, va_pages, commit_pages) != 0) {
|
dev_warn(dev, "Failed to allocate %lld pages (va_pages=%lld)",
|
(unsigned long long)commit_pages,
|
(unsigned long long)va_pages);
|
goto no_mem;
|
}
|
reg->initial_commit = commit_pages;
|
|
kbase_gpu_vm_lock(kctx);
|
|
if (reg->flags & KBASE_REG_PERMANENT_KERNEL_MAPPING) {
|
/* Permanent kernel mappings must happen as soon as
|
* reg->cpu_alloc->pages is ready. Currently this happens after
|
* kbase_alloc_phy_pages(). If we move that to setup pages
|
* earlier, also move this call too
|
*/
|
int err = kbase_phy_alloc_mapping_init(kctx, reg, va_pages,
|
commit_pages);
|
if (err < 0) {
|
kbase_gpu_vm_unlock(kctx);
|
goto no_kern_mapping;
|
}
|
}
|
|
/* mmap needed to setup VA? */
|
if (*flags & BASE_MEM_SAME_VA) {
|
unsigned long cookie, cookie_nr;
|
|
/* Bind to a cookie */
|
if (bitmap_empty(kctx->cookies, BITS_PER_LONG)) {
|
dev_err(dev, "No cookies available for allocation!");
|
kbase_gpu_vm_unlock(kctx);
|
goto no_cookie;
|
}
|
/* return a cookie */
|
cookie_nr = find_first_bit(kctx->cookies, BITS_PER_LONG);
|
bitmap_clear(kctx->cookies, cookie_nr, 1);
|
BUG_ON(kctx->pending_regions[cookie_nr]);
|
kctx->pending_regions[cookie_nr] = reg;
|
|
/* relocate to correct base */
|
cookie = cookie_nr + PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
cookie <<= PAGE_SHIFT;
|
|
*gpu_va = (u64) cookie;
|
} else /* we control the VA */ {
|
if (kbase_gpu_mmap(kctx, reg, *gpu_va, va_pages, 1) != 0) {
|
dev_warn(dev, "Failed to map memory on GPU");
|
kbase_gpu_vm_unlock(kctx);
|
goto no_mmap;
|
}
|
/* return real GPU VA */
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
}
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (*flags & BASEP_MEM_PERFORM_JIT_TRIM) {
|
kbase_jit_done_phys_increase(kctx, commit_pages);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
WARN_ON(!list_empty(®->jit_node));
|
list_add(®->jit_node, &kctx->jit_active_head);
|
mutex_unlock(&kctx->jit_evict_lock);
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
kbase_gpu_vm_unlock(kctx);
|
return reg;
|
|
no_mmap:
|
no_cookie:
|
no_kern_mapping:
|
no_mem:
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (*flags & BASEP_MEM_PERFORM_JIT_TRIM) {
|
kbase_gpu_vm_lock(kctx);
|
kbase_jit_done_phys_increase(kctx, commit_pages);
|
kbase_gpu_vm_unlock(kctx);
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
invalid_flags:
|
prepare_failed:
|
kfree(reg);
|
no_region:
|
bad_sizes:
|
bad_flags:
|
return NULL;
|
}
|
KBASE_EXPORT_TEST_API(kbase_mem_alloc);
|
|
int kbase_mem_query(struct kbase_context *kctx,
|
u64 gpu_addr, u64 query, u64 * const out)
|
{
|
struct kbase_va_region *reg;
|
int ret = -EINVAL;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
KBASE_DEBUG_ASSERT(out);
|
|
if (gpu_addr & ~PAGE_MASK) {
|
dev_warn(kctx->kbdev->dev, "mem_query: gpu_addr: passed parameter is invalid");
|
return -EINVAL;
|
}
|
|
kbase_gpu_vm_lock(kctx);
|
|
/* Validate the region */
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg))
|
goto out_unlock;
|
|
switch (query) {
|
case KBASE_MEM_QUERY_COMMIT_SIZE:
|
if (reg->cpu_alloc->type != KBASE_MEM_TYPE_ALIAS) {
|
*out = kbase_reg_current_backed_size(reg);
|
} else {
|
size_t i;
|
struct kbase_aliased *aliased;
|
*out = 0;
|
aliased = reg->cpu_alloc->imported.alias.aliased;
|
for (i = 0; i < reg->cpu_alloc->imported.alias.nents; i++)
|
*out += aliased[i].length;
|
}
|
break;
|
case KBASE_MEM_QUERY_VA_SIZE:
|
*out = reg->nr_pages;
|
break;
|
case KBASE_MEM_QUERY_FLAGS:
|
{
|
*out = 0;
|
if (KBASE_REG_CPU_WR & reg->flags)
|
*out |= BASE_MEM_PROT_CPU_WR;
|
if (KBASE_REG_CPU_RD & reg->flags)
|
*out |= BASE_MEM_PROT_CPU_RD;
|
if (KBASE_REG_CPU_CACHED & reg->flags)
|
*out |= BASE_MEM_CACHED_CPU;
|
if (KBASE_REG_GPU_WR & reg->flags)
|
*out |= BASE_MEM_PROT_GPU_WR;
|
if (KBASE_REG_GPU_RD & reg->flags)
|
*out |= BASE_MEM_PROT_GPU_RD;
|
if (!(KBASE_REG_GPU_NX & reg->flags))
|
*out |= BASE_MEM_PROT_GPU_EX;
|
if (KBASE_REG_SHARE_BOTH & reg->flags)
|
*out |= BASE_MEM_COHERENT_SYSTEM;
|
if (KBASE_REG_SHARE_IN & reg->flags)
|
*out |= BASE_MEM_COHERENT_LOCAL;
|
if (mali_kbase_supports_mem_grow_on_gpf(kctx->api_version)) {
|
/* Prior to this version, this was known about by
|
* user-side but we did not return them. Returning
|
* it caused certain clients that were not expecting
|
* it to fail, so we omit it as a special-case for
|
* compatibility reasons
|
*/
|
if (KBASE_REG_PF_GROW & reg->flags)
|
*out |= BASE_MEM_GROW_ON_GPF;
|
}
|
if (mali_kbase_supports_mem_protected(kctx->api_version)) {
|
/* Prior to this version, this was known about by
|
* user-side but we did not return them. Returning
|
* it caused certain clients that were not expecting
|
* it to fail, so we omit it as a special-case for
|
* compatibility reasons
|
*/
|
if (KBASE_REG_PROTECTED & reg->flags)
|
*out |= BASE_MEM_PROTECTED;
|
}
|
#if !MALI_USE_CSF
|
if (KBASE_REG_TILER_ALIGN_TOP & reg->flags)
|
*out |= BASE_MEM_TILER_ALIGN_TOP;
|
#endif /* !MALI_USE_CSF */
|
if (!(KBASE_REG_GPU_CACHED & reg->flags))
|
*out |= BASE_MEM_UNCACHED_GPU;
|
#if MALI_USE_CSF
|
if (KBASE_REG_CSF_EVENT & reg->flags)
|
*out |= BASE_MEM_CSF_EVENT;
|
#endif
|
if (KBASE_REG_GPU_VA_SAME_4GB_PAGE & reg->flags)
|
*out |= BASE_MEM_GPU_VA_SAME_4GB_PAGE;
|
|
*out |= base_mem_group_id_set(reg->cpu_alloc->group_id);
|
|
WARN(*out & ~BASE_MEM_FLAGS_QUERYABLE,
|
"BASE_MEM_FLAGS_QUERYABLE needs updating\n");
|
*out &= BASE_MEM_FLAGS_QUERYABLE;
|
break;
|
}
|
default:
|
*out = 0;
|
goto out_unlock;
|
}
|
|
ret = 0;
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return ret;
|
}
|
|
/**
|
* kbase_mem_evictable_reclaim_count_objects - Count number of pages in the
|
* Ephemeral memory eviction list.
|
* @s: Shrinker
|
* @sc: Shrinker control
|
*
|
* Return: Number of pages which can be freed.
|
*/
|
static
|
unsigned long kbase_mem_evictable_reclaim_count_objects(struct shrinker *s,
|
struct shrink_control *sc)
|
{
|
struct kbase_context *kctx;
|
|
kctx = container_of(s, struct kbase_context, reclaim);
|
|
WARN((sc->gfp_mask & __GFP_ATOMIC),
|
"Shrinkers cannot be called for GFP_ATOMIC allocations. Check kernel mm for problems. gfp_mask==%x\n",
|
sc->gfp_mask);
|
WARN(in_atomic(),
|
"Shrinker called whilst in atomic context. The caller must switch to using GFP_ATOMIC or similar. gfp_mask==%x\n",
|
sc->gfp_mask);
|
|
return atomic_read(&kctx->evict_nents);
|
}
|
|
/**
|
* kbase_mem_evictable_reclaim_scan_objects - Scan the Ephemeral memory eviction
|
* list for pages and try to reclaim them.
|
* @s: Shrinker
|
* @sc: Shrinker control
|
*
|
* Return: Number of pages freed (can be less then requested) or -1 if the
|
* shrinker failed to free pages in its pool.
|
*
|
* Note:
|
* This function accesses region structures without taking the region lock,
|
* this is required as the OOM killer can call the shrinker after the region
|
* lock has already been held.
|
* This is safe as we can guarantee that a region on the eviction list will
|
* not be freed (kbase_mem_free_region removes the allocation from the list
|
* before destroying it), or modified by other parts of the driver.
|
* The eviction list itself is guarded by the eviction lock and the MMU updates
|
* are protected by their own lock.
|
*/
|
static
|
unsigned long kbase_mem_evictable_reclaim_scan_objects(struct shrinker *s,
|
struct shrink_control *sc)
|
{
|
struct kbase_context *kctx;
|
struct kbase_mem_phy_alloc *alloc;
|
struct kbase_mem_phy_alloc *tmp;
|
unsigned long freed = 0;
|
|
kctx = container_of(s, struct kbase_context, reclaim);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
list_for_each_entry_safe(alloc, tmp, &kctx->evict_list, evict_node) {
|
int err;
|
|
err = kbase_mem_shrink_gpu_mapping(kctx, alloc->reg,
|
0, alloc->nents);
|
if (err != 0) {
|
/*
|
* Failed to remove GPU mapping, tell the shrinker
|
* to stop trying to shrink our slab even though we
|
* have pages in it.
|
*/
|
freed = -1;
|
goto out_unlock;
|
}
|
|
/*
|
* Update alloc->evicted before freeing the backing so the
|
* helper can determine that it needs to bypass the accounting
|
* and memory pool.
|
*/
|
alloc->evicted = alloc->nents;
|
|
kbase_free_phy_pages_helper(alloc, alloc->evicted);
|
freed += alloc->evicted;
|
WARN_ON(atomic_sub_return(alloc->evicted, &kctx->evict_nents) < 0);
|
list_del_init(&alloc->evict_node);
|
|
/*
|
* Inform the JIT allocator this region has lost backing
|
* as it might need to free the allocation.
|
*/
|
kbase_jit_backing_lost(alloc->reg);
|
|
/* Enough pages have been freed so stop now */
|
if (freed > sc->nr_to_scan)
|
break;
|
}
|
out_unlock:
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
return freed;
|
}
|
|
int kbase_mem_evictable_init(struct kbase_context *kctx)
|
{
|
INIT_LIST_HEAD(&kctx->evict_list);
|
mutex_init(&kctx->jit_evict_lock);
|
|
atomic_set(&kctx->evict_nents, 0);
|
|
kctx->reclaim.count_objects = kbase_mem_evictable_reclaim_count_objects;
|
kctx->reclaim.scan_objects = kbase_mem_evictable_reclaim_scan_objects;
|
kctx->reclaim.seeks = DEFAULT_SEEKS;
|
/* Kernel versions prior to 3.1 :
|
* struct shrinker does not define batch
|
*/
|
kctx->reclaim.batch = 0;
|
register_shrinker(&kctx->reclaim);
|
return 0;
|
}
|
|
void kbase_mem_evictable_deinit(struct kbase_context *kctx)
|
{
|
unregister_shrinker(&kctx->reclaim);
|
}
|
|
/**
|
* kbase_mem_evictable_mark_reclaim - Mark the pages as reclaimable.
|
* @alloc: The physical allocation
|
*/
|
void kbase_mem_evictable_mark_reclaim(struct kbase_mem_phy_alloc *alloc)
|
{
|
struct kbase_context *kctx = alloc->imported.native.kctx;
|
struct kbase_device *kbdev = kctx->kbdev;
|
int __maybe_unused new_page_count;
|
|
kbase_process_page_usage_dec(kctx, alloc->nents);
|
new_page_count = atomic_sub_return(alloc->nents,
|
&kctx->used_pages);
|
atomic_sub(alloc->nents, &kctx->kbdev->memdev.used_pages);
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
kbase_trace_gpu_mem_usage_dec(kbdev, kctx, alloc->nents);
|
}
|
|
/**
|
* kbase_mem_evictable_unmark_reclaim - Mark the pages as no longer reclaimable.
|
* @alloc: The physical allocation
|
*/
|
static
|
void kbase_mem_evictable_unmark_reclaim(struct kbase_mem_phy_alloc *alloc)
|
{
|
struct kbase_context *kctx = alloc->imported.native.kctx;
|
struct kbase_device *kbdev = kctx->kbdev;
|
int __maybe_unused new_page_count;
|
|
new_page_count = atomic_add_return(alloc->nents,
|
&kctx->used_pages);
|
atomic_add(alloc->nents, &kctx->kbdev->memdev.used_pages);
|
|
/* Increase mm counters so that the allocation is accounted for
|
* against the process and thus is visible to the OOM killer,
|
*/
|
kbase_process_page_usage_inc(kctx, alloc->nents);
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
kbase_trace_gpu_mem_usage_inc(kbdev, kctx, alloc->nents);
|
}
|
|
int kbase_mem_evictable_make(struct kbase_mem_phy_alloc *gpu_alloc)
|
{
|
struct kbase_context *kctx = gpu_alloc->imported.native.kctx;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
kbase_mem_shrink_cpu_mapping(kctx, gpu_alloc->reg,
|
0, gpu_alloc->nents);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
/* This allocation can't already be on a list. */
|
WARN_ON(!list_empty(&gpu_alloc->evict_node));
|
|
/*
|
* Add the allocation to the eviction list, after this point the shrink
|
* can reclaim it.
|
*/
|
list_add(&gpu_alloc->evict_node, &kctx->evict_list);
|
atomic_add(gpu_alloc->nents, &kctx->evict_nents);
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_mem_evictable_mark_reclaim(gpu_alloc);
|
|
gpu_alloc->reg->flags |= KBASE_REG_DONT_NEED;
|
return 0;
|
}
|
|
bool kbase_mem_evictable_unmake(struct kbase_mem_phy_alloc *gpu_alloc)
|
{
|
struct kbase_context *kctx = gpu_alloc->imported.native.kctx;
|
int err = 0;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
mutex_lock(&kctx->jit_evict_lock);
|
/*
|
* First remove the allocation from the eviction list as it's no
|
* longer eligible for eviction.
|
*/
|
WARN_ON(atomic_sub_return(gpu_alloc->nents, &kctx->evict_nents) < 0);
|
list_del_init(&gpu_alloc->evict_node);
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
if (gpu_alloc->evicted == 0) {
|
/*
|
* The backing is still present, update the VM stats as it's
|
* in use again.
|
*/
|
kbase_mem_evictable_unmark_reclaim(gpu_alloc);
|
} else {
|
/* If the region is still alive ... */
|
if (gpu_alloc->reg) {
|
/* ... allocate replacement backing ... */
|
err = kbase_alloc_phy_pages_helper(gpu_alloc,
|
gpu_alloc->evicted);
|
|
/*
|
* ... and grow the mapping back to its
|
* pre-eviction size.
|
*/
|
if (!err)
|
err = kbase_mem_grow_gpu_mapping(kctx,
|
gpu_alloc->reg,
|
gpu_alloc->evicted, 0);
|
|
gpu_alloc->evicted = 0;
|
}
|
}
|
|
/* If the region is still alive remove the DONT_NEED attribute. */
|
if (gpu_alloc->reg)
|
gpu_alloc->reg->flags &= ~KBASE_REG_DONT_NEED;
|
|
return (err == 0);
|
}
|
|
int kbase_mem_flags_change(struct kbase_context *kctx, u64 gpu_addr, unsigned int flags, unsigned int mask)
|
{
|
struct kbase_va_region *reg;
|
int ret = -EINVAL;
|
unsigned int real_flags = 0;
|
unsigned int new_flags = 0;
|
bool prev_needed, new_needed;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
|
if (!gpu_addr)
|
return -EINVAL;
|
|
if ((gpu_addr & ~PAGE_MASK) && (gpu_addr >= PAGE_SIZE))
|
return -EINVAL;
|
|
/* nuke other bits */
|
flags &= mask;
|
|
/* check for only supported flags */
|
if (flags & ~(BASE_MEM_FLAGS_MODIFIABLE))
|
goto out;
|
|
/* mask covers bits we don't support? */
|
if (mask & ~(BASE_MEM_FLAGS_MODIFIABLE))
|
goto out;
|
|
/* convert flags */
|
if (BASE_MEM_COHERENT_SYSTEM & flags)
|
real_flags |= KBASE_REG_SHARE_BOTH;
|
else if (BASE_MEM_COHERENT_LOCAL & flags)
|
real_flags |= KBASE_REG_SHARE_IN;
|
|
/* now we can lock down the context, and find the region */
|
down_write(kbase_mem_get_process_mmap_lock());
|
kbase_gpu_vm_lock(kctx);
|
|
/* Validate the region */
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg))
|
goto out_unlock;
|
|
/* Is the region being transitioning between not needed and needed? */
|
prev_needed = (KBASE_REG_DONT_NEED & reg->flags) == KBASE_REG_DONT_NEED;
|
new_needed = (BASE_MEM_DONT_NEED & flags) == BASE_MEM_DONT_NEED;
|
if (prev_needed != new_needed) {
|
/* Aliased allocations can't be shrunk as the code doesn't
|
* support looking up:
|
* - all physical pages assigned to different GPU VAs
|
* - CPU mappings for the physical pages at different vm_pgoff
|
* (==GPU VA) locations.
|
*/
|
if (atomic_read(®->cpu_alloc->gpu_mappings) > 1)
|
goto out_unlock;
|
|
if (atomic_read(®->cpu_alloc->kernel_mappings) > 0)
|
goto out_unlock;
|
|
if (new_needed) {
|
/* Only native allocations can be marked not needed */
|
if (reg->cpu_alloc->type != KBASE_MEM_TYPE_NATIVE) {
|
ret = -EINVAL;
|
goto out_unlock;
|
}
|
ret = kbase_mem_evictable_make(reg->gpu_alloc);
|
if (ret)
|
goto out_unlock;
|
} else {
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
}
|
}
|
|
/* limit to imported memory */
|
if (reg->gpu_alloc->type != KBASE_MEM_TYPE_IMPORTED_UMM)
|
goto out_unlock;
|
|
/* shareability flags are ignored for GPU uncached memory */
|
if (!(reg->flags & KBASE_REG_GPU_CACHED)) {
|
ret = 0;
|
goto out_unlock;
|
}
|
|
/* no change? */
|
if (real_flags == (reg->flags & (KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH))) {
|
ret = 0;
|
goto out_unlock;
|
}
|
|
new_flags = reg->flags & ~(KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH);
|
new_flags |= real_flags;
|
|
/* Currently supporting only imported memory */
|
if (reg->gpu_alloc->type != KBASE_MEM_TYPE_IMPORTED_UMM) {
|
ret = -EINVAL;
|
goto out_unlock;
|
}
|
|
if (IS_ENABLED(CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND)) {
|
/* Future use will use the new flags, existing mapping
|
* will NOT be updated as memory should not be in use
|
* by the GPU when updating the flags.
|
*/
|
WARN_ON(reg->gpu_alloc->imported.umm.current_mapping_usage_count);
|
ret = 0;
|
} else if (reg->gpu_alloc->imported.umm.current_mapping_usage_count) {
|
/*
|
* When CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND is not enabled the
|
* dma-buf GPU mapping should always be present, check that
|
* this is the case and warn and skip the page table update if
|
* not.
|
*
|
* Then update dma-buf GPU mapping with the new flags.
|
*
|
* Note: The buffer must not be in use on the GPU when
|
* changing flags. If the buffer is in active use on
|
* the GPU, there is a risk that the GPU may trigger a
|
* shareability fault, as it will see the same
|
* addresses from buffer with different shareability
|
* properties.
|
*/
|
dev_dbg(kctx->kbdev->dev,
|
"Updating page tables on mem flag change\n");
|
ret = kbase_mmu_update_pages(kctx, reg->start_pfn,
|
kbase_get_gpu_phy_pages(reg),
|
kbase_reg_current_backed_size(reg),
|
new_flags,
|
reg->gpu_alloc->group_id);
|
if (ret)
|
dev_warn(kctx->kbdev->dev,
|
"Failed to update GPU page tables on flag change: %d\n",
|
ret);
|
} else
|
WARN_ON(!reg->gpu_alloc->imported.umm.current_mapping_usage_count);
|
|
/* If everything is good, then set the new flags on the region. */
|
if (!ret)
|
reg->flags = new_flags;
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
up_write(kbase_mem_get_process_mmap_lock());
|
out:
|
return ret;
|
}
|
|
#define KBASE_MEM_IMPORT_HAVE_PAGES (1UL << BASE_MEM_FLAGS_NR_BITS)
|
|
int kbase_mem_do_sync_imported(struct kbase_context *kctx,
|
struct kbase_va_region *reg, enum kbase_sync_type sync_fn)
|
{
|
int ret = -EINVAL;
|
struct dma_buf *dma_buf;
|
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* We assume that the same physical allocation object is used for both
|
* GPU and CPU for imported buffers.
|
*/
|
WARN_ON(reg->cpu_alloc != reg->gpu_alloc);
|
|
/* Currently only handle dma-bufs */
|
if (reg->gpu_alloc->type != KBASE_MEM_TYPE_IMPORTED_UMM)
|
return ret;
|
/*
|
* Attempting to sync with CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND
|
* enabled can expose us to a Linux Kernel issue between v4.6 and
|
* v4.19. We will not attempt to support cache syncs on dma-bufs that
|
* are mapped on demand (i.e. not on import), even on pre-4.6, neither
|
* on 4.20 or newer kernels, because this makes it difficult for
|
* userspace to know when they can rely on the cache sync.
|
* Instead, only support syncing when we always map dma-bufs on import,
|
* or if the particular buffer is mapped right now.
|
*/
|
if (IS_ENABLED(CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND) &&
|
!reg->gpu_alloc->imported.umm.current_mapping_usage_count)
|
return ret;
|
|
dma_buf = reg->gpu_alloc->imported.umm.dma_buf;
|
|
switch (sync_fn) {
|
case KBASE_SYNC_TO_DEVICE:
|
dev_dbg(kctx->kbdev->dev,
|
"Syncing imported buffer at GPU VA %llx to GPU\n",
|
reg->start_pfn);
|
#ifdef KBASE_MEM_ION_SYNC_WORKAROUND
|
if (!WARN_ON(!reg->gpu_alloc->imported.umm.dma_attachment)) {
|
struct dma_buf_attachment *attachment = reg->gpu_alloc->imported.umm.dma_attachment;
|
struct sg_table *sgt = reg->gpu_alloc->imported.umm.sgt;
|
|
dma_sync_sg_for_device(attachment->dev, sgt->sgl,
|
sgt->nents, dir);
|
ret = 0;
|
}
|
#else
|
/* Though the below version check could be superfluous depending upon the version condition
|
* used for enabling KBASE_MEM_ION_SYNC_WORKAROUND, we still keep this check here to allow
|
* ease of modification for non-ION systems or systems where ION has been patched.
|
*/
|
#if KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE && !defined(CONFIG_CHROMEOS)
|
dma_buf_end_cpu_access(dma_buf,
|
0, dma_buf->size,
|
dir);
|
ret = 0;
|
#else
|
ret = dma_buf_end_cpu_access(dma_buf,
|
dir);
|
#endif
|
#endif /* KBASE_MEM_ION_SYNC_WORKAROUND */
|
break;
|
case KBASE_SYNC_TO_CPU:
|
dev_dbg(kctx->kbdev->dev,
|
"Syncing imported buffer at GPU VA %llx to CPU\n",
|
reg->start_pfn);
|
#ifdef KBASE_MEM_ION_SYNC_WORKAROUND
|
if (!WARN_ON(!reg->gpu_alloc->imported.umm.dma_attachment)) {
|
struct dma_buf_attachment *attachment = reg->gpu_alloc->imported.umm.dma_attachment;
|
struct sg_table *sgt = reg->gpu_alloc->imported.umm.sgt;
|
|
dma_sync_sg_for_cpu(attachment->dev, sgt->sgl,
|
sgt->nents, dir);
|
ret = 0;
|
}
|
#else
|
ret = dma_buf_begin_cpu_access(dma_buf,
|
#if KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE && !defined(CONFIG_CHROMEOS)
|
0, dma_buf->size,
|
#endif
|
dir);
|
#endif /* KBASE_MEM_ION_SYNC_WORKAROUND */
|
break;
|
}
|
|
if (unlikely(ret))
|
dev_warn(kctx->kbdev->dev,
|
"Failed to sync mem region %pK at GPU VA %llx: %d\n",
|
reg, reg->start_pfn, ret);
|
|
return ret;
|
}
|
|
/**
|
* kbase_mem_umm_unmap_attachment - Unmap dma-buf attachment
|
* @kctx: Pointer to kbase context
|
* @alloc: Pointer to allocation with imported dma-buf memory to unmap
|
*
|
* This will unmap a dma-buf. Must be called after the GPU page tables for the
|
* region have been torn down.
|
*/
|
static void kbase_mem_umm_unmap_attachment(struct kbase_context *kctx,
|
struct kbase_mem_phy_alloc *alloc)
|
{
|
struct tagged_addr *pa = alloc->pages;
|
|
dma_buf_unmap_attachment(alloc->imported.umm.dma_attachment,
|
alloc->imported.umm.sgt, DMA_BIDIRECTIONAL);
|
alloc->imported.umm.sgt = NULL;
|
|
kbase_remove_dma_buf_usage(kctx, alloc);
|
|
memset(pa, 0xff, sizeof(*pa) * alloc->nents);
|
alloc->nents = 0;
|
}
|
|
/* to replace sg_dma_len. */
|
#define MALI_SG_DMA_LEN(sg) ((sg)->length)
|
|
/**
|
* kbase_mem_umm_map_attachment - Prepare attached dma-buf for GPU mapping
|
* @kctx: Pointer to kbase context
|
* @reg: Pointer to region with imported dma-buf memory to map
|
*
|
* Map the dma-buf and prepare the page array with the tagged Mali physical
|
* addresses for GPU mapping.
|
*
|
* Return: 0 on success, or negative error code
|
*/
|
static int kbase_mem_umm_map_attachment(struct kbase_context *kctx,
|
struct kbase_va_region *reg)
|
{
|
struct sg_table *sgt;
|
struct scatterlist *s;
|
int i;
|
struct tagged_addr *pa;
|
int err;
|
size_t count = 0;
|
struct kbase_mem_phy_alloc *alloc = reg->gpu_alloc;
|
|
WARN_ON_ONCE(alloc->type != KBASE_MEM_TYPE_IMPORTED_UMM);
|
WARN_ON_ONCE(alloc->imported.umm.sgt);
|
|
sgt = dma_buf_map_attachment(alloc->imported.umm.dma_attachment,
|
DMA_BIDIRECTIONAL);
|
if (IS_ERR_OR_NULL(sgt))
|
return -EINVAL;
|
|
/* save for later */
|
alloc->imported.umm.sgt = sgt;
|
|
pa = kbase_get_gpu_phy_pages(reg);
|
|
for_each_sg(sgt->sgl, s, sgt->nents, i) {
|
size_t j, pages = PFN_UP(MALI_SG_DMA_LEN(s));
|
|
WARN_ONCE(MALI_SG_DMA_LEN(s) & (PAGE_SIZE-1),
|
"MALI_SG_DMA_LEN(s)=%u is not a multiple of PAGE_SIZE\n",
|
MALI_SG_DMA_LEN(s));
|
|
WARN_ONCE(sg_dma_address(s) & (PAGE_SIZE-1),
|
"sg_dma_address(s)=%llx is not aligned to PAGE_SIZE\n",
|
(unsigned long long) sg_dma_address(s));
|
|
for (j = 0; (j < pages) && (count < reg->nr_pages); j++, count++)
|
*pa++ = as_tagged(sg_dma_address(s) +
|
(j << PAGE_SHIFT));
|
WARN_ONCE(j < pages,
|
"sg list from dma_buf_map_attachment > dma_buf->size=%zu\n",
|
alloc->imported.umm.dma_buf->size);
|
}
|
|
if (!(reg->flags & KBASE_REG_IMPORT_PAD) &&
|
WARN_ONCE(count < reg->nr_pages,
|
"sg list from dma_buf_map_attachment < dma_buf->size=%zu\n",
|
alloc->imported.umm.dma_buf->size)) {
|
err = -EINVAL;
|
goto err_unmap_attachment;
|
}
|
|
/* Update nents as we now have pages to map */
|
alloc->nents = count;
|
kbase_add_dma_buf_usage(kctx, alloc);
|
|
return 0;
|
|
err_unmap_attachment:
|
kbase_mem_umm_unmap_attachment(kctx, alloc);
|
|
return err;
|
}
|
|
int kbase_mem_umm_map(struct kbase_context *kctx,
|
struct kbase_va_region *reg)
|
{
|
int err;
|
struct kbase_mem_phy_alloc *alloc;
|
unsigned long gwt_mask = ~0;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
alloc = reg->gpu_alloc;
|
|
alloc->imported.umm.current_mapping_usage_count++;
|
if (alloc->imported.umm.current_mapping_usage_count != 1) {
|
if (IS_ENABLED(CONFIG_MALI_DMA_BUF_LEGACY_COMPAT) ||
|
alloc->imported.umm.need_sync) {
|
if (!kbase_is_region_invalid_or_free(reg)) {
|
err = kbase_mem_do_sync_imported(kctx, reg,
|
KBASE_SYNC_TO_DEVICE);
|
WARN_ON_ONCE(err);
|
}
|
}
|
return 0;
|
}
|
|
err = kbase_mem_umm_map_attachment(kctx, reg);
|
if (err)
|
goto bad_map_attachment;
|
|
#ifdef CONFIG_MALI_CINSTR_GWT
|
if (kctx->gwt_enabled)
|
gwt_mask = ~KBASE_REG_GPU_WR;
|
#endif
|
|
err = kbase_mmu_insert_pages(kctx->kbdev,
|
&kctx->mmu,
|
reg->start_pfn,
|
kbase_get_gpu_phy_pages(reg),
|
kbase_reg_current_backed_size(reg),
|
reg->flags & gwt_mask,
|
kctx->as_nr,
|
alloc->group_id);
|
if (err)
|
goto bad_insert;
|
|
if (reg->flags & KBASE_REG_IMPORT_PAD &&
|
!WARN_ON(reg->nr_pages < alloc->nents)) {
|
/* For padded imported dma-buf memory, map the dummy aliasing
|
* page from the end of the dma-buf pages, to the end of the
|
* region using a read only mapping.
|
*
|
* Assume alloc->nents is the number of actual pages in the
|
* dma-buf memory.
|
*/
|
err = kbase_mmu_insert_single_page(kctx,
|
reg->start_pfn + alloc->nents,
|
kctx->aliasing_sink_page,
|
reg->nr_pages - alloc->nents,
|
(reg->flags | KBASE_REG_GPU_RD) &
|
~KBASE_REG_GPU_WR,
|
KBASE_MEM_GROUP_SINK);
|
if (err)
|
goto bad_pad_insert;
|
}
|
|
return 0;
|
|
bad_pad_insert:
|
kbase_mmu_teardown_pages(kctx->kbdev,
|
&kctx->mmu,
|
reg->start_pfn,
|
alloc->nents,
|
kctx->as_nr);
|
bad_insert:
|
kbase_mem_umm_unmap_attachment(kctx, alloc);
|
bad_map_attachment:
|
alloc->imported.umm.current_mapping_usage_count--;
|
|
return err;
|
}
|
|
void kbase_mem_umm_unmap(struct kbase_context *kctx,
|
struct kbase_va_region *reg, struct kbase_mem_phy_alloc *alloc)
|
{
|
alloc->imported.umm.current_mapping_usage_count--;
|
if (alloc->imported.umm.current_mapping_usage_count) {
|
if (IS_ENABLED(CONFIG_MALI_DMA_BUF_LEGACY_COMPAT) ||
|
alloc->imported.umm.need_sync) {
|
if (!kbase_is_region_invalid_or_free(reg)) {
|
int err = kbase_mem_do_sync_imported(kctx, reg,
|
KBASE_SYNC_TO_CPU);
|
WARN_ON_ONCE(err);
|
}
|
}
|
return;
|
}
|
|
if (!kbase_is_region_invalid_or_free(reg) && reg->gpu_alloc == alloc) {
|
int err;
|
|
err = kbase_mmu_teardown_pages(kctx->kbdev,
|
&kctx->mmu,
|
reg->start_pfn,
|
reg->nr_pages,
|
kctx->as_nr);
|
WARN_ON(err);
|
}
|
|
kbase_mem_umm_unmap_attachment(kctx, alloc);
|
}
|
|
static int get_umm_memory_group_id(struct kbase_context *kctx,
|
struct dma_buf *dma_buf)
|
{
|
int group_id = BASE_MEM_GROUP_DEFAULT;
|
|
if (kctx->kbdev->mgm_dev->ops.mgm_get_import_memory_id) {
|
struct memory_group_manager_import_data mgm_import_data;
|
|
mgm_import_data.type =
|
MEMORY_GROUP_MANAGER_IMPORT_TYPE_DMA_BUF;
|
mgm_import_data.u.dma_buf = dma_buf;
|
|
group_id = kctx->kbdev->mgm_dev->ops.mgm_get_import_memory_id(
|
kctx->kbdev->mgm_dev, &mgm_import_data);
|
}
|
|
return group_id;
|
}
|
|
/**
|
* kbase_mem_from_umm - Import dma-buf memory into kctx
|
* @kctx: Pointer to kbase context to import memory into
|
* @fd: File descriptor of dma-buf to import
|
* @va_pages: Pointer where virtual size of the region will be output
|
* @flags: Pointer to memory flags
|
* @padding: Number of read only padding pages to be inserted at the end of the
|
* GPU mapping of the dma-buf
|
*
|
* Return: Pointer to new kbase_va_region object of the imported dma-buf, or
|
* NULL on error.
|
*
|
* This function imports a dma-buf into kctx, and created a kbase_va_region
|
* object that wraps the dma-buf.
|
*/
|
static struct kbase_va_region *kbase_mem_from_umm(struct kbase_context *kctx,
|
int fd, u64 *va_pages, u64 *flags, u32 padding)
|
{
|
struct kbase_va_region *reg;
|
struct dma_buf *dma_buf;
|
struct dma_buf_attachment *dma_attachment;
|
bool shared_zone = false;
|
bool need_sync = false;
|
int group_id;
|
|
/* 64-bit address range is the max */
|
if (*va_pages > (U64_MAX / PAGE_SIZE))
|
return NULL;
|
|
dma_buf = dma_buf_get(fd);
|
if (IS_ERR_OR_NULL(dma_buf))
|
return NULL;
|
|
dma_attachment = dma_buf_attach(dma_buf, kctx->kbdev->dev);
|
if (IS_ERR_OR_NULL(dma_attachment)) {
|
dma_buf_put(dma_buf);
|
return NULL;
|
}
|
|
*va_pages = (PAGE_ALIGN(dma_buf->size) >> PAGE_SHIFT) + padding;
|
if (!*va_pages) {
|
dma_buf_detach(dma_buf, dma_attachment);
|
dma_buf_put(dma_buf);
|
return NULL;
|
}
|
|
/* ignore SAME_VA */
|
*flags &= ~BASE_MEM_SAME_VA;
|
|
/*
|
* Force CPU cached flag.
|
*
|
* We can't query the dma-buf exporter to get details about the CPU
|
* cache attributes of CPU mappings, so we have to assume that the
|
* buffer may be cached, and call into the exporter for cache
|
* maintenance, and rely on the exporter to do the right thing when
|
* handling our calls.
|
*/
|
*flags |= BASE_MEM_CACHED_CPU;
|
|
if (*flags & BASE_MEM_IMPORT_SHARED)
|
shared_zone = true;
|
|
if (*flags & BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP)
|
need_sync = true;
|
|
#if IS_ENABLED(CONFIG_64BIT)
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
/*
|
* 64-bit tasks require us to reserve VA on the CPU that we use
|
* on the GPU.
|
*/
|
shared_zone = true;
|
}
|
#endif
|
|
if (shared_zone) {
|
*flags |= BASE_MEM_NEED_MMAP;
|
reg = kbase_alloc_free_region(&kctx->reg_rbtree_same,
|
0, *va_pages, KBASE_REG_ZONE_SAME_VA);
|
} else {
|
reg = kbase_alloc_free_region(&kctx->reg_rbtree_custom,
|
0, *va_pages, KBASE_REG_ZONE_CUSTOM_VA);
|
}
|
|
if (!reg) {
|
dma_buf_detach(dma_buf, dma_attachment);
|
dma_buf_put(dma_buf);
|
return NULL;
|
}
|
|
group_id = get_umm_memory_group_id(kctx, dma_buf);
|
|
reg->gpu_alloc = kbase_alloc_create(kctx, *va_pages,
|
KBASE_MEM_TYPE_IMPORTED_UMM, group_id);
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
goto no_alloc;
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
goto error_out;
|
|
/* No pages to map yet */
|
reg->gpu_alloc->nents = 0;
|
|
reg->flags &= ~KBASE_REG_FREE;
|
reg->flags |= KBASE_REG_GPU_NX; /* UMM is always No eXecute */
|
reg->flags &= ~KBASE_REG_GROWABLE; /* UMM cannot be grown */
|
|
if (*flags & BASE_MEM_PROTECTED)
|
reg->flags |= KBASE_REG_PROTECTED;
|
|
if (padding)
|
reg->flags |= KBASE_REG_IMPORT_PAD;
|
|
reg->gpu_alloc->type = KBASE_MEM_TYPE_IMPORTED_UMM;
|
reg->gpu_alloc->imported.umm.sgt = NULL;
|
reg->gpu_alloc->imported.umm.dma_buf = dma_buf;
|
reg->gpu_alloc->imported.umm.dma_attachment = dma_attachment;
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count = 0;
|
reg->gpu_alloc->imported.umm.need_sync = need_sync;
|
reg->gpu_alloc->imported.umm.kctx = kctx;
|
reg->extension = 0;
|
|
if (!IS_ENABLED(CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND)) {
|
int err;
|
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count = 1;
|
|
err = kbase_mem_umm_map_attachment(kctx, reg);
|
if (err) {
|
dev_warn(kctx->kbdev->dev,
|
"Failed to map dma-buf %pK on GPU: %d\n",
|
dma_buf, err);
|
goto error_out;
|
}
|
|
*flags |= KBASE_MEM_IMPORT_HAVE_PAGES;
|
}
|
|
return reg;
|
|
error_out:
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
no_alloc:
|
kfree(reg);
|
|
return NULL;
|
}
|
|
u32 kbase_get_cache_line_alignment(struct kbase_device *kbdev)
|
{
|
u32 cpu_cache_line_size = cache_line_size();
|
u32 gpu_cache_line_size =
|
(1UL << kbdev->gpu_props.props.l2_props.log2_line_size);
|
|
return ((cpu_cache_line_size > gpu_cache_line_size) ?
|
cpu_cache_line_size :
|
gpu_cache_line_size);
|
}
|
|
static struct kbase_va_region *kbase_mem_from_user_buffer(
|
struct kbase_context *kctx, unsigned long address,
|
unsigned long size, u64 *va_pages, u64 *flags)
|
{
|
long i;
|
struct kbase_va_region *reg;
|
struct rb_root *rbtree;
|
long faulted_pages;
|
int zone = KBASE_REG_ZONE_CUSTOM_VA;
|
bool shared_zone = false;
|
u32 cache_line_alignment = kbase_get_cache_line_alignment(kctx->kbdev);
|
struct kbase_alloc_import_user_buf *user_buf;
|
struct page **pages = NULL;
|
int write;
|
|
/* Flag supported only for dma-buf imported memory */
|
if (*flags & BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP)
|
return NULL;
|
|
if ((address & (cache_line_alignment - 1)) != 0 ||
|
(size & (cache_line_alignment - 1)) != 0) {
|
if (*flags & BASE_MEM_UNCACHED_GPU) {
|
dev_warn(kctx->kbdev->dev,
|
"User buffer is not cache line aligned and marked as GPU uncached\n");
|
goto bad_size;
|
}
|
|
/* Coherency must be enabled to handle partial cache lines */
|
if (*flags & (BASE_MEM_COHERENT_SYSTEM |
|
BASE_MEM_COHERENT_SYSTEM_REQUIRED)) {
|
/* Force coherent system required flag, import will
|
* then fail if coherency isn't available
|
*/
|
*flags |= BASE_MEM_COHERENT_SYSTEM_REQUIRED;
|
} else {
|
dev_warn(kctx->kbdev->dev,
|
"User buffer is not cache line aligned and no coherency enabled\n");
|
goto bad_size;
|
}
|
}
|
|
*va_pages = (PAGE_ALIGN(address + size) >> PAGE_SHIFT) -
|
PFN_DOWN(address);
|
if (!*va_pages)
|
goto bad_size;
|
|
if (*va_pages > (UINT64_MAX / PAGE_SIZE))
|
/* 64-bit address range is the max */
|
goto bad_size;
|
|
/* SAME_VA generally not supported with imported memory (no known use cases) */
|
*flags &= ~BASE_MEM_SAME_VA;
|
|
if (*flags & BASE_MEM_IMPORT_SHARED)
|
shared_zone = true;
|
|
#if IS_ENABLED(CONFIG_64BIT)
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
/*
|
* 64-bit tasks require us to reserve VA on the CPU that we use
|
* on the GPU.
|
*/
|
shared_zone = true;
|
}
|
#endif
|
|
if (shared_zone) {
|
*flags |= BASE_MEM_NEED_MMAP;
|
zone = KBASE_REG_ZONE_SAME_VA;
|
rbtree = &kctx->reg_rbtree_same;
|
} else
|
rbtree = &kctx->reg_rbtree_custom;
|
|
reg = kbase_alloc_free_region(rbtree, 0, *va_pages, zone);
|
|
if (!reg)
|
goto no_region;
|
|
reg->gpu_alloc = kbase_alloc_create(
|
kctx, *va_pages, KBASE_MEM_TYPE_IMPORTED_USER_BUF,
|
BASE_MEM_GROUP_DEFAULT);
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
goto no_alloc_obj;
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
goto invalid_flags;
|
|
reg->flags &= ~KBASE_REG_FREE;
|
reg->flags |= KBASE_REG_GPU_NX; /* User-buffers are always No eXecute */
|
reg->flags &= ~KBASE_REG_GROWABLE; /* Cannot be grown */
|
|
user_buf = ®->gpu_alloc->imported.user_buf;
|
|
user_buf->size = size;
|
user_buf->address = address;
|
user_buf->nr_pages = *va_pages;
|
user_buf->mm = current->mm;
|
#if KERNEL_VERSION(4, 11, 0) > LINUX_VERSION_CODE
|
atomic_inc(¤t->mm->mm_count);
|
#else
|
mmgrab(current->mm);
|
#endif
|
if (reg->gpu_alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
|
user_buf->pages = vmalloc(*va_pages * sizeof(struct page *));
|
else
|
user_buf->pages = kmalloc_array(*va_pages,
|
sizeof(struct page *), GFP_KERNEL);
|
|
if (!user_buf->pages)
|
goto no_page_array;
|
|
/* If the region is coherent with the CPU then the memory is imported
|
* and mapped onto the GPU immediately.
|
* Otherwise get_user_pages is called as a sanity check, but with
|
* NULL as the pages argument which will fault the pages, but not
|
* pin them. The memory will then be pinned only around the jobs that
|
* specify the region as an external resource.
|
*/
|
if (reg->flags & KBASE_REG_SHARE_BOTH) {
|
pages = user_buf->pages;
|
*flags |= KBASE_MEM_IMPORT_HAVE_PAGES;
|
}
|
|
down_read(kbase_mem_get_process_mmap_lock());
|
|
write = reg->flags & (KBASE_REG_CPU_WR | KBASE_REG_GPU_WR);
|
|
#if KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE
|
faulted_pages = get_user_pages(current, current->mm, address, *va_pages,
|
#if KERNEL_VERSION(4, 4, 168) <= LINUX_VERSION_CODE && \
|
KERNEL_VERSION(4, 5, 0) > LINUX_VERSION_CODE
|
write ? FOLL_WRITE : 0, pages, NULL);
|
#else
|
write, 0, pages, NULL);
|
#endif
|
#elif KERNEL_VERSION(4, 9, 0) > LINUX_VERSION_CODE
|
faulted_pages = get_user_pages(address, *va_pages,
|
write, 0, pages, NULL);
|
#else
|
faulted_pages = get_user_pages(address, *va_pages,
|
write ? FOLL_WRITE : 0, pages, NULL);
|
#endif
|
|
up_read(kbase_mem_get_process_mmap_lock());
|
|
if (faulted_pages != *va_pages)
|
goto fault_mismatch;
|
|
reg->gpu_alloc->nents = 0;
|
reg->extension = 0;
|
|
if (pages) {
|
struct device *dev = kctx->kbdev->dev;
|
unsigned long local_size = user_buf->size;
|
unsigned long offset = user_buf->address & ~PAGE_MASK;
|
struct tagged_addr *pa = kbase_get_gpu_phy_pages(reg);
|
|
/* Top bit signifies that this was pinned on import */
|
user_buf->current_mapping_usage_count |= PINNED_ON_IMPORT;
|
|
for (i = 0; i < faulted_pages; i++) {
|
dma_addr_t dma_addr;
|
unsigned long min;
|
|
min = MIN(PAGE_SIZE - offset, local_size);
|
dma_addr = dma_map_page(dev, pages[i],
|
offset, min,
|
DMA_BIDIRECTIONAL);
|
if (dma_mapping_error(dev, dma_addr))
|
goto unwind_dma_map;
|
|
user_buf->dma_addrs[i] = dma_addr;
|
pa[i] = as_tagged(page_to_phys(pages[i]));
|
|
local_size -= min;
|
offset = 0;
|
}
|
|
reg->gpu_alloc->nents = faulted_pages;
|
}
|
|
return reg;
|
|
unwind_dma_map:
|
while (i--) {
|
dma_unmap_page(kctx->kbdev->dev,
|
user_buf->dma_addrs[i],
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
}
|
fault_mismatch:
|
if (pages) {
|
for (i = 0; i < faulted_pages; i++)
|
put_page(pages[i]);
|
}
|
no_page_array:
|
invalid_flags:
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
no_alloc_obj:
|
kfree(reg);
|
no_region:
|
bad_size:
|
return NULL;
|
|
}
|
|
|
u64 kbase_mem_alias(struct kbase_context *kctx, u64 *flags, u64 stride,
|
u64 nents, struct base_mem_aliasing_info *ai,
|
u64 *num_pages)
|
{
|
struct kbase_va_region *reg;
|
u64 gpu_va;
|
size_t i;
|
bool coherent;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
KBASE_DEBUG_ASSERT(flags);
|
KBASE_DEBUG_ASSERT(ai);
|
KBASE_DEBUG_ASSERT(num_pages);
|
|
/* mask to only allowed flags */
|
*flags &= (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR |
|
BASE_MEM_COHERENT_SYSTEM | BASE_MEM_COHERENT_LOCAL |
|
BASE_MEM_PROT_CPU_RD | BASE_MEM_COHERENT_SYSTEM_REQUIRED);
|
|
if (!(*flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR))) {
|
dev_warn(kctx->kbdev->dev,
|
"kbase_mem_alias called with bad flags (%llx)",
|
(unsigned long long)*flags);
|
goto bad_flags;
|
}
|
coherent = (*flags & BASE_MEM_COHERENT_SYSTEM) != 0 ||
|
(*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0;
|
|
if (!stride)
|
goto bad_stride;
|
|
if (!nents)
|
goto bad_nents;
|
|
if ((nents * stride) > (U64_MAX / PAGE_SIZE))
|
/* 64-bit address range is the max */
|
goto bad_size;
|
|
/* calculate the number of pages this alias will cover */
|
*num_pages = nents * stride;
|
|
#if IS_ENABLED(CONFIG_64BIT)
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
/* 64-bit tasks must MMAP anyway, but not expose this address to
|
* clients
|
*/
|
*flags |= BASE_MEM_NEED_MMAP;
|
reg = kbase_alloc_free_region(&kctx->reg_rbtree_same, 0,
|
*num_pages,
|
KBASE_REG_ZONE_SAME_VA);
|
} else {
|
#else
|
if (1) {
|
#endif
|
reg = kbase_alloc_free_region(&kctx->reg_rbtree_custom,
|
0, *num_pages,
|
KBASE_REG_ZONE_CUSTOM_VA);
|
}
|
|
if (!reg)
|
goto no_reg;
|
|
/* zero-sized page array, as we don't need one/can support one */
|
reg->gpu_alloc = kbase_alloc_create(kctx, 0, KBASE_MEM_TYPE_ALIAS,
|
BASE_MEM_GROUP_DEFAULT);
|
if (IS_ERR_OR_NULL(reg->gpu_alloc))
|
goto no_alloc_obj;
|
|
reg->cpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
if (kbase_update_region_flags(kctx, reg, *flags) != 0)
|
goto invalid_flags;
|
|
reg->gpu_alloc->imported.alias.nents = nents;
|
reg->gpu_alloc->imported.alias.stride = stride;
|
reg->gpu_alloc->imported.alias.aliased = vzalloc(sizeof(*reg->gpu_alloc->imported.alias.aliased) * nents);
|
if (!reg->gpu_alloc->imported.alias.aliased)
|
goto no_aliased_array;
|
|
kbase_gpu_vm_lock(kctx);
|
|
/* validate and add src handles */
|
for (i = 0; i < nents; i++) {
|
if (ai[i].handle.basep.handle < BASE_MEM_FIRST_FREE_ADDRESS) {
|
if (ai[i].handle.basep.handle !=
|
BASEP_MEM_WRITE_ALLOC_PAGES_HANDLE)
|
goto bad_handle; /* unsupported magic handle */
|
if (!ai[i].length)
|
goto bad_handle; /* must be > 0 */
|
if (ai[i].length > stride)
|
goto bad_handle; /* can't be larger than the
|
* stride
|
*/
|
reg->gpu_alloc->imported.alias.aliased[i].length = ai[i].length;
|
} else {
|
struct kbase_va_region *aliasing_reg;
|
struct kbase_mem_phy_alloc *alloc;
|
|
aliasing_reg = kbase_region_tracker_find_region_base_address(
|
kctx,
|
(ai[i].handle.basep.handle >> PAGE_SHIFT) << PAGE_SHIFT);
|
|
/* validate found region */
|
if (kbase_is_region_invalid_or_free(aliasing_reg))
|
goto bad_handle; /* Not found/already free */
|
if (aliasing_reg->flags & KBASE_REG_DONT_NEED)
|
goto bad_handle; /* Ephemeral region */
|
if (aliasing_reg->flags & KBASE_REG_NO_USER_FREE)
|
goto bad_handle; /* JIT regions can't be
|
* aliased. NO_USER_FREE flag
|
* covers the entire lifetime
|
* of JIT regions. The other
|
* types of regions covered
|
* by this flag also shall
|
* not be aliased.
|
*/
|
if (!(aliasing_reg->flags & KBASE_REG_GPU_CACHED))
|
goto bad_handle; /* GPU uncached memory */
|
if (!aliasing_reg->gpu_alloc)
|
goto bad_handle; /* No alloc */
|
if (aliasing_reg->gpu_alloc->type != KBASE_MEM_TYPE_NATIVE)
|
goto bad_handle; /* Not a native alloc */
|
if (coherent != ((aliasing_reg->flags & KBASE_REG_SHARE_BOTH) != 0))
|
goto bad_handle; /* Non-coherent memory cannot
|
* alias coherent memory, and
|
* vice versa.
|
*/
|
|
/* check size against stride */
|
if (!ai[i].length)
|
goto bad_handle; /* must be > 0 */
|
if (ai[i].length > stride)
|
goto bad_handle; /* can't be larger than the
|
* stride
|
*/
|
|
alloc = aliasing_reg->gpu_alloc;
|
|
/* check against the alloc's size */
|
if (ai[i].offset > alloc->nents)
|
goto bad_handle; /* beyond end */
|
if (ai[i].offset + ai[i].length > alloc->nents)
|
goto bad_handle; /* beyond end */
|
|
reg->gpu_alloc->imported.alias.aliased[i].alloc = kbase_mem_phy_alloc_get(alloc);
|
reg->gpu_alloc->imported.alias.aliased[i].length = ai[i].length;
|
reg->gpu_alloc->imported.alias.aliased[i].offset = ai[i].offset;
|
|
/* Ensure the underlying alloc is marked as being
|
* mapped at >1 different GPU VA immediately, even
|
* though mapping might not happen until later.
|
*
|
* Otherwise, we would (incorrectly) allow shrinking of
|
* the source region (aliasing_reg) and so freeing the
|
* physical pages (without freeing the entire alloc)
|
* whilst we still hold an implicit reference on those
|
* physical pages.
|
*/
|
kbase_mem_phy_alloc_gpu_mapped(alloc);
|
}
|
}
|
|
#if IS_ENABLED(CONFIG_64BIT)
|
if (!kbase_ctx_flag(kctx, KCTX_COMPAT)) {
|
/* Bind to a cookie */
|
if (bitmap_empty(kctx->cookies, BITS_PER_LONG)) {
|
dev_err(kctx->kbdev->dev, "No cookies available for allocation!");
|
goto no_cookie;
|
}
|
/* return a cookie */
|
gpu_va = find_first_bit(kctx->cookies, BITS_PER_LONG);
|
bitmap_clear(kctx->cookies, gpu_va, 1);
|
BUG_ON(kctx->pending_regions[gpu_va]);
|
kctx->pending_regions[gpu_va] = reg;
|
|
/* relocate to correct base */
|
gpu_va += PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
gpu_va <<= PAGE_SHIFT;
|
} else /* we control the VA */ {
|
#else
|
if (1) {
|
#endif
|
if (kbase_gpu_mmap(kctx, reg, 0, *num_pages, 1) != 0) {
|
dev_warn(kctx->kbdev->dev, "Failed to map memory on GPU");
|
goto no_mmap;
|
}
|
/* return real GPU VA */
|
gpu_va = reg->start_pfn << PAGE_SHIFT;
|
}
|
|
reg->flags &= ~KBASE_REG_FREE;
|
reg->flags &= ~KBASE_REG_GROWABLE;
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return gpu_va;
|
|
#if IS_ENABLED(CONFIG_64BIT)
|
no_cookie:
|
#endif
|
no_mmap:
|
bad_handle:
|
/* Marking the source allocs as not being mapped on the GPU and putting
|
* them is handled by putting reg's allocs, so no rollback of those
|
* actions is done here.
|
*/
|
kbase_gpu_vm_unlock(kctx);
|
no_aliased_array:
|
invalid_flags:
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
no_alloc_obj:
|
kfree(reg);
|
no_reg:
|
bad_size:
|
bad_nents:
|
bad_stride:
|
bad_flags:
|
return 0;
|
}
|
|
int kbase_mem_import(struct kbase_context *kctx, enum base_mem_import_type type,
|
void __user *phandle, u32 padding, u64 *gpu_va, u64 *va_pages,
|
u64 *flags)
|
{
|
struct kbase_va_region *reg;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
KBASE_DEBUG_ASSERT(gpu_va);
|
KBASE_DEBUG_ASSERT(va_pages);
|
KBASE_DEBUG_ASSERT(flags);
|
|
if ((!kbase_ctx_flag(kctx, KCTX_COMPAT)) &&
|
kbase_ctx_flag(kctx, KCTX_FORCE_SAME_VA))
|
*flags |= BASE_MEM_SAME_VA;
|
|
if (!kbase_check_import_flags(*flags)) {
|
dev_warn(kctx->kbdev->dev,
|
"kbase_mem_import called with bad flags (%llx)",
|
(unsigned long long)*flags);
|
goto bad_flags;
|
}
|
|
if ((*flags & BASE_MEM_UNCACHED_GPU) != 0 &&
|
(*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0) {
|
/* Remove COHERENT_SYSTEM_REQUIRED flag if uncached GPU mapping is requested */
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM_REQUIRED;
|
}
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED) != 0 &&
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
dev_warn(kctx->kbdev->dev,
|
"kbase_mem_import call required coherent mem when unavailable");
|
goto bad_flags;
|
}
|
if ((*flags & BASE_MEM_COHERENT_SYSTEM) != 0 &&
|
!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
/* Remove COHERENT_SYSTEM flag if coherent mem is unavailable */
|
*flags &= ~BASE_MEM_COHERENT_SYSTEM;
|
}
|
|
if ((padding != 0) && (type != BASE_MEM_IMPORT_TYPE_UMM)) {
|
dev_warn(kctx->kbdev->dev,
|
"padding is only supported for UMM");
|
goto bad_flags;
|
}
|
|
switch (type) {
|
case BASE_MEM_IMPORT_TYPE_UMM: {
|
int fd;
|
|
if (get_user(fd, (int __user *)phandle))
|
reg = NULL;
|
else
|
reg = kbase_mem_from_umm(kctx, fd, va_pages, flags,
|
padding);
|
}
|
break;
|
case BASE_MEM_IMPORT_TYPE_USER_BUFFER: {
|
struct base_mem_import_user_buffer user_buffer;
|
void __user *uptr;
|
|
if (copy_from_user(&user_buffer, phandle,
|
sizeof(user_buffer))) {
|
reg = NULL;
|
} else {
|
#if IS_ENABLED(CONFIG_COMPAT)
|
if (kbase_ctx_flag(kctx, KCTX_COMPAT))
|
uptr = compat_ptr(user_buffer.ptr);
|
else
|
#endif
|
uptr = u64_to_user_ptr(user_buffer.ptr);
|
|
reg = kbase_mem_from_user_buffer(kctx,
|
(unsigned long)uptr, user_buffer.length,
|
va_pages, flags);
|
}
|
break;
|
}
|
default: {
|
reg = NULL;
|
break;
|
}
|
}
|
|
if (!reg)
|
goto no_reg;
|
|
kbase_gpu_vm_lock(kctx);
|
|
/* mmap needed to setup VA? */
|
if (*flags & (BASE_MEM_SAME_VA | BASE_MEM_NEED_MMAP)) {
|
/* Bind to a cookie */
|
if (bitmap_empty(kctx->cookies, BITS_PER_LONG))
|
goto no_cookie;
|
/* return a cookie */
|
*gpu_va = find_first_bit(kctx->cookies, BITS_PER_LONG);
|
bitmap_clear(kctx->cookies, *gpu_va, 1);
|
BUG_ON(kctx->pending_regions[*gpu_va]);
|
kctx->pending_regions[*gpu_va] = reg;
|
|
/* relocate to correct base */
|
*gpu_va += PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
*gpu_va <<= PAGE_SHIFT;
|
|
} else if (*flags & KBASE_MEM_IMPORT_HAVE_PAGES) {
|
/* we control the VA, mmap now to the GPU */
|
if (kbase_gpu_mmap(kctx, reg, 0, *va_pages, 1) != 0)
|
goto no_gpu_va;
|
/* return real GPU VA */
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
} else {
|
/* we control the VA, but nothing to mmap yet */
|
if (kbase_add_va_region(kctx, reg, 0, *va_pages, 1) != 0)
|
goto no_gpu_va;
|
/* return real GPU VA */
|
*gpu_va = reg->start_pfn << PAGE_SHIFT;
|
}
|
|
/* clear out private flags */
|
*flags &= ((1UL << BASE_MEM_FLAGS_NR_BITS) - 1);
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return 0;
|
|
no_gpu_va:
|
no_cookie:
|
kbase_gpu_vm_unlock(kctx);
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
kfree(reg);
|
no_reg:
|
bad_flags:
|
*gpu_va = 0;
|
*va_pages = 0;
|
*flags = 0;
|
return -ENOMEM;
|
}
|
|
int kbase_mem_grow_gpu_mapping(struct kbase_context *kctx,
|
struct kbase_va_region *reg,
|
u64 new_pages, u64 old_pages)
|
{
|
struct tagged_addr *phy_pages;
|
u64 delta = new_pages - old_pages;
|
int ret = 0;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Map the new pages into the GPU */
|
phy_pages = kbase_get_gpu_phy_pages(reg);
|
ret = kbase_mmu_insert_pages(kctx->kbdev, &kctx->mmu,
|
reg->start_pfn + old_pages, phy_pages + old_pages, delta,
|
reg->flags, kctx->as_nr, reg->gpu_alloc->group_id);
|
|
return ret;
|
}
|
|
void kbase_mem_shrink_cpu_mapping(struct kbase_context *kctx,
|
struct kbase_va_region *reg,
|
u64 new_pages, u64 old_pages)
|
{
|
u64 gpu_va_start = reg->start_pfn;
|
|
if (new_pages == old_pages)
|
/* Nothing to do */
|
return;
|
|
unmap_mapping_range(kctx->filp->f_inode->i_mapping,
|
(gpu_va_start + new_pages)<<PAGE_SHIFT,
|
(old_pages - new_pages)<<PAGE_SHIFT, 1);
|
}
|
|
/**
|
* kbase_mem_shrink_gpu_mapping - Shrink the GPU mapping of an allocation
|
* @kctx: Context the region belongs to
|
* @reg: The GPU region or NULL if there isn't one
|
* @new_pages: The number of pages after the shrink
|
* @old_pages: The number of pages before the shrink
|
*
|
* Return: 0 on success, negative -errno on error
|
*
|
* Unmap the shrunk pages from the GPU mapping. Note that the size of the region
|
* itself is unmodified as we still need to reserve the VA, only the page tables
|
* will be modified by this function.
|
*/
|
static int kbase_mem_shrink_gpu_mapping(struct kbase_context *const kctx,
|
struct kbase_va_region *const reg,
|
u64 const new_pages, u64 const old_pages)
|
{
|
u64 delta = old_pages - new_pages;
|
int ret = 0;
|
|
ret = kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu,
|
reg->start_pfn + new_pages, delta, kctx->as_nr);
|
|
return ret;
|
}
|
|
int kbase_mem_commit(struct kbase_context *kctx, u64 gpu_addr, u64 new_pages)
|
{
|
u64 old_pages;
|
u64 delta = 0;
|
int res = -EINVAL;
|
struct kbase_va_region *reg;
|
bool read_locked = false;
|
|
KBASE_DEBUG_ASSERT(kctx);
|
KBASE_DEBUG_ASSERT(gpu_addr != 0);
|
|
if (gpu_addr & ~PAGE_MASK) {
|
dev_warn(kctx->kbdev->dev, "kbase:mem_commit: gpu_addr: passed parameter is invalid");
|
return -EINVAL;
|
}
|
|
down_write(kbase_mem_get_process_mmap_lock());
|
kbase_gpu_vm_lock(kctx);
|
|
/* Validate the region */
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg))
|
goto out_unlock;
|
|
KBASE_DEBUG_ASSERT(reg->cpu_alloc);
|
KBASE_DEBUG_ASSERT(reg->gpu_alloc);
|
|
if (reg->gpu_alloc->type != KBASE_MEM_TYPE_NATIVE)
|
goto out_unlock;
|
|
if (0 == (reg->flags & KBASE_REG_GROWABLE))
|
goto out_unlock;
|
|
if (reg->flags & KBASE_REG_ACTIVE_JIT_ALLOC)
|
goto out_unlock;
|
|
/* Would overflow the VA region */
|
if (new_pages > reg->nr_pages)
|
goto out_unlock;
|
|
/* Can't shrink when physical pages are mapped to different GPU
|
* VAs. The code doesn't support looking up:
|
* - all physical pages assigned to different GPU VAs
|
* - CPU mappings for the physical pages at different vm_pgoff
|
* (==GPU VA) locations.
|
*
|
* Note that for Native allocs mapped at multiple GPU VAs, growth of
|
* such allocs is not a supported use-case.
|
*/
|
if (atomic_read(®->gpu_alloc->gpu_mappings) > 1)
|
goto out_unlock;
|
|
if (atomic_read(®->cpu_alloc->kernel_mappings) > 0)
|
goto out_unlock;
|
/* can't grow regions which are ephemeral */
|
if (reg->flags & KBASE_REG_DONT_NEED)
|
goto out_unlock;
|
|
#ifdef CONFIG_MALI_MEMORY_FULLY_BACKED
|
/* Reject resizing commit size */
|
if (reg->flags & KBASE_REG_PF_GROW)
|
new_pages = reg->nr_pages;
|
#endif
|
|
if (new_pages == reg->gpu_alloc->nents) {
|
/* no change */
|
res = 0;
|
goto out_unlock;
|
}
|
|
old_pages = kbase_reg_current_backed_size(reg);
|
if (new_pages > old_pages) {
|
delta = new_pages - old_pages;
|
|
/*
|
* No update to the mm so downgrade the writer lock to a read
|
* lock so other readers aren't blocked after this point.
|
*/
|
downgrade_write(kbase_mem_get_process_mmap_lock());
|
read_locked = true;
|
|
/* Allocate some more pages */
|
if (kbase_alloc_phy_pages_helper(reg->cpu_alloc, delta) != 0) {
|
res = -ENOMEM;
|
goto out_unlock;
|
}
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
if (kbase_alloc_phy_pages_helper(
|
reg->gpu_alloc, delta) != 0) {
|
res = -ENOMEM;
|
kbase_free_phy_pages_helper(reg->cpu_alloc,
|
delta);
|
goto out_unlock;
|
}
|
}
|
|
/* No update required for CPU mappings, that's done on fault. */
|
|
/* Update GPU mapping. */
|
res = kbase_mem_grow_gpu_mapping(kctx, reg,
|
new_pages, old_pages);
|
|
/* On error free the new pages */
|
if (res) {
|
kbase_free_phy_pages_helper(reg->cpu_alloc, delta);
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
kbase_free_phy_pages_helper(reg->gpu_alloc,
|
delta);
|
res = -ENOMEM;
|
goto out_unlock;
|
}
|
} else {
|
res = kbase_mem_shrink(kctx, reg, new_pages);
|
if (res)
|
res = -ENOMEM;
|
}
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
if (read_locked)
|
up_read(kbase_mem_get_process_mmap_lock());
|
else
|
up_write(kbase_mem_get_process_mmap_lock());
|
|
return res;
|
}
|
|
int kbase_mem_shrink(struct kbase_context *const kctx,
|
struct kbase_va_region *const reg, u64 const new_pages)
|
{
|
u64 delta, old_pages;
|
int err;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
if (WARN_ON(!kctx))
|
return -EINVAL;
|
|
if (WARN_ON(!reg))
|
return -EINVAL;
|
|
old_pages = kbase_reg_current_backed_size(reg);
|
if (WARN_ON(old_pages < new_pages))
|
return -EINVAL;
|
|
delta = old_pages - new_pages;
|
|
/* Update the GPU mapping */
|
err = kbase_mem_shrink_gpu_mapping(kctx, reg,
|
new_pages, old_pages);
|
if (err >= 0) {
|
/* Update all CPU mapping(s) */
|
kbase_mem_shrink_cpu_mapping(kctx, reg,
|
new_pages, old_pages);
|
|
kbase_free_phy_pages_helper(reg->cpu_alloc, delta);
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
kbase_free_phy_pages_helper(reg->gpu_alloc, delta);
|
}
|
|
return err;
|
}
|
|
|
static void kbase_cpu_vm_open(struct vm_area_struct *vma)
|
{
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
|
KBASE_DEBUG_ASSERT(map);
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
/* non-atomic as we're under Linux' mm lock */
|
map->count++;
|
}
|
|
static void kbase_cpu_vm_close(struct vm_area_struct *vma)
|
{
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
|
KBASE_DEBUG_ASSERT(map);
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
|
/* non-atomic as we're under Linux' mm lock */
|
if (--map->count)
|
return;
|
|
KBASE_DEBUG_ASSERT(map->kctx);
|
KBASE_DEBUG_ASSERT(map->alloc);
|
|
kbase_gpu_vm_lock(map->kctx);
|
|
if (map->free_on_close) {
|
KBASE_DEBUG_ASSERT((map->region->flags & KBASE_REG_ZONE_MASK) ==
|
KBASE_REG_ZONE_SAME_VA);
|
/* Avoid freeing memory on the process death which results in
|
* GPU Page Fault. Memory will be freed in kbase_destroy_context
|
*/
|
if (!(current->flags & PF_EXITING))
|
kbase_mem_free_region(map->kctx, map->region);
|
}
|
|
list_del(&map->mappings_list);
|
|
kbase_va_region_alloc_put(map->kctx, map->region);
|
kbase_gpu_vm_unlock(map->kctx);
|
|
kbase_mem_phy_alloc_put(map->alloc);
|
kfree(map);
|
}
|
|
static struct kbase_aliased *get_aliased_alloc(struct vm_area_struct *vma,
|
struct kbase_va_region *reg,
|
pgoff_t *start_off,
|
size_t nr_pages)
|
{
|
struct kbase_aliased *aliased =
|
reg->cpu_alloc->imported.alias.aliased;
|
|
if (!reg->cpu_alloc->imported.alias.stride ||
|
reg->nr_pages < (*start_off + nr_pages)) {
|
return NULL;
|
}
|
|
while (*start_off >= reg->cpu_alloc->imported.alias.stride) {
|
aliased++;
|
*start_off -= reg->cpu_alloc->imported.alias.stride;
|
}
|
|
if (!aliased->alloc) {
|
/* sink page not available for dumping map */
|
return NULL;
|
}
|
|
if ((*start_off + nr_pages) > aliased->length) {
|
/* not fully backed by physical pages */
|
return NULL;
|
}
|
|
return aliased;
|
}
|
|
#if (KERNEL_VERSION(4, 11, 0) > LINUX_VERSION_CODE)
|
static vm_fault_t kbase_cpu_vm_fault(struct vm_area_struct *vma,
|
struct vm_fault *vmf)
|
{
|
#else
|
static vm_fault_t kbase_cpu_vm_fault(struct vm_fault *vmf)
|
{
|
struct vm_area_struct *vma = vmf->vma;
|
#endif
|
struct kbase_cpu_mapping *map = vma->vm_private_data;
|
pgoff_t map_start_pgoff;
|
pgoff_t fault_pgoff;
|
size_t i;
|
pgoff_t addr;
|
size_t nents;
|
struct tagged_addr *pages;
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
struct memory_group_manager_device *mgm_dev;
|
|
KBASE_DEBUG_ASSERT(map);
|
KBASE_DEBUG_ASSERT(map->count > 0);
|
KBASE_DEBUG_ASSERT(map->kctx);
|
KBASE_DEBUG_ASSERT(map->alloc);
|
|
map_start_pgoff = vma->vm_pgoff - map->region->start_pfn;
|
|
kbase_gpu_vm_lock(map->kctx);
|
if (unlikely(map->region->cpu_alloc->type == KBASE_MEM_TYPE_ALIAS)) {
|
struct kbase_aliased *aliased =
|
get_aliased_alloc(vma, map->region, &map_start_pgoff, 1);
|
|
if (!aliased)
|
goto exit;
|
|
nents = aliased->length;
|
pages = aliased->alloc->pages + aliased->offset;
|
} else {
|
nents = map->alloc->nents;
|
pages = map->alloc->pages;
|
}
|
|
fault_pgoff = map_start_pgoff + (vmf->pgoff - vma->vm_pgoff);
|
|
if (fault_pgoff >= nents)
|
goto exit;
|
|
/* Fault on access to DONT_NEED regions */
|
if (map->alloc->reg && (map->alloc->reg->flags & KBASE_REG_DONT_NEED))
|
goto exit;
|
|
/* We are inserting all valid pages from the start of CPU mapping and
|
* not from the fault location (the mmap handler was previously doing
|
* the same).
|
*/
|
i = map_start_pgoff;
|
addr = (pgoff_t)(vma->vm_start >> PAGE_SHIFT);
|
mgm_dev = map->kctx->kbdev->mgm_dev;
|
while (i < nents && (addr < vma->vm_end >> PAGE_SHIFT)) {
|
|
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
|
map->alloc->group_id, vma, addr << PAGE_SHIFT,
|
PFN_DOWN(as_phys_addr_t(pages[i])), vma->vm_page_prot);
|
|
if (ret != VM_FAULT_NOPAGE)
|
goto exit;
|
|
i++; addr++;
|
}
|
|
exit:
|
kbase_gpu_vm_unlock(map->kctx);
|
return ret;
|
}
|
|
const struct vm_operations_struct kbase_vm_ops = {
|
.open = kbase_cpu_vm_open,
|
.close = kbase_cpu_vm_close,
|
.fault = kbase_cpu_vm_fault
|
};
|
|
static int kbase_cpu_mmap(struct kbase_context *kctx,
|
struct kbase_va_region *reg,
|
struct vm_area_struct *vma,
|
void *kaddr,
|
size_t nr_pages,
|
unsigned long aligned_offset,
|
int free_on_close)
|
{
|
struct kbase_cpu_mapping *map;
|
int err = 0;
|
|
map = kzalloc(sizeof(*map), GFP_KERNEL);
|
|
if (!map) {
|
WARN_ON(1);
|
err = -ENOMEM;
|
goto out;
|
}
|
|
/*
|
* VM_DONTCOPY - don't make this mapping available in fork'ed processes
|
* VM_DONTEXPAND - disable mremap on this region
|
* VM_IO - disables paging
|
* VM_DONTDUMP - Don't include in core dumps (3.7 only)
|
* VM_MIXEDMAP - Support mixing struct page*s and raw pfns.
|
* This is needed to support using the dedicated and
|
* the OS based memory backends together.
|
*/
|
/*
|
* This will need updating to propagate coherency flags
|
* See MIDBASE-1057
|
*/
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTDUMP | VM_DONTEXPAND | VM_IO;
|
vma->vm_ops = &kbase_vm_ops;
|
vma->vm_private_data = map;
|
|
if (reg->cpu_alloc->type == KBASE_MEM_TYPE_ALIAS && nr_pages) {
|
pgoff_t rel_pgoff = vma->vm_pgoff - reg->start_pfn +
|
(aligned_offset >> PAGE_SHIFT);
|
struct kbase_aliased *aliased =
|
get_aliased_alloc(vma, reg, &rel_pgoff, nr_pages);
|
|
if (!aliased) {
|
err = -EINVAL;
|
kfree(map);
|
goto out;
|
}
|
}
|
|
if (!(reg->flags & KBASE_REG_CPU_CACHED) &&
|
(reg->flags & (KBASE_REG_CPU_WR|KBASE_REG_CPU_RD))) {
|
/* We can't map vmalloc'd memory uncached.
|
* Other memory will have been returned from
|
* kbase_mem_pool which would be
|
* suitable for mapping uncached.
|
*/
|
BUG_ON(kaddr);
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
}
|
|
if (!kaddr) {
|
vma->vm_flags |= VM_PFNMAP;
|
} else {
|
WARN_ON(aligned_offset);
|
/* MIXEDMAP so we can vfree the kaddr early and not track it after map time */
|
vma->vm_flags |= VM_MIXEDMAP;
|
/* vmalloc remaping is easy... */
|
err = remap_vmalloc_range(vma, kaddr, 0);
|
WARN_ON(err);
|
}
|
|
if (err) {
|
kfree(map);
|
goto out;
|
}
|
|
map->region = kbase_va_region_alloc_get(kctx, reg);
|
map->free_on_close = free_on_close;
|
map->kctx = kctx;
|
map->alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
|
map->count = 1; /* start with one ref */
|
|
if (reg->flags & KBASE_REG_CPU_CACHED)
|
map->alloc->properties |= KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
|
|
list_add(&map->mappings_list, &map->alloc->mappings);
|
|
out:
|
return err;
|
}
|
|
#ifdef CONFIG_MALI_VECTOR_DUMP
|
static void kbase_free_unused_jit_allocations(struct kbase_context *kctx)
|
{
|
/* Free all cached/unused JIT allocations as their contents are not
|
* really needed for the replay. The GPU writes to them would already
|
* have been captured through the GWT mechanism.
|
* This considerably reduces the size of mmu-snapshot-file and it also
|
* helps avoid segmentation fault issue during vector dumping of
|
* complex contents when the unused JIT allocations are accessed to
|
* dump their contents (as they appear in the page tables snapshot)
|
* but they got freed by the shrinker under low memory scenarios
|
* (which do occur with complex contents).
|
*/
|
while (kbase_jit_evict(kctx))
|
;
|
}
|
#endif
|
|
static int kbase_mmu_dump_mmap(struct kbase_context *kctx,
|
struct vm_area_struct *vma,
|
struct kbase_va_region **const reg,
|
void **const kmap_addr)
|
{
|
struct kbase_va_region *new_reg;
|
void *kaddr;
|
u32 nr_pages;
|
size_t size;
|
int err = 0;
|
|
dev_dbg(kctx->kbdev->dev, "in kbase_mmu_dump_mmap\n");
|
size = (vma->vm_end - vma->vm_start);
|
nr_pages = size >> PAGE_SHIFT;
|
|
#ifdef CONFIG_MALI_VECTOR_DUMP
|
kbase_free_unused_jit_allocations(kctx);
|
#endif
|
|
kaddr = kbase_mmu_dump(kctx, nr_pages);
|
|
if (!kaddr) {
|
err = -ENOMEM;
|
goto out;
|
}
|
|
new_reg = kbase_alloc_free_region(&kctx->reg_rbtree_same, 0, nr_pages,
|
KBASE_REG_ZONE_SAME_VA);
|
if (!new_reg) {
|
err = -ENOMEM;
|
WARN_ON(1);
|
goto out;
|
}
|
|
new_reg->cpu_alloc = kbase_alloc_create(kctx, 0, KBASE_MEM_TYPE_RAW,
|
BASE_MEM_GROUP_DEFAULT);
|
if (IS_ERR_OR_NULL(new_reg->cpu_alloc)) {
|
err = -ENOMEM;
|
new_reg->cpu_alloc = NULL;
|
WARN_ON(1);
|
goto out_no_alloc;
|
}
|
|
new_reg->gpu_alloc = kbase_mem_phy_alloc_get(new_reg->cpu_alloc);
|
|
new_reg->flags &= ~KBASE_REG_FREE;
|
new_reg->flags |= KBASE_REG_CPU_CACHED;
|
if (kbase_add_va_region(kctx, new_reg, vma->vm_start, nr_pages, 1) != 0) {
|
err = -ENOMEM;
|
WARN_ON(1);
|
goto out_va_region;
|
}
|
|
*kmap_addr = kaddr;
|
*reg = new_reg;
|
|
dev_dbg(kctx->kbdev->dev, "kbase_mmu_dump_mmap done\n");
|
return 0;
|
|
out_no_alloc:
|
out_va_region:
|
kbase_free_alloced_region(new_reg);
|
out:
|
return err;
|
}
|
|
|
void kbase_os_mem_map_lock(struct kbase_context *kctx)
|
{
|
(void)kctx;
|
down_read(kbase_mem_get_process_mmap_lock());
|
}
|
|
void kbase_os_mem_map_unlock(struct kbase_context *kctx)
|
{
|
(void)kctx;
|
up_read(kbase_mem_get_process_mmap_lock());
|
}
|
|
static int kbasep_reg_mmap(struct kbase_context *kctx,
|
struct vm_area_struct *vma,
|
struct kbase_va_region **regm,
|
size_t *nr_pages, size_t *aligned_offset)
|
|
{
|
int cookie = vma->vm_pgoff - PFN_DOWN(BASE_MEM_COOKIE_BASE);
|
struct kbase_va_region *reg;
|
int err = 0;
|
|
*aligned_offset = 0;
|
|
dev_dbg(kctx->kbdev->dev, "in kbasep_reg_mmap\n");
|
|
/* SAME_VA stuff, fetch the right region */
|
reg = kctx->pending_regions[cookie];
|
if (!reg) {
|
err = -ENOMEM;
|
goto out;
|
}
|
|
if ((reg->flags & KBASE_REG_GPU_NX) && (reg->nr_pages != *nr_pages)) {
|
/* incorrect mmap size */
|
/* leave the cookie for a potential later
|
* mapping, or to be reclaimed later when the
|
* context is freed
|
*/
|
err = -ENOMEM;
|
goto out;
|
}
|
|
if ((vma->vm_flags & VM_READ && !(reg->flags & KBASE_REG_CPU_RD)) ||
|
(vma->vm_flags & VM_WRITE && !(reg->flags & KBASE_REG_CPU_WR))) {
|
/* VM flags inconsistent with region flags */
|
err = -EPERM;
|
dev_err(kctx->kbdev->dev, "%s:%d inconsistent VM flags\n",
|
__FILE__, __LINE__);
|
goto out;
|
}
|
|
/* adjust down nr_pages to what we have physically */
|
*nr_pages = kbase_reg_current_backed_size(reg);
|
|
if (kbase_gpu_mmap(kctx, reg, vma->vm_start + *aligned_offset,
|
reg->nr_pages, 1) != 0) {
|
dev_err(kctx->kbdev->dev, "%s:%d\n", __FILE__, __LINE__);
|
/* Unable to map in GPU space. */
|
WARN_ON(1);
|
err = -ENOMEM;
|
goto out;
|
}
|
/* no need for the cookie anymore */
|
kctx->pending_regions[cookie] = NULL;
|
bitmap_set(kctx->cookies, cookie, 1);
|
|
#if MALI_USE_CSF
|
if (reg->flags & KBASE_REG_CSF_EVENT)
|
kbase_link_event_mem_page(kctx, reg);
|
#endif
|
|
/*
|
* Overwrite the offset with the region start_pfn, so we effectively
|
* map from offset 0 in the region. However subtract the aligned
|
* offset so that when user space trims the mapping the beginning of
|
* the trimmed VMA has the correct vm_pgoff;
|
*/
|
vma->vm_pgoff = reg->start_pfn - ((*aligned_offset)>>PAGE_SHIFT);
|
out:
|
*regm = reg;
|
dev_dbg(kctx->kbdev->dev, "kbasep_reg_mmap done\n");
|
|
return err;
|
}
|
|
int kbase_context_mmap(struct kbase_context *const kctx,
|
struct vm_area_struct *const vma)
|
{
|
struct kbase_va_region *reg = NULL;
|
void *kaddr = NULL;
|
size_t nr_pages = vma_pages(vma);
|
int err = 0;
|
int free_on_close = 0;
|
struct device *dev = kctx->kbdev->dev;
|
size_t aligned_offset = 0;
|
|
dev_dbg(dev, "kbase_mmap\n");
|
|
if (!(vma->vm_flags & VM_READ))
|
vma->vm_flags &= ~VM_MAYREAD;
|
if (!(vma->vm_flags & VM_WRITE))
|
vma->vm_flags &= ~VM_MAYWRITE;
|
|
if (nr_pages == 0) {
|
err = -EINVAL;
|
goto out;
|
}
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
err = -EINVAL;
|
goto out;
|
}
|
|
kbase_gpu_vm_lock(kctx);
|
|
if (vma->vm_pgoff == PFN_DOWN(BASE_MEM_MAP_TRACKING_HANDLE)) {
|
/* The non-mapped tracking helper page */
|
err = kbase_tracking_page_setup(kctx, vma);
|
goto out_unlock;
|
}
|
|
/* if not the MTP, verify that the MTP has been mapped */
|
rcu_read_lock();
|
/* catches both when the special page isn't present or
|
* when we've forked
|
*/
|
if (rcu_dereference(kctx->process_mm) != current->mm) {
|
err = -EINVAL;
|
rcu_read_unlock();
|
goto out_unlock;
|
}
|
rcu_read_unlock();
|
|
switch (vma->vm_pgoff) {
|
case PFN_DOWN(BASEP_MEM_INVALID_HANDLE):
|
case PFN_DOWN(BASEP_MEM_WRITE_ALLOC_PAGES_HANDLE):
|
/* Illegal handle for direct map */
|
err = -EINVAL;
|
goto out_unlock;
|
case PFN_DOWN(BASE_MEM_MMU_DUMP_HANDLE):
|
/* MMU dump */
|
err = kbase_mmu_dump_mmap(kctx, vma, ®, &kaddr);
|
if (err != 0)
|
goto out_unlock;
|
/* free the region on munmap */
|
free_on_close = 1;
|
break;
|
#if MALI_USE_CSF
|
case PFN_DOWN(BASEP_MEM_CSF_USER_REG_PAGE_HANDLE):
|
kbase_gpu_vm_unlock(kctx);
|
err = kbase_csf_cpu_mmap_user_reg_page(kctx, vma);
|
goto out;
|
case PFN_DOWN(BASEP_MEM_CSF_USER_IO_PAGES_HANDLE) ...
|
PFN_DOWN(BASE_MEM_COOKIE_BASE) - 1: {
|
kbase_gpu_vm_unlock(kctx);
|
mutex_lock(&kctx->csf.lock);
|
err = kbase_csf_cpu_mmap_user_io_pages(kctx, vma);
|
mutex_unlock(&kctx->csf.lock);
|
goto out;
|
}
|
#endif
|
case PFN_DOWN(BASE_MEM_COOKIE_BASE) ...
|
PFN_DOWN(BASE_MEM_FIRST_FREE_ADDRESS) - 1: {
|
err = kbasep_reg_mmap(kctx, vma, ®, &nr_pages,
|
&aligned_offset);
|
if (err != 0)
|
goto out_unlock;
|
/* free the region on munmap */
|
free_on_close = 1;
|
break;
|
}
|
default: {
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
|
(u64)vma->vm_pgoff << PAGE_SHIFT);
|
|
if (!kbase_is_region_invalid_or_free(reg)) {
|
/* will this mapping overflow the size of the region? */
|
if (nr_pages > (reg->nr_pages -
|
(vma->vm_pgoff - reg->start_pfn))) {
|
err = -ENOMEM;
|
goto out_unlock;
|
}
|
|
if ((vma->vm_flags & VM_READ &&
|
!(reg->flags & KBASE_REG_CPU_RD)) ||
|
(vma->vm_flags & VM_WRITE &&
|
!(reg->flags & KBASE_REG_CPU_WR))) {
|
/* VM flags inconsistent with region flags */
|
err = -EPERM;
|
dev_err(dev, "%s:%d inconsistent VM flags\n",
|
__FILE__, __LINE__);
|
goto out_unlock;
|
}
|
|
if (KBASE_MEM_TYPE_IMPORTED_UMM ==
|
reg->cpu_alloc->type) {
|
if (0 != (vma->vm_pgoff - reg->start_pfn)) {
|
err = -EINVAL;
|
dev_warn(dev, "%s:%d attempt to do a partial map in a dma_buf: non-zero offset to dma_buf mapping!\n",
|
__FILE__, __LINE__);
|
goto out_unlock;
|
}
|
err = dma_buf_mmap(
|
reg->cpu_alloc->imported.umm.dma_buf,
|
vma, vma->vm_pgoff - reg->start_pfn);
|
goto out_unlock;
|
}
|
|
if (reg->cpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
|
/* initial params check for aliased dumping map */
|
if (nr_pages > reg->gpu_alloc->imported.alias.stride ||
|
!reg->gpu_alloc->imported.alias.stride ||
|
!nr_pages) {
|
err = -EINVAL;
|
dev_warn(dev, "mmap aliased: invalid params!\n");
|
goto out_unlock;
|
}
|
}
|
else if (reg->cpu_alloc->nents <
|
(vma->vm_pgoff - reg->start_pfn + nr_pages)) {
|
/* limit what we map to the amount currently backed */
|
if ((vma->vm_pgoff - reg->start_pfn) >= reg->cpu_alloc->nents)
|
nr_pages = 0;
|
else
|
nr_pages = reg->cpu_alloc->nents - (vma->vm_pgoff - reg->start_pfn);
|
}
|
} else {
|
err = -ENOMEM;
|
goto out_unlock;
|
}
|
} /* default */
|
} /* switch */
|
|
err = kbase_cpu_mmap(kctx, reg, vma, kaddr, nr_pages, aligned_offset,
|
free_on_close);
|
|
if (vma->vm_pgoff == PFN_DOWN(BASE_MEM_MMU_DUMP_HANDLE)) {
|
/* MMU dump - userspace should now have a reference on
|
* the pages, so we can now free the kernel mapping
|
*/
|
vfree(kaddr);
|
/* CPU mapping of GPU allocations have GPU VA as the vm_pgoff
|
* and that is used to shrink the mapping when the commit size
|
* is reduced. So vm_pgoff for CPU mapping created to get the
|
* snapshot of GPU page tables shall not match with any GPU VA.
|
* That can be ensured by setting vm_pgoff as vma->vm_start
|
* because,
|
* - GPU VA of any SAME_VA allocation cannot match with
|
* vma->vm_start, as CPU VAs are unique.
|
* - GPU VA of CUSTOM_VA allocations are outside the CPU
|
* virtual address space.
|
*/
|
vma->vm_pgoff = PFN_DOWN(vma->vm_start);
|
}
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
out:
|
if (err)
|
dev_err(dev, "mmap failed %d\n", err);
|
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_context_mmap);
|
|
void kbase_sync_mem_regions(struct kbase_context *kctx,
|
struct kbase_vmap_struct *map, enum kbase_sync_type dest)
|
{
|
size_t i;
|
off_t const offset = map->offset_in_page;
|
size_t const page_count = PFN_UP(offset + map->size);
|
|
/* Sync first page */
|
size_t sz = MIN(((size_t) PAGE_SIZE - offset), map->size);
|
struct tagged_addr cpu_pa = map->cpu_pages[0];
|
struct tagged_addr gpu_pa = map->gpu_pages[0];
|
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, offset, sz, dest);
|
|
/* Sync middle pages (if any) */
|
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
|
cpu_pa = map->cpu_pages[i];
|
gpu_pa = map->gpu_pages[i];
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, PAGE_SIZE, dest);
|
}
|
|
/* Sync last page (if any) */
|
if (page_count > 1) {
|
cpu_pa = map->cpu_pages[page_count - 1];
|
gpu_pa = map->gpu_pages[page_count - 1];
|
sz = ((offset + map->size - 1) & ~PAGE_MASK) + 1;
|
kbase_sync_single(kctx, cpu_pa, gpu_pa, 0, sz, dest);
|
}
|
}
|
|
static int kbase_vmap_phy_pages(struct kbase_context *kctx,
|
struct kbase_va_region *reg, u64 offset_bytes, size_t size,
|
struct kbase_vmap_struct *map)
|
{
|
unsigned long page_index;
|
unsigned int offset_in_page = offset_bytes & ~PAGE_MASK;
|
size_t page_count = PFN_UP(offset_in_page + size);
|
struct tagged_addr *page_array;
|
struct page **pages;
|
void *cpu_addr = NULL;
|
pgprot_t prot;
|
size_t i;
|
|
if (!size || !map || !reg->cpu_alloc || !reg->gpu_alloc)
|
return -EINVAL;
|
|
/* check if page_count calculation will wrap */
|
if (size > ((size_t)-1 / PAGE_SIZE))
|
return -EINVAL;
|
|
page_index = offset_bytes >> PAGE_SHIFT;
|
|
/* check if page_index + page_count will wrap */
|
if (-1UL - page_count < page_index)
|
return -EINVAL;
|
|
if (page_index + page_count > kbase_reg_current_backed_size(reg))
|
return -ENOMEM;
|
|
if (reg->flags & KBASE_REG_DONT_NEED)
|
return -EINVAL;
|
|
prot = PAGE_KERNEL;
|
if (!(reg->flags & KBASE_REG_CPU_CACHED)) {
|
/* Map uncached */
|
prot = pgprot_writecombine(prot);
|
}
|
|
page_array = kbase_get_cpu_phy_pages(reg);
|
if (!page_array)
|
return -ENOMEM;
|
|
pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
|
if (!pages)
|
return -ENOMEM;
|
|
for (i = 0; i < page_count; i++)
|
pages[i] = as_page(page_array[page_index + i]);
|
|
/* Note: enforcing a RO prot_request onto prot is not done, since:
|
* - CPU-arch-specific integration required
|
* - kbase_vmap() requires no access checks to be made/enforced
|
*/
|
cpu_addr = vmap(pages, page_count, VM_MAP, prot);
|
|
kfree(pages);
|
|
if (!cpu_addr)
|
return -ENOMEM;
|
|
map->offset_in_page = offset_in_page;
|
map->cpu_alloc = reg->cpu_alloc;
|
map->cpu_pages = &kbase_get_cpu_phy_pages(reg)[page_index];
|
map->gpu_alloc = reg->gpu_alloc;
|
map->gpu_pages = &kbase_get_gpu_phy_pages(reg)[page_index];
|
map->addr = (void *)((uintptr_t)cpu_addr + offset_in_page);
|
map->size = size;
|
map->sync_needed = ((reg->flags & KBASE_REG_CPU_CACHED) != 0) &&
|
!kbase_mem_is_imported(map->gpu_alloc->type);
|
|
if (map->sync_needed)
|
kbase_sync_mem_regions(kctx, map, KBASE_SYNC_TO_CPU);
|
|
kbase_mem_phy_alloc_kernel_mapped(reg->cpu_alloc);
|
return 0;
|
}
|
|
void *kbase_vmap_prot(struct kbase_context *kctx, u64 gpu_addr, size_t size,
|
unsigned long prot_request, struct kbase_vmap_struct *map)
|
{
|
struct kbase_va_region *reg;
|
void *addr = NULL;
|
u64 offset_bytes;
|
struct kbase_mem_phy_alloc *cpu_alloc;
|
struct kbase_mem_phy_alloc *gpu_alloc;
|
int err;
|
|
kbase_gpu_vm_lock(kctx);
|
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
|
gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg))
|
goto out_unlock;
|
|
/* check access permissions can be satisfied
|
* Intended only for checking KBASE_REG_{CPU,GPU}_{RD,WR}
|
*/
|
if ((reg->flags & prot_request) != prot_request)
|
goto out_unlock;
|
|
offset_bytes = gpu_addr - (reg->start_pfn << PAGE_SHIFT);
|
cpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc);
|
gpu_alloc = kbase_mem_phy_alloc_get(reg->gpu_alloc);
|
|
err = kbase_vmap_phy_pages(kctx, reg, offset_bytes, size, map);
|
if (err < 0)
|
goto fail_vmap_phy_pages;
|
|
addr = map->addr;
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return addr;
|
|
fail_vmap_phy_pages:
|
kbase_gpu_vm_unlock(kctx);
|
kbase_mem_phy_alloc_put(cpu_alloc);
|
kbase_mem_phy_alloc_put(gpu_alloc);
|
|
return NULL;
|
}
|
|
void *kbase_vmap(struct kbase_context *kctx, u64 gpu_addr, size_t size,
|
struct kbase_vmap_struct *map)
|
{
|
/* 0 is specified for prot_request to indicate no access checks should
|
* be made.
|
*
|
* As mentioned in kbase_vmap_prot() this means that a kernel-side
|
* CPU-RO mapping is not enforced to allow this to work
|
*/
|
return kbase_vmap_prot(kctx, gpu_addr, size, 0u, map);
|
}
|
KBASE_EXPORT_TEST_API(kbase_vmap);
|
|
static void kbase_vunmap_phy_pages(struct kbase_context *kctx,
|
struct kbase_vmap_struct *map)
|
{
|
void *addr = (void *)((uintptr_t)map->addr & PAGE_MASK);
|
vunmap(addr);
|
|
if (map->sync_needed)
|
kbase_sync_mem_regions(kctx, map, KBASE_SYNC_TO_DEVICE);
|
|
kbase_mem_phy_alloc_kernel_unmapped(map->cpu_alloc);
|
map->offset_in_page = 0;
|
map->cpu_pages = NULL;
|
map->gpu_pages = NULL;
|
map->addr = NULL;
|
map->size = 0;
|
map->sync_needed = false;
|
}
|
|
void kbase_vunmap(struct kbase_context *kctx, struct kbase_vmap_struct *map)
|
{
|
kbase_vunmap_phy_pages(kctx, map);
|
map->cpu_alloc = kbase_mem_phy_alloc_put(map->cpu_alloc);
|
map->gpu_alloc = kbase_mem_phy_alloc_put(map->gpu_alloc);
|
}
|
KBASE_EXPORT_TEST_API(kbase_vunmap);
|
|
static void kbasep_add_mm_counter(struct mm_struct *mm, int member, long value)
|
{
|
#if (KERNEL_VERSION(4, 19, 0) <= LINUX_VERSION_CODE)
|
/* To avoid the build breakage due to an unexported kernel symbol
|
* 'mm_trace_rss_stat' from later kernels, i.e. from V4.19.0 onwards,
|
* we inline here the equivalent of 'add_mm_counter()' from linux
|
* kernel V5.4.0~8.
|
*/
|
atomic_long_add(value, &mm->rss_stat.count[member]);
|
#else
|
add_mm_counter(mm, member, value);
|
#endif
|
}
|
|
void kbasep_os_process_page_usage_update(struct kbase_context *kctx, int pages)
|
{
|
struct mm_struct *mm;
|
|
rcu_read_lock();
|
mm = rcu_dereference(kctx->process_mm);
|
if (mm) {
|
atomic_add(pages, &kctx->nonmapped_pages);
|
#ifdef SPLIT_RSS_COUNTING
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, pages);
|
#else
|
spin_lock(&mm->page_table_lock);
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, pages);
|
spin_unlock(&mm->page_table_lock);
|
#endif
|
}
|
rcu_read_unlock();
|
}
|
|
static void kbasep_os_process_page_usage_drain(struct kbase_context *kctx)
|
{
|
int pages;
|
struct mm_struct *mm;
|
|
spin_lock(&kctx->mm_update_lock);
|
mm = rcu_dereference_protected(kctx->process_mm, lockdep_is_held(&kctx->mm_update_lock));
|
if (!mm) {
|
spin_unlock(&kctx->mm_update_lock);
|
return;
|
}
|
|
rcu_assign_pointer(kctx->process_mm, NULL);
|
spin_unlock(&kctx->mm_update_lock);
|
synchronize_rcu();
|
|
pages = atomic_xchg(&kctx->nonmapped_pages, 0);
|
#ifdef SPLIT_RSS_COUNTING
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, -pages);
|
#else
|
spin_lock(&mm->page_table_lock);
|
kbasep_add_mm_counter(mm, MM_FILEPAGES, -pages);
|
spin_unlock(&mm->page_table_lock);
|
#endif
|
}
|
|
static void kbase_special_vm_close(struct vm_area_struct *vma)
|
{
|
struct kbase_context *kctx;
|
|
kctx = vma->vm_private_data;
|
kbasep_os_process_page_usage_drain(kctx);
|
}
|
|
static const struct vm_operations_struct kbase_vm_special_ops = {
|
.close = kbase_special_vm_close,
|
};
|
|
static int kbase_tracking_page_setup(struct kbase_context *kctx, struct vm_area_struct *vma)
|
{
|
/* check that this is the only tracking page */
|
spin_lock(&kctx->mm_update_lock);
|
if (rcu_dereference_protected(kctx->process_mm, lockdep_is_held(&kctx->mm_update_lock))) {
|
spin_unlock(&kctx->mm_update_lock);
|
return -EFAULT;
|
}
|
|
rcu_assign_pointer(kctx->process_mm, current->mm);
|
|
spin_unlock(&kctx->mm_update_lock);
|
|
/* no real access */
|
vma->vm_flags &= ~(VM_READ | VM_MAYREAD | VM_WRITE | VM_MAYWRITE | VM_EXEC | VM_MAYEXEC);
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP | VM_IO;
|
vma->vm_ops = &kbase_vm_special_ops;
|
vma->vm_private_data = kctx;
|
|
return 0;
|
}
|
|
#if MALI_USE_CSF
|
static unsigned long get_queue_doorbell_pfn(struct kbase_device *kbdev,
|
struct kbase_queue *queue)
|
{
|
lockdep_assert_held(&kbdev->csf.reg_lock);
|
|
/* Return the real Hw doorbell page if queue has been
|
* assigned one, otherwise a dummy page. Always return the
|
* dummy page in no mali builds.
|
*/
|
if (queue->doorbell_nr == KBASEP_USER_DB_NR_INVALID)
|
return PFN_DOWN(as_phys_addr_t(kbdev->csf.dummy_db_page));
|
return (PFN_DOWN(kbdev->reg_start + CSF_HW_DOORBELL_PAGE_OFFSET +
|
(u64)queue->doorbell_nr * CSF_HW_DOORBELL_PAGE_SIZE));
|
}
|
|
static void kbase_csf_user_io_pages_vm_open(struct vm_area_struct *vma)
|
{
|
WARN(1, "Unexpected attempt to clone private vma\n");
|
vma->vm_private_data = NULL;
|
}
|
|
static void kbase_csf_user_io_pages_vm_close(struct vm_area_struct *vma)
|
{
|
struct kbase_queue *queue = vma->vm_private_data;
|
struct kbase_context *kctx;
|
struct kbase_device *kbdev;
|
int err;
|
bool reset_prevented = false;
|
|
if (WARN_ON(!queue))
|
return;
|
|
kctx = queue->kctx;
|
kbdev = kctx->kbdev;
|
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err)
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when unbinding queue (csi_index=%d), attempting to unbind regardless",
|
queue->csi_index);
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
kbase_csf_queue_unbind(queue);
|
mutex_unlock(&kctx->csf.lock);
|
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kbdev);
|
|
/* Now as the vma is closed, drop the reference on mali device file */
|
fput(kctx->filp);
|
}
|
|
#if (KERNEL_VERSION(4, 11, 0) > LINUX_VERSION_CODE)
|
static vm_fault_t kbase_csf_user_io_pages_vm_fault(struct vm_area_struct *vma,
|
struct vm_fault *vmf)
|
{
|
#else
|
static vm_fault_t kbase_csf_user_io_pages_vm_fault(struct vm_fault *vmf)
|
{
|
struct vm_area_struct *vma = vmf->vma;
|
#endif
|
struct kbase_queue *queue = vma->vm_private_data;
|
unsigned long doorbell_cpu_addr, input_cpu_addr, output_cpu_addr;
|
unsigned long doorbell_page_pfn, input_page_pfn, output_page_pfn;
|
pgprot_t doorbell_pgprot, input_page_pgprot, output_page_pgprot;
|
size_t nr_pages = PFN_DOWN(vma->vm_end - vma->vm_start);
|
vm_fault_t ret;
|
struct kbase_device *kbdev;
|
struct memory_group_manager_device *mgm_dev;
|
|
/* Few sanity checks up front */
|
if ((nr_pages != BASEP_QUEUE_NR_MMAP_USER_PAGES) ||
|
(vma->vm_pgoff != queue->db_file_offset))
|
return VM_FAULT_SIGBUS;
|
|
mutex_lock(&queue->kctx->csf.lock);
|
kbdev = queue->kctx->kbdev;
|
mgm_dev = kbdev->mgm_dev;
|
|
/* Always map the doorbell page as uncached */
|
doorbell_pgprot = pgprot_device(vma->vm_page_prot);
|
|
#if ((KERNEL_VERSION(4, 4, 147) >= LINUX_VERSION_CODE) || \
|
((KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE) && \
|
(KERNEL_VERSION(4, 5, 0) <= LINUX_VERSION_CODE)))
|
vma->vm_page_prot = doorbell_pgprot;
|
input_page_pgprot = doorbell_pgprot;
|
output_page_pgprot = doorbell_pgprot;
|
#else
|
if (kbdev->system_coherency == COHERENCY_NONE) {
|
input_page_pgprot = pgprot_writecombine(vma->vm_page_prot);
|
output_page_pgprot = pgprot_writecombine(vma->vm_page_prot);
|
} else {
|
input_page_pgprot = vma->vm_page_prot;
|
output_page_pgprot = vma->vm_page_prot;
|
}
|
#endif
|
|
doorbell_cpu_addr = vma->vm_start;
|
|
#if KERNEL_VERSION(4, 10, 0) > LINUX_VERSION_CODE
|
if ((unsigned long)vmf->virtual_address == doorbell_cpu_addr) {
|
#else
|
if (vmf->address == doorbell_cpu_addr) {
|
#endif
|
mutex_lock(&kbdev->csf.reg_lock);
|
doorbell_page_pfn = get_queue_doorbell_pfn(kbdev, queue);
|
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
|
KBASE_MEM_GROUP_CSF_IO, vma, doorbell_cpu_addr,
|
doorbell_page_pfn, doorbell_pgprot);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
} else {
|
/* Map the Input page */
|
input_cpu_addr = doorbell_cpu_addr + PAGE_SIZE;
|
input_page_pfn = PFN_DOWN(as_phys_addr_t(queue->phys[0]));
|
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
|
KBASE_MEM_GROUP_CSF_IO, vma, input_cpu_addr,
|
input_page_pfn, input_page_pgprot);
|
if (ret != VM_FAULT_NOPAGE)
|
goto exit;
|
|
/* Map the Output page */
|
output_cpu_addr = input_cpu_addr + PAGE_SIZE;
|
output_page_pfn = PFN_DOWN(as_phys_addr_t(queue->phys[1]));
|
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
|
KBASE_MEM_GROUP_CSF_IO, vma, output_cpu_addr,
|
output_page_pfn, output_page_pgprot);
|
}
|
|
exit:
|
mutex_unlock(&queue->kctx->csf.lock);
|
return ret;
|
}
|
|
static const struct vm_operations_struct kbase_csf_user_io_pages_vm_ops = {
|
.open = kbase_csf_user_io_pages_vm_open,
|
.close = kbase_csf_user_io_pages_vm_close,
|
.fault = kbase_csf_user_io_pages_vm_fault
|
};
|
|
/* Program the client process's page table entries to map the pair of
|
* input/output pages & Hw doorbell page. The caller should have validated that
|
* vma->vm_pgoff maps to the range of csf cookies.
|
*/
|
static int kbase_csf_cpu_mmap_user_io_pages(struct kbase_context *kctx,
|
struct vm_area_struct *vma)
|
{
|
unsigned long cookie =
|
vma->vm_pgoff - PFN_DOWN(BASEP_MEM_CSF_USER_IO_PAGES_HANDLE);
|
size_t nr_pages = vma_pages(vma);
|
struct kbase_queue *queue;
|
int err = 0;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
queue = kctx->csf.user_pages_info[cookie];
|
|
/* Looks like the bind has been aborted */
|
if (!queue)
|
return -EINVAL;
|
|
if (WARN_ON(test_bit(cookie, kctx->csf.cookies)))
|
return -EINVAL;
|
|
/* no need for the cookie anymore */
|
kctx->csf.user_pages_info[cookie] = NULL;
|
bitmap_set(kctx->csf.cookies, cookie, 1);
|
|
/* Reset the handle to avoid (re)freeing the cookie (which can
|
* now get re-assigned) on unbind.
|
*/
|
queue->handle = BASEP_MEM_INVALID_HANDLE;
|
|
if (nr_pages != BASEP_QUEUE_NR_MMAP_USER_PAGES) {
|
err = -EINVAL;
|
goto map_failed;
|
}
|
|
err = kbase_csf_alloc_command_stream_user_pages(kctx, queue);
|
if (err)
|
goto map_failed;
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTDUMP | VM_DONTEXPAND | VM_IO;
|
/* TODO use VM_MIXEDMAP, since it is more appropriate as both types of
|
* memory with and without "struct page" backing are being inserted here.
|
* Hw Doorbell pages comes from the device register area so kernel does
|
* not use "struct page" for them.
|
*/
|
vma->vm_flags |= VM_PFNMAP;
|
|
vma->vm_ops = &kbase_csf_user_io_pages_vm_ops;
|
vma->vm_private_data = queue;
|
|
/* Make vma point to the special internal file, but don't drop the
|
* reference on mali device file (that would be done later when the
|
* vma is closed).
|
*/
|
vma->vm_file = kctx->kbdev->csf.db_filp;
|
get_file(vma->vm_file);
|
/* Also adjust the vm_pgoff */
|
vma->vm_pgoff = queue->db_file_offset;
|
|
return 0;
|
|
map_failed:
|
/* The queue cannot have got to KBASE_CSF_QUEUE_BOUND state if we
|
* reached here, so safe to use a variant of unbind that only works on
|
* stopped queues
|
*
|
* This is so we don't enter the CSF scheduler from this path.
|
*/
|
kbase_csf_queue_unbind_stopped(queue);
|
|
return err;
|
}
|
|
static void kbase_csf_user_reg_vm_close(struct vm_area_struct *vma)
|
{
|
struct kbase_context *kctx = vma->vm_private_data;
|
|
WARN_ON(!kctx->csf.user_reg_vma);
|
|
kctx->csf.user_reg_vma = NULL;
|
}
|
|
#if (KERNEL_VERSION(4, 11, 0) > LINUX_VERSION_CODE)
|
static vm_fault_t kbase_csf_user_reg_vm_fault(struct vm_area_struct *vma,
|
struct vm_fault *vmf)
|
{
|
#else
|
static vm_fault_t kbase_csf_user_reg_vm_fault(struct vm_fault *vmf)
|
{
|
struct vm_area_struct *vma = vmf->vma;
|
#endif
|
struct kbase_context *kctx = vma->vm_private_data;
|
struct kbase_device *kbdev = kctx->kbdev;
|
struct memory_group_manager_device *mgm_dev = kbdev->mgm_dev;
|
unsigned long pfn = PFN_DOWN(kbdev->reg_start + USER_BASE);
|
size_t nr_pages = PFN_DOWN(vma->vm_end - vma->vm_start);
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
|
/* Few sanity checks up front */
|
if (WARN_ON(nr_pages != 1) ||
|
WARN_ON(vma != kctx->csf.user_reg_vma) ||
|
WARN_ON(vma->vm_pgoff !=
|
PFN_DOWN(BASEP_MEM_CSF_USER_REG_PAGE_HANDLE)))
|
return VM_FAULT_SIGBUS;
|
|
mutex_lock(&kbdev->pm.lock);
|
|
/* Don't map in the actual register page if GPU is powered down.
|
* Always map in the dummy page in no mali builds.
|
*/
|
if (!kbdev->pm.backend.gpu_powered)
|
pfn = PFN_DOWN(as_phys_addr_t(kbdev->csf.dummy_user_reg_page));
|
|
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
|
KBASE_MEM_GROUP_CSF_FW, vma,
|
vma->vm_start, pfn,
|
vma->vm_page_prot);
|
|
mutex_unlock(&kbdev->pm.lock);
|
|
return ret;
|
}
|
|
static const struct vm_operations_struct kbase_csf_user_reg_vm_ops = {
|
.close = kbase_csf_user_reg_vm_close,
|
.fault = kbase_csf_user_reg_vm_fault
|
};
|
|
static int kbase_csf_cpu_mmap_user_reg_page(struct kbase_context *kctx,
|
struct vm_area_struct *vma)
|
{
|
size_t nr_pages = PFN_DOWN(vma->vm_end - vma->vm_start);
|
|
/* Few sanity checks */
|
if (kctx->csf.user_reg_vma)
|
return -EBUSY;
|
|
if (nr_pages != 1)
|
return -EINVAL;
|
|
if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
|
return -EPERM;
|
|
/* Map uncached */
|
vma->vm_page_prot = pgprot_device(vma->vm_page_prot);
|
|
vma->vm_flags |= VM_DONTCOPY | VM_DONTDUMP | VM_DONTEXPAND | VM_IO;
|
|
/* User register page comes from the device register area so
|
* "struct page" isn't available for it.
|
*/
|
vma->vm_flags |= VM_PFNMAP;
|
|
kctx->csf.user_reg_vma = vma;
|
|
vma->vm_ops = &kbase_csf_user_reg_vm_ops;
|
vma->vm_private_data = kctx;
|
|
return 0;
|
}
|
|
#endif /* MALI_USE_CSF */
|