// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2018-2021 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
#include "mali_kbase.h"
|
#include "mali_kbase_csf_firmware.h"
|
#include "mali_kbase_csf_trace_buffer.h"
|
#include "mali_kbase_csf_timeout.h"
|
#include "mali_kbase_mem.h"
|
#include "mali_kbase_reset_gpu.h"
|
#include "mali_kbase_ctx_sched.h"
|
#include "device/mali_kbase_device.h"
|
#include "backend/gpu/mali_kbase_pm_internal.h"
|
#include "mali_kbase_csf_scheduler.h"
|
#include "mmu/mali_kbase_mmu.h"
|
#include "backend/gpu/mali_kbase_clk_rate_trace_mgr.h"
|
|
#include <linux/list.h>
|
#include <linux/slab.h>
|
#include <linux/firmware.h>
|
#include <linux/mman.h>
|
#include <linux/string.h>
|
#include <linux/mutex.h>
|
#if (KERNEL_VERSION(4, 13, 0) <= LINUX_VERSION_CODE)
|
#include <linux/set_memory.h>
|
#endif
|
#include <asm/arch_timer.h>
|
|
#ifdef CONFIG_MALI_BIFROST_DEBUG
|
/* Makes Driver wait indefinitely for an acknowledgment for the different
|
* requests it sends to firmware. Otherwise the timeouts interfere with the
|
* use of debugger for source-level debugging of firmware as Driver initiates
|
* a GPU reset when a request times out, which always happen when a debugger
|
* is connected.
|
*/
|
bool fw_debug; /* Default value of 0/false */
|
module_param(fw_debug, bool, 0444);
|
MODULE_PARM_DESC(fw_debug,
|
"Enables effective use of a debugger for debugging firmware code.");
|
#endif
|
|
#define DUMMY_FW_PAGE_SIZE SZ_4K
|
|
/**
|
* struct dummy_firmware_csi - Represents a dummy interface for MCU firmware CSs
|
*
|
* @cs_kernel_input: CS kernel input memory region
|
* @cs_kernel_output: CS kernel output memory region
|
*/
|
struct dummy_firmware_csi {
|
u8 cs_kernel_input[DUMMY_FW_PAGE_SIZE];
|
u8 cs_kernel_output[DUMMY_FW_PAGE_SIZE];
|
};
|
|
/**
|
* struct dummy_firmware_csg - Represents a dummy interface for MCU firmware CSGs
|
*
|
* @csg_input: CSG kernel input memory region
|
* @csg_output: CSG kernel output memory region
|
* @csi: Dummy firmware CSIs
|
*/
|
struct dummy_firmware_csg {
|
u8 csg_input[DUMMY_FW_PAGE_SIZE];
|
u8 csg_output[DUMMY_FW_PAGE_SIZE];
|
struct dummy_firmware_csi csi[8];
|
} dummy_firmware_csg;
|
|
/**
|
* struct dummy_firmware_interface - Represents a dummy interface in the MCU firmware
|
*
|
* @global_input: Global input memory region
|
* @global_output: Global output memory region
|
* @csg: Dummy firmware CSGs
|
* @node: Interface objects are on the kbase_device:csf.firmware_interfaces
|
* list using this list_head to link them
|
*/
|
struct dummy_firmware_interface {
|
u8 global_input[DUMMY_FW_PAGE_SIZE];
|
u8 global_output[DUMMY_FW_PAGE_SIZE];
|
struct dummy_firmware_csg csg[8];
|
struct list_head node;
|
} dummy_firmware_interface;
|
|
#define CSF_GLB_REQ_CFG_MASK \
|
(GLB_REQ_CFG_ALLOC_EN_MASK | GLB_REQ_CFG_PROGRESS_TIMER_MASK | \
|
GLB_REQ_CFG_PWROFF_TIMER_MASK)
|
|
static inline u32 input_page_read(const u32 *const input, const u32 offset)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
return input[offset / sizeof(u32)];
|
}
|
|
static inline void input_page_write(u32 *const input, const u32 offset,
|
const u32 value)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
input[offset / sizeof(u32)] = value;
|
}
|
|
static inline void input_page_partial_write(u32 *const input, const u32 offset,
|
u32 value, u32 mask)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
input[offset / sizeof(u32)] =
|
(input_page_read(input, offset) & ~mask) | (value & mask);
|
}
|
|
static inline u32 output_page_read(const u32 *const output, const u32 offset)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
return output[offset / sizeof(u32)];
|
}
|
|
static inline void output_page_write(u32 *const output, const u32 offset,
|
const u32 value)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
output[offset / sizeof(u32)] = value;
|
}
|
|
/**
|
* invent_memory_setup_entry() - Invent an "interface memory setup" section
|
*
|
* Invent an "interface memory setup" section similar to one from a firmware
|
* image. If successful the interface will be added to the
|
* kbase_device:csf.firmware_interfaces list.
|
*
|
* Return: 0 if successful, negative error code on failure
|
*
|
* @kbdev: Kbase device structure
|
*/
|
static int invent_memory_setup_entry(struct kbase_device *kbdev)
|
{
|
struct dummy_firmware_interface *interface = NULL;
|
|
/* Allocate enough memory for the struct dummy_firmware_interface.
|
*/
|
interface = kzalloc(sizeof(*interface), GFP_KERNEL);
|
if (!interface)
|
return -ENOMEM;
|
|
kbdev->csf.shared_interface = interface;
|
list_add(&interface->node, &kbdev->csf.firmware_interfaces);
|
|
/* NO_MALI: Don't insert any firmware pages */
|
return 0;
|
}
|
|
static void free_global_iface(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
|
|
if (iface->groups) {
|
unsigned int gid;
|
|
for (gid = 0; gid < iface->group_num; ++gid)
|
kfree(iface->groups[gid].streams);
|
|
kfree(iface->groups);
|
iface->groups = NULL;
|
}
|
}
|
|
static int invent_cmd_stream_group_info(struct kbase_device *kbdev,
|
struct kbase_csf_cmd_stream_group_info *ginfo,
|
struct dummy_firmware_csg *csg)
|
{
|
unsigned int sid;
|
|
ginfo->input = csg->csg_input;
|
ginfo->output = csg->csg_output;
|
|
ginfo->kbdev = kbdev;
|
ginfo->features = 0;
|
ginfo->suspend_size = 64;
|
ginfo->protm_suspend_size = 64;
|
ginfo->stream_num = ARRAY_SIZE(csg->csi);
|
ginfo->stream_stride = 0;
|
|
ginfo->streams = kcalloc(ginfo->stream_num, sizeof(*ginfo->streams), GFP_KERNEL);
|
if (ginfo->streams == NULL) {
|
return -ENOMEM;
|
}
|
|
for (sid = 0; sid < ginfo->stream_num; ++sid) {
|
struct kbase_csf_cmd_stream_info *stream = &ginfo->streams[sid];
|
struct dummy_firmware_csi *csi = &csg->csi[sid];
|
|
stream->input = csi->cs_kernel_input;
|
stream->output = csi->cs_kernel_output;
|
|
stream->kbdev = kbdev;
|
stream->features =
|
STREAM_FEATURES_WORK_REGISTERS_SET(0, 80) |
|
STREAM_FEATURES_SCOREBOARDS_SET(0, 8) |
|
STREAM_FEATURES_COMPUTE_SET(0, 1) |
|
STREAM_FEATURES_FRAGMENT_SET(0, 1) |
|
STREAM_FEATURES_TILER_SET(0, 1);
|
}
|
|
return 0;
|
}
|
|
static int invent_capabilities(struct kbase_device *kbdev)
|
{
|
struct dummy_firmware_interface *interface = kbdev->csf.shared_interface;
|
struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
|
unsigned int gid;
|
|
iface->input = interface->global_input;
|
iface->output = interface->global_output;
|
|
iface->version = 1;
|
iface->kbdev = kbdev;
|
iface->features = 0;
|
iface->prfcnt_size = 64;
|
|
if (iface->version >= kbase_csf_interface_version(1, 1, 0)) {
|
/* update rate=1, max event size = 1<<8 = 256 */
|
iface->instr_features = 0x81;
|
} else {
|
iface->instr_features = 0;
|
}
|
|
iface->group_num = ARRAY_SIZE(interface->csg);
|
iface->group_stride = 0;
|
|
iface->groups = kcalloc(iface->group_num, sizeof(*iface->groups), GFP_KERNEL);
|
if (iface->groups == NULL) {
|
return -ENOMEM;
|
}
|
|
for (gid = 0; gid < iface->group_num; ++gid) {
|
int err;
|
|
err = invent_cmd_stream_group_info(kbdev, &iface->groups[gid],
|
&interface->csg[gid]);
|
if (err < 0) {
|
free_global_iface(kbdev);
|
return err;
|
}
|
}
|
|
return 0;
|
}
|
|
void kbase_csf_read_firmware_memory(struct kbase_device *kbdev,
|
u32 gpu_addr, u32 *value)
|
{
|
/* NO_MALI: Nothing to do here */
|
}
|
|
|
void kbase_csf_update_firmware_memory(struct kbase_device *kbdev,
|
u32 gpu_addr, u32 value)
|
{
|
/* NO_MALI: Nothing to do here */
|
}
|
|
void kbase_csf_firmware_cs_input(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
|
const u32 value)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x\n", offset, value);
|
input_page_write(info->input, offset, value);
|
|
if (offset == CS_REQ) {
|
/* NO_MALI: Immediately acknowledge requests */
|
output_page_write(info->output, CS_ACK, value);
|
}
|
}
|
|
u32 kbase_csf_firmware_cs_input_read(
|
const struct kbase_csf_cmd_stream_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = input_page_read(info->input, offset);
|
|
dev_dbg(kbdev->dev, "cs input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_cs_input_mask(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
|
const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
|
/* NO_MALI: Go through kbase_csf_firmware_cs_input to capture writes */
|
kbase_csf_firmware_cs_input(info, offset, (input_page_read(info->input, offset) & ~mask) | (value & mask));
|
}
|
|
u32 kbase_csf_firmware_cs_output(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = output_page_read(info->output, offset);
|
|
dev_dbg(kbdev->dev, "cs output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_csg_input(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset, const u32 value)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x\n",
|
offset, value);
|
input_page_write(info->input, offset, value);
|
|
if (offset == CSG_REQ) {
|
/* NO_MALI: Immediately acknowledge requests */
|
output_page_write(info->output, CSG_ACK, value);
|
}
|
}
|
|
u32 kbase_csf_firmware_csg_input_read(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = input_page_read(info->input, offset);
|
|
dev_dbg(kbdev->dev, "csg input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_csg_input_mask(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset, const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
|
/* NO_MALI: Go through kbase_csf_firmware_csg_input to capture writes */
|
kbase_csf_firmware_csg_input(info, offset, (input_page_read(info->input, offset) & ~mask) | (value & mask));
|
}
|
|
u32 kbase_csf_firmware_csg_output(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = output_page_read(info->output, offset);
|
|
dev_dbg(kbdev->dev, "csg output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
static void
|
csf_firmware_prfcnt_process(const struct kbase_csf_global_iface *const iface,
|
const u32 glb_req)
|
{
|
struct kbase_device *kbdev = iface->kbdev;
|
u32 glb_ack = output_page_read(iface->output, GLB_ACK);
|
/* If the value of GLB_REQ.PRFCNT_SAMPLE is different from the value of
|
* GLB_ACK.PRFCNT_SAMPLE, the CSF will sample the performance counters.
|
*/
|
if ((glb_req ^ glb_ack) & GLB_REQ_PRFCNT_SAMPLE_MASK) {
|
/* NO_MALI only uses the first buffer in the ring buffer. */
|
input_page_write(iface->input, GLB_PRFCNT_EXTRACT, 0);
|
output_page_write(iface->output, GLB_PRFCNT_INSERT, 1);
|
kbase_reg_write(kbdev, GPU_COMMAND, GPU_COMMAND_PRFCNT_SAMPLE);
|
}
|
|
/* Propagate enable masks to model if request to enable. */
|
if (glb_req & GLB_REQ_PRFCNT_ENABLE_MASK) {
|
u32 tiler_en, l2_en, sc_en;
|
|
tiler_en = input_page_read(iface->input, GLB_PRFCNT_TILER_EN);
|
l2_en = input_page_read(iface->input, GLB_PRFCNT_MMU_L2_EN);
|
sc_en = input_page_read(iface->input, GLB_PRFCNT_SHADER_EN);
|
|
/* NO_MALI platform enabled all CSHW counters by default. */
|
kbase_reg_write(kbdev, PRFCNT_TILER_EN, tiler_en);
|
kbase_reg_write(kbdev, PRFCNT_MMU_L2_EN, l2_en);
|
kbase_reg_write(kbdev, PRFCNT_SHADER_EN, sc_en);
|
}
|
}
|
|
void kbase_csf_firmware_global_input(
|
const struct kbase_csf_global_iface *const iface, const u32 offset,
|
const u32 value)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
|
dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x\n", offset, value);
|
input_page_write(iface->input, offset, value);
|
|
if (offset == GLB_REQ) {
|
csf_firmware_prfcnt_process(iface, value);
|
/* NO_MALI: Immediately acknowledge requests */
|
output_page_write(iface->output, GLB_ACK, value);
|
}
|
}
|
|
void kbase_csf_firmware_global_input_mask(
|
const struct kbase_csf_global_iface *const iface, const u32 offset,
|
const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
|
dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
|
/* NO_MALI: Go through kbase_csf_firmware_global_input to capture writes */
|
kbase_csf_firmware_global_input(iface, offset, (input_page_read(iface->input, offset) & ~mask) | (value & mask));
|
}
|
|
u32 kbase_csf_firmware_global_input_read(
|
const struct kbase_csf_global_iface *const iface, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
u32 const val = input_page_read(iface->input, offset);
|
|
dev_dbg(kbdev->dev, "glob input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
u32 kbase_csf_firmware_global_output(
|
const struct kbase_csf_global_iface *const iface, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
u32 const val = output_page_read(iface->output, offset);
|
|
dev_dbg(kbdev->dev, "glob output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
/**
|
* handle_internal_firmware_fatal - Handler for CS internal firmware fault.
|
*
|
* @kbdev: Pointer to kbase device
|
*
|
* Report group fatal error to user space for all GPU command queue groups
|
* in the device, terminate them and reset GPU.
|
*/
|
static void handle_internal_firmware_fatal(struct kbase_device *const kbdev)
|
{
|
int as;
|
|
for (as = 0; as < kbdev->nr_hw_address_spaces; as++) {
|
unsigned long flags;
|
struct kbase_context *kctx;
|
struct kbase_fault fault;
|
|
if (as == MCU_AS_NR)
|
continue;
|
|
/* Only handle the fault for an active address space. Lock is
|
* taken here to atomically get reference to context in an
|
* active address space and retain its refcount.
|
*/
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kctx = kbase_ctx_sched_as_to_ctx_nolock(kbdev, as);
|
|
if (kctx) {
|
kbase_ctx_sched_retain_ctx_refcount(kctx);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
} else {
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
continue;
|
}
|
|
fault = (struct kbase_fault) {
|
.status = GPU_EXCEPTION_TYPE_SW_FAULT_1,
|
};
|
|
kbase_csf_ctx_handle_fault(kctx, &fault);
|
kbase_ctx_sched_release_ctx_lock(kctx);
|
}
|
|
if (kbase_prepare_to_reset_gpu(kbdev,
|
RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
|
kbase_reset_gpu(kbdev);
|
}
|
|
/**
|
* firmware_error_worker - Worker function for handling firmware internal error
|
*
|
* @data: Pointer to a work_struct embedded in kbase device.
|
*
|
* Handle the CS internal firmware error
|
*/
|
static void firmware_error_worker(struct work_struct *const data)
|
{
|
struct kbase_device *const kbdev =
|
container_of(data, struct kbase_device, csf.fw_error_work);
|
|
handle_internal_firmware_fatal(kbdev);
|
}
|
|
static bool global_request_complete(struct kbase_device *const kbdev,
|
u32 const req_mask)
|
{
|
struct kbase_csf_global_iface *global_iface =
|
&kbdev->csf.global_iface;
|
bool complete = false;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
if ((kbase_csf_firmware_global_output(global_iface, GLB_ACK) &
|
req_mask) ==
|
(kbase_csf_firmware_global_input_read(global_iface, GLB_REQ) &
|
req_mask))
|
complete = true;
|
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
return complete;
|
}
|
|
static int wait_for_global_request(struct kbase_device *const kbdev,
|
u32 const req_mask)
|
{
|
const long wait_timeout =
|
kbase_csf_timeout_in_jiffies(kbdev->csf.fw_timeout_ms);
|
long remaining;
|
int err = 0;
|
|
remaining = wait_event_timeout(kbdev->csf.event_wait,
|
global_request_complete(kbdev, req_mask),
|
wait_timeout);
|
|
if (!remaining) {
|
dev_warn(kbdev->dev, "Timed out waiting for global request %x to complete",
|
req_mask);
|
err = -ETIMEDOUT;
|
}
|
|
return err;
|
}
|
|
static void set_global_request(
|
const struct kbase_csf_global_iface *const global_iface,
|
u32 const req_mask)
|
{
|
u32 glb_req;
|
|
kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);
|
|
glb_req = kbase_csf_firmware_global_output(global_iface, GLB_ACK);
|
glb_req ^= req_mask;
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, glb_req,
|
req_mask);
|
}
|
|
static void enable_endpoints_global(
|
const struct kbase_csf_global_iface *const global_iface,
|
u64 const shader_core_mask)
|
{
|
kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_LO,
|
shader_core_mask & U32_MAX);
|
kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_HI,
|
shader_core_mask >> 32);
|
|
set_global_request(global_iface, GLB_REQ_CFG_ALLOC_EN_MASK);
|
}
|
|
static void enable_shader_poweroff_timer(struct kbase_device *const kbdev,
|
const struct kbase_csf_global_iface *const global_iface)
|
{
|
u32 pwroff_reg;
|
|
if (kbdev->csf.firmware_hctl_core_pwr)
|
pwroff_reg =
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SET(DISABLE_GLB_PWROFF_TIMER,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
pwroff_reg = kbdev->csf.mcu_core_pwroff_dur_count;
|
|
kbase_csf_firmware_global_input(global_iface, GLB_PWROFF_TIMER,
|
pwroff_reg);
|
set_global_request(global_iface, GLB_REQ_CFG_PWROFF_TIMER_MASK);
|
|
/* Save the programed reg value in its shadow field */
|
kbdev->csf.mcu_core_pwroff_reg_shadow = pwroff_reg;
|
}
|
|
static void set_timeout_global(
|
const struct kbase_csf_global_iface *const global_iface,
|
u64 const timeout)
|
{
|
kbase_csf_firmware_global_input(global_iface, GLB_PROGRESS_TIMER,
|
timeout / GLB_PROGRESS_TIMER_TIMEOUT_SCALE);
|
|
set_global_request(global_iface, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
|
}
|
|
static void global_init(struct kbase_device *const kbdev, u64 core_mask)
|
{
|
u32 const ack_irq_mask = GLB_ACK_IRQ_MASK_CFG_ALLOC_EN_MASK |
|
GLB_ACK_IRQ_MASK_PING_MASK |
|
GLB_ACK_IRQ_MASK_CFG_PROGRESS_TIMER_MASK |
|
GLB_ACK_IRQ_MASK_PROTM_ENTER_MASK |
|
GLB_ACK_IRQ_MASK_FIRMWARE_CONFIG_UPDATE_MASK |
|
GLB_ACK_IRQ_MASK_PROTM_EXIT_MASK |
|
GLB_ACK_IRQ_MASK_CFG_PWROFF_TIMER_MASK |
|
GLB_ACK_IRQ_MASK_IDLE_EVENT_MASK;
|
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
/* Update shader core allocation enable mask */
|
enable_endpoints_global(global_iface, core_mask);
|
enable_shader_poweroff_timer(kbdev, global_iface);
|
|
set_timeout_global(global_iface, kbase_csf_timeout_get(kbdev));
|
|
/* Unmask the interrupts */
|
kbase_csf_firmware_global_input(global_iface,
|
GLB_ACK_IRQ_MASK, ack_irq_mask);
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
/**
|
* global_init_on_boot - Sends a global request to control various features.
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
*
|
* Currently only the request to enable endpoints and cycle counter is sent.
|
*
|
* Return: 0 on success, or negative on failure.
|
*/
|
static int global_init_on_boot(struct kbase_device *const kbdev)
|
{
|
unsigned long flags;
|
u64 core_mask;
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
core_mask = kbase_pm_ca_get_core_mask(kbdev);
|
kbdev->csf.firmware_hctl_core_pwr =
|
kbase_pm_no_mcu_core_pwroff(kbdev);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
global_init(kbdev, core_mask);
|
|
return wait_for_global_request(kbdev, CSF_GLB_REQ_CFG_MASK);
|
}
|
|
void kbase_csf_firmware_global_reinit(struct kbase_device *kbdev,
|
u64 core_mask)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbdev->csf.glb_init_request_pending = true;
|
kbdev->csf.firmware_hctl_core_pwr =
|
kbase_pm_no_mcu_core_pwroff(kbdev);
|
global_init(kbdev, core_mask);
|
}
|
|
bool kbase_csf_firmware_global_reinit_complete(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
WARN_ON(!kbdev->csf.glb_init_request_pending);
|
|
if (global_request_complete(kbdev, CSF_GLB_REQ_CFG_MASK))
|
kbdev->csf.glb_init_request_pending = false;
|
|
return !kbdev->csf.glb_init_request_pending;
|
}
|
|
void kbase_csf_firmware_update_core_attr(struct kbase_device *kbdev,
|
bool update_core_pwroff_timer, bool update_core_mask, u64 core_mask)
|
{
|
unsigned long flags;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
if (update_core_mask)
|
enable_endpoints_global(&kbdev->csf.global_iface, core_mask);
|
if (update_core_pwroff_timer)
|
enable_shader_poweroff_timer(kbdev, &kbdev->csf.global_iface);
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
bool kbase_csf_firmware_core_attr_updated(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
return global_request_complete(kbdev, GLB_REQ_CFG_ALLOC_EN_MASK |
|
GLB_REQ_CFG_PWROFF_TIMER_MASK);
|
}
|
|
static void kbase_csf_firmware_reload_worker(struct work_struct *work)
|
{
|
struct kbase_device *kbdev = container_of(work, struct kbase_device,
|
csf.firmware_reload_work);
|
unsigned long flags;
|
|
/* Reboot the firmware */
|
kbase_csf_firmware_enable_mcu(kbdev);
|
|
/* Tell MCU state machine to transit to next state */
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kbdev->csf.firmware_reloaded = true;
|
kbase_pm_update_state(kbdev);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
}
|
|
void kbase_csf_firmware_trigger_reload(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbdev->csf.firmware_reloaded = false;
|
|
if (kbdev->csf.firmware_reload_needed) {
|
kbdev->csf.firmware_reload_needed = false;
|
queue_work(system_wq, &kbdev->csf.firmware_reload_work);
|
} else {
|
kbase_csf_firmware_enable_mcu(kbdev);
|
kbdev->csf.firmware_reloaded = true;
|
}
|
}
|
|
void kbase_csf_firmware_reload_completed(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
if (unlikely(!kbdev->csf.firmware_inited))
|
return;
|
|
/* Tell MCU state machine to transit to next state */
|
kbdev->csf.firmware_reloaded = true;
|
kbase_pm_update_state(kbdev);
|
}
|
|
static u32 convert_dur_to_idle_count(struct kbase_device *kbdev, const u32 dur_ms)
|
{
|
#define HYSTERESIS_VAL_UNIT_SHIFT (10)
|
/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
|
u64 freq = arch_timer_get_cntfrq();
|
u64 dur_val = dur_ms;
|
u32 cnt_val_u32, reg_val_u32;
|
bool src_system_timestamp = freq > 0;
|
|
if (!src_system_timestamp) {
|
/* Get the cycle_counter source alternative */
|
spin_lock(&kbdev->pm.clk_rtm.lock);
|
if (kbdev->pm.clk_rtm.clks[0])
|
freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
|
else
|
dev_warn(kbdev->dev, "No GPU clock, unexpected intregration issue!");
|
spin_unlock(&kbdev->pm.clk_rtm.lock);
|
|
dev_info(kbdev->dev, "Can't get the timestamp frequency, "
|
"use cycle counter format with firmware idle hysteresis!");
|
}
|
|
/* Formula for dur_val = ((dur_ms/1000) * freq_HZ) >> 10) */
|
dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
|
dur_val = div_u64(dur_val, 1000);
|
|
/* Interface limits the value field to S32_MAX */
|
cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
|
|
reg_val_u32 = GLB_IDLE_TIMER_TIMEOUT_SET(0, cnt_val_u32);
|
/* add the source flag */
|
if (src_system_timestamp)
|
reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_IDLE_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_IDLE_TIMER_TIMER_SOURCE_GPU_COUNTER);
|
|
return reg_val_u32;
|
}
|
|
u32 kbase_csf_firmware_get_gpu_idle_hysteresis_time(struct kbase_device *kbdev)
|
{
|
return kbdev->csf.gpu_idle_hysteresis_ms;
|
}
|
|
u32 kbase_csf_firmware_set_gpu_idle_hysteresis_time(struct kbase_device *kbdev, u32 dur)
|
{
|
unsigned long flags;
|
const u32 hysteresis_val = convert_dur_to_idle_count(kbdev, dur);
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
kbdev->csf.gpu_idle_hysteresis_ms = dur;
|
kbdev->csf.gpu_idle_dur_count = hysteresis_val;
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
dev_dbg(kbdev->dev, "CSF set firmware idle hysteresis count-value: 0x%.8x",
|
hysteresis_val);
|
|
return hysteresis_val;
|
}
|
|
static u32 convert_dur_to_core_pwroff_count(struct kbase_device *kbdev, const u32 dur_us)
|
{
|
#define PWROFF_VAL_UNIT_SHIFT (10)
|
/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
|
u64 freq = arch_timer_get_cntfrq();
|
u64 dur_val = dur_us;
|
u32 cnt_val_u32, reg_val_u32;
|
bool src_system_timestamp = freq > 0;
|
|
if (!src_system_timestamp) {
|
/* Get the cycle_counter source alternative */
|
spin_lock(&kbdev->pm.clk_rtm.lock);
|
if (kbdev->pm.clk_rtm.clks[0])
|
freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
|
else
|
dev_warn(kbdev->dev, "No GPU clock, unexpected integration issue!");
|
spin_unlock(&kbdev->pm.clk_rtm.lock);
|
|
dev_info(kbdev->dev, "Can't get the timestamp frequency, "
|
"use cycle counter with MCU Core Poweroff timer!");
|
}
|
|
/* Formula for dur_val = ((dur_us/1e6) * freq_HZ) >> 10) */
|
dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
|
dur_val = div_u64(dur_val, 1000000);
|
|
/* Interface limits the value field to S32_MAX */
|
cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
|
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMEOUT_SET(0, cnt_val_u32);
|
/* add the source flag */
|
if (src_system_timestamp)
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_GPU_COUNTER);
|
|
return reg_val_u32;
|
}
|
|
u32 kbase_csf_firmware_get_mcu_core_pwroff_time(struct kbase_device *kbdev)
|
{
|
return kbdev->csf.mcu_core_pwroff_dur_us;
|
}
|
|
u32 kbase_csf_firmware_set_mcu_core_pwroff_time(struct kbase_device *kbdev, u32 dur)
|
{
|
unsigned long flags;
|
const u32 pwroff = convert_dur_to_core_pwroff_count(kbdev, dur);
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kbdev->csf.mcu_core_pwroff_dur_us = dur;
|
kbdev->csf.mcu_core_pwroff_dur_count = pwroff;
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
dev_dbg(kbdev->dev, "MCU Core Poweroff input update: 0x%.8x", pwroff);
|
|
return pwroff;
|
}
|
|
int kbase_csf_firmware_early_init(struct kbase_device *kbdev)
|
{
|
init_waitqueue_head(&kbdev->csf.event_wait);
|
kbdev->csf.interrupt_received = false;
|
kbdev->csf.fw_timeout_ms = CSF_FIRMWARE_TIMEOUT_MS;
|
|
INIT_LIST_HEAD(&kbdev->csf.firmware_interfaces);
|
INIT_LIST_HEAD(&kbdev->csf.firmware_config);
|
INIT_LIST_HEAD(&kbdev->csf.firmware_trace_buffers.list);
|
INIT_WORK(&kbdev->csf.firmware_reload_work,
|
kbase_csf_firmware_reload_worker);
|
INIT_WORK(&kbdev->csf.fw_error_work, firmware_error_worker);
|
|
mutex_init(&kbdev->csf.reg_lock);
|
|
return 0;
|
}
|
|
int kbase_csf_firmware_init(struct kbase_device *kbdev)
|
{
|
int ret;
|
|
lockdep_assert_held(&kbdev->fw_load_lock);
|
|
if (WARN_ON((kbdev->as_free & MCU_AS_BITMASK) == 0))
|
return -EINVAL;
|
kbdev->as_free &= ~MCU_AS_BITMASK;
|
|
ret = kbase_mmu_init(kbdev, &kbdev->csf.mcu_mmu, NULL,
|
BASE_MEM_GROUP_DEFAULT);
|
|
if (ret != 0) {
|
/* Release the address space */
|
kbdev->as_free |= MCU_AS_BITMASK;
|
return ret;
|
}
|
|
kbdev->csf.gpu_idle_hysteresis_ms = FIRMWARE_IDLE_HYSTERESIS_TIME_MS;
|
kbdev->csf.gpu_idle_dur_count = convert_dur_to_idle_count(
|
kbdev, FIRMWARE_IDLE_HYSTERESIS_TIME_MS);
|
|
ret = kbase_mcu_shared_interface_region_tracker_init(kbdev);
|
if (ret != 0) {
|
dev_err(kbdev->dev,
|
"Failed to setup the rb tree for managing shared interface segment\n");
|
goto error;
|
}
|
|
ret = invent_memory_setup_entry(kbdev);
|
if (ret != 0) {
|
dev_err(kbdev->dev, "Failed to load firmware entry\n");
|
goto error;
|
}
|
|
/* Make sure L2 cache is powered up */
|
kbase_pm_wait_for_l2_powered(kbdev);
|
|
/* NO_MALI: Don't init trace buffers */
|
|
/* NO_MALI: Don't load the MMU tables or boot CSF firmware */
|
|
ret = invent_capabilities(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_doorbell_mapping_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_setup_dummy_user_reg_page(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_scheduler_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_timeout_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = global_init_on_boot(kbdev);
|
if (ret != 0)
|
goto error;
|
|
return 0;
|
|
error:
|
kbase_csf_firmware_term(kbdev);
|
return ret;
|
}
|
|
void kbase_csf_firmware_term(struct kbase_device *kbdev)
|
{
|
cancel_work_sync(&kbdev->csf.fw_error_work);
|
|
kbase_csf_timeout_term(kbdev);
|
|
/* NO_MALI: Don't stop firmware or unload MMU tables */
|
|
kbase_mmu_term(kbdev, &kbdev->csf.mcu_mmu);
|
|
kbase_csf_scheduler_term(kbdev);
|
|
kbase_csf_free_dummy_user_reg_page(kbdev);
|
|
kbase_csf_doorbell_mapping_term(kbdev);
|
|
free_global_iface(kbdev);
|
|
/* Release the address space */
|
kbdev->as_free |= MCU_AS_BITMASK;
|
|
while (!list_empty(&kbdev->csf.firmware_interfaces)) {
|
struct dummy_firmware_interface *interface;
|
|
interface = list_first_entry(&kbdev->csf.firmware_interfaces,
|
struct dummy_firmware_interface, node);
|
list_del(&interface->node);
|
|
/* NO_MALI: No cleanup in dummy interface necessary */
|
|
kfree(interface);
|
}
|
|
/* NO_MALI: No trace buffers to terminate */
|
|
#ifndef MALI_KBASE_BUILD
|
mali_kutf_fw_utf_entry_cleanup(kbdev);
|
#endif
|
|
mutex_destroy(&kbdev->csf.reg_lock);
|
|
/* This will also free up the region allocated for the shared interface
|
* entry parsed from the firmware image.
|
*/
|
kbase_mcu_shared_interface_region_tracker_term(kbdev);
|
}
|
|
void kbase_csf_firmware_enable_gpu_idle_timer(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
u32 glb_req;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
/* The scheduler is assumed to only call the enable when its internal
|
* state indicates that the idle timer has previously been disabled. So
|
* on entry the expected field values are:
|
* 1. GLOBAL_INPUT_BLOCK.GLB_REQ.IDLE_ENABLE: 0
|
* 2. GLOBAL_OUTPUT_BLOCK.GLB_ACK.IDLE_ENABLE: 0, or, on 1 -> 0
|
*/
|
|
glb_req = kbase_csf_firmware_global_input_read(global_iface, GLB_REQ);
|
if (glb_req & GLB_REQ_IDLE_ENABLE_MASK)
|
dev_err(kbdev->dev, "Incoherent scheduler state on REQ_IDLE_ENABLE!");
|
|
kbase_csf_firmware_global_input(global_iface, GLB_IDLE_TIMER,
|
kbdev->csf.gpu_idle_dur_count);
|
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
|
GLB_REQ_REQ_IDLE_ENABLE, GLB_REQ_IDLE_ENABLE_MASK);
|
|
dev_dbg(kbdev->dev, "Enabling GPU idle timer with count-value: 0x%.8x",
|
kbdev->csf.gpu_idle_dur_count);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
}
|
|
void kbase_csf_firmware_disable_gpu_idle_timer(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
|
GLB_REQ_REQ_IDLE_DISABLE,
|
GLB_REQ_IDLE_DISABLE_MASK);
|
|
dev_dbg(kbdev->dev, "Sending request to disable gpu idle timer");
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
}
|
|
void kbase_csf_firmware_ping(struct kbase_device *const kbdev)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_PING_MASK);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
int kbase_csf_firmware_ping_wait(struct kbase_device *const kbdev)
|
{
|
kbase_csf_firmware_ping(kbdev);
|
return wait_for_global_request(kbdev, GLB_REQ_PING_MASK);
|
}
|
|
int kbase_csf_firmware_set_timeout(struct kbase_device *const kbdev,
|
u64 const timeout)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
int err;
|
|
/* The 'reg_lock' is also taken and is held till the update is not
|
* complete, to ensure the update of timeout value by multiple Users
|
* gets serialized.
|
*/
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_timeout_global(global_iface, timeout);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
err = wait_for_global_request(kbdev, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
return err;
|
}
|
|
void kbase_csf_enter_protected_mode(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_PROTM_ENTER_MASK);
|
dev_dbg(kbdev->dev, "Sending request to enter protected mode");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
wait_for_global_request(kbdev, GLB_REQ_PROTM_ENTER_MASK);
|
}
|
|
void kbase_csf_firmware_trigger_mcu_halt(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_HALT_MASK);
|
dev_dbg(kbdev->dev, "Sending request to HALT MCU");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
int kbase_csf_trigger_firmware_config_update(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
int err = 0;
|
|
/* The 'reg_lock' is also taken and is held till the update is
|
* complete, to ensure the config update gets serialized.
|
*/
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
set_global_request(global_iface, GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
|
dev_dbg(kbdev->dev, "Sending request for FIRMWARE_CONFIG_UPDATE");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
err = wait_for_global_request(kbdev,
|
GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
return err;
|
}
|
|
/**
|
* copy_grp_and_stm - Copy CS and/or group data
|
*
|
* @iface: Global CSF interface provided by
|
* the firmware.
|
* @group_data: Pointer where to store all the group data
|
* (sequentially).
|
* @max_group_num: The maximum number of groups to be read. Can be 0, in
|
* which case group_data is unused.
|
* @stream_data: Pointer where to store all the stream data
|
* (sequentially).
|
* @max_total_stream_num: The maximum number of streams to be read.
|
* Can be 0, in which case stream_data is unused.
|
*
|
* Return: Total number of CSs, summed across all groups.
|
*/
|
static u32 copy_grp_and_stm(
|
const struct kbase_csf_global_iface * const iface,
|
struct basep_cs_group_control * const group_data,
|
u32 max_group_num,
|
struct basep_cs_stream_control * const stream_data,
|
u32 max_total_stream_num)
|
{
|
u32 i, total_stream_num = 0;
|
|
if (WARN_ON((max_group_num > 0) && !group_data))
|
max_group_num = 0;
|
|
if (WARN_ON((max_total_stream_num > 0) && !stream_data))
|
max_total_stream_num = 0;
|
|
for (i = 0; i < iface->group_num; i++) {
|
u32 j;
|
|
if (i < max_group_num) {
|
group_data[i].features = iface->groups[i].features;
|
group_data[i].stream_num = iface->groups[i].stream_num;
|
group_data[i].suspend_size =
|
iface->groups[i].suspend_size;
|
}
|
for (j = 0; j < iface->groups[i].stream_num; j++) {
|
if (total_stream_num < max_total_stream_num)
|
stream_data[total_stream_num].features =
|
iface->groups[i].streams[j].features;
|
total_stream_num++;
|
}
|
}
|
|
return total_stream_num;
|
}
|
|
u32 kbase_csf_firmware_get_glb_iface(
|
struct kbase_device *kbdev,
|
struct basep_cs_group_control *const group_data,
|
u32 const max_group_num,
|
struct basep_cs_stream_control *const stream_data,
|
u32 const max_total_stream_num, u32 *const glb_version,
|
u32 *const features, u32 *const group_num, u32 *const prfcnt_size,
|
u32 *const instr_features)
|
{
|
const struct kbase_csf_global_iface * const iface =
|
&kbdev->csf.global_iface;
|
|
if (WARN_ON(!glb_version) || WARN_ON(!features) ||
|
WARN_ON(!group_num) || WARN_ON(!prfcnt_size) ||
|
WARN_ON(!instr_features))
|
return 0;
|
|
*glb_version = iface->version;
|
*features = iface->features;
|
*group_num = iface->group_num;
|
*prfcnt_size = iface->prfcnt_size;
|
*instr_features = iface->instr_features;
|
|
return copy_grp_and_stm(iface, group_data, max_group_num,
|
stream_data, max_total_stream_num);
|
}
|
|
const char *kbase_csf_firmware_get_timeline_metadata(
|
struct kbase_device *kbdev, const char *name, size_t *size)
|
{
|
if (WARN_ON(!kbdev) ||
|
WARN_ON(!name) ||
|
WARN_ON(!size)) {
|
return NULL;
|
}
|
|
*size = 0;
|
return NULL;
|
}
|
|
void kbase_csf_firmware_disable_mcu_wait(struct kbase_device *kbdev)
|
{
|
/* NO_MALI: Nothing to do here */
|
}
|
|
int kbase_csf_firmware_mcu_shared_mapping_init(
|
struct kbase_device *kbdev,
|
unsigned int num_pages,
|
unsigned long cpu_map_properties,
|
unsigned long gpu_map_properties,
|
struct kbase_csf_mapping *csf_mapping)
|
{
|
struct tagged_addr *phys;
|
struct kbase_va_region *va_reg;
|
struct page **page_list;
|
void *cpu_addr;
|
int i, ret = 0;
|
pgprot_t cpu_map_prot = PAGE_KERNEL;
|
unsigned long gpu_map_prot;
|
|
if (cpu_map_properties & PROT_READ)
|
cpu_map_prot = PAGE_KERNEL_RO;
|
|
if (kbdev->system_coherency == COHERENCY_ACE) {
|
gpu_map_prot =
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
|
} else {
|
gpu_map_prot =
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
cpu_map_prot = pgprot_writecombine(cpu_map_prot);
|
};
|
|
phys = kmalloc_array(num_pages, sizeof(*phys), GFP_KERNEL);
|
if (!phys)
|
goto out;
|
|
page_list = kmalloc_array(num_pages, sizeof(*page_list), GFP_KERNEL);
|
if (!page_list)
|
goto page_list_alloc_error;
|
|
ret = kbase_mem_pool_alloc_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false);
|
if (ret <= 0)
|
goto phys_mem_pool_alloc_error;
|
|
for (i = 0; i < num_pages; i++)
|
page_list[i] = as_page(phys[i]);
|
|
cpu_addr = vmap(page_list, num_pages, VM_MAP, cpu_map_prot);
|
if (!cpu_addr)
|
goto vmap_error;
|
|
va_reg = kbase_alloc_free_region(&kbdev->csf.shared_reg_rbtree, 0,
|
num_pages, KBASE_REG_ZONE_MCU_SHARED);
|
if (!va_reg)
|
goto va_region_alloc_error;
|
|
mutex_lock(&kbdev->csf.reg_lock);
|
ret = kbase_add_va_region_rbtree(kbdev, va_reg, 0, num_pages, 1);
|
va_reg->flags &= ~KBASE_REG_FREE;
|
if (ret)
|
goto va_region_add_error;
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
gpu_map_properties &= (KBASE_REG_GPU_RD | KBASE_REG_GPU_WR);
|
gpu_map_properties |= gpu_map_prot;
|
|
ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu,
|
va_reg->start_pfn, &phys[0], num_pages,
|
gpu_map_properties, KBASE_MEM_GROUP_CSF_FW);
|
if (ret)
|
goto mmu_insert_pages_error;
|
|
kfree(page_list);
|
csf_mapping->phys = phys;
|
csf_mapping->cpu_addr = cpu_addr;
|
csf_mapping->va_reg = va_reg;
|
csf_mapping->num_pages = num_pages;
|
|
return 0;
|
|
mmu_insert_pages_error:
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_remove_va_region(va_reg);
|
va_region_add_error:
|
kbase_free_alloced_region(va_reg);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
va_region_alloc_error:
|
vunmap(cpu_addr);
|
vmap_error:
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false, false);
|
|
phys_mem_pool_alloc_error:
|
kfree(page_list);
|
page_list_alloc_error:
|
kfree(phys);
|
out:
|
/* Zero-initialize the mapping to make sure that the termination
|
* function doesn't try to unmap or free random addresses.
|
*/
|
csf_mapping->phys = NULL;
|
csf_mapping->cpu_addr = NULL;
|
csf_mapping->va_reg = NULL;
|
csf_mapping->num_pages = 0;
|
|
return -ENOMEM;
|
}
|
|
void kbase_csf_firmware_mcu_shared_mapping_term(
|
struct kbase_device *kbdev, struct kbase_csf_mapping *csf_mapping)
|
{
|
if (csf_mapping->va_reg) {
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_remove_va_region(csf_mapping->va_reg);
|
kbase_free_alloced_region(csf_mapping->va_reg);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
}
|
|
if (csf_mapping->phys) {
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
csf_mapping->num_pages, csf_mapping->phys, false,
|
false);
|
}
|
|
vunmap(csf_mapping->cpu_addr);
|
kfree(csf_mapping->phys);
|
}
|