// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2018-2021 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
#include "mali_kbase.h"
|
#include "mali_kbase_csf_firmware_cfg.h"
|
#include "mali_kbase_csf_trace_buffer.h"
|
#include "mali_kbase_csf_timeout.h"
|
#include "mali_kbase_mem.h"
|
#include "mali_kbase_reset_gpu.h"
|
#include "mali_kbase_ctx_sched.h"
|
#include "mali_kbase_csf_scheduler.h"
|
#include "device/mali_kbase_device.h"
|
#include "backend/gpu/mali_kbase_pm_internal.h"
|
#include "tl/mali_kbase_timeline_priv.h"
|
#include "mali_kbase_csf_tl_reader.h"
|
#include "backend/gpu/mali_kbase_clk_rate_trace_mgr.h"
|
#include <csf/ipa_control/mali_kbase_csf_ipa_control.h>
|
|
#include <linux/list.h>
|
#include <linux/slab.h>
|
#include <linux/firmware.h>
|
#include <linux/mman.h>
|
#include <linux/string.h>
|
#include <linux/mutex.h>
|
#if (KERNEL_VERSION(4, 13, 0) <= LINUX_VERSION_CODE)
|
#include <linux/set_memory.h>
|
#endif
|
#include <mmu/mali_kbase_mmu.h>
|
#include <asm/arch_timer.h>
|
|
#define MALI_MAX_FIRMWARE_NAME_LEN ((size_t)20)
|
|
|
static char fw_name[MALI_MAX_FIRMWARE_NAME_LEN] = "mali_csffw.bin";
|
module_param_string(fw_name, fw_name, sizeof(fw_name), 0644);
|
MODULE_PARM_DESC(fw_name, "firmware image");
|
|
/* The waiting time for firmware to boot */
|
static unsigned int csf_firmware_boot_timeout_ms = 500;
|
module_param(csf_firmware_boot_timeout_ms, uint, 0444);
|
MODULE_PARM_DESC(csf_firmware_boot_timeout_ms,
|
"Maximum time to wait for firmware to boot.");
|
|
#ifdef CONFIG_MALI_BIFROST_DEBUG
|
/* Makes Driver wait indefinitely for an acknowledgment for the different
|
* requests it sends to firmware. Otherwise the timeouts interfere with the
|
* use of debugger for source-level debugging of firmware as Driver initiates
|
* a GPU reset when a request times out, which always happen when a debugger
|
* is connected.
|
*/
|
bool fw_debug; /* Default value of 0/false */
|
module_param(fw_debug, bool, 0444);
|
MODULE_PARM_DESC(fw_debug,
|
"Enables effective use of a debugger for debugging firmware code.");
|
#endif
|
|
#define FIRMWARE_HEADER_MAGIC (0xC3F13A6Eul)
|
#define FIRMWARE_HEADER_VERSION (0ul)
|
#define FIRMWARE_HEADER_LENGTH (0x14ul)
|
|
#define CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS \
|
(CSF_FIRMWARE_ENTRY_READ | \
|
CSF_FIRMWARE_ENTRY_WRITE | \
|
CSF_FIRMWARE_ENTRY_EXECUTE | \
|
CSF_FIRMWARE_ENTRY_PROTECTED | \
|
CSF_FIRMWARE_ENTRY_SHARED | \
|
CSF_FIRMWARE_ENTRY_ZERO | \
|
CSF_FIRMWARE_ENTRY_CACHE_MODE)
|
|
#define CSF_FIRMWARE_ENTRY_TYPE_INTERFACE (0)
|
#define CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION (1)
|
#define CSF_FIRMWARE_ENTRY_TYPE_FUTF_TEST (2)
|
#define CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER (3)
|
#define CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA (4)
|
|
#define CSF_FIRMWARE_CACHE_MODE_NONE (0ul << 3)
|
#define CSF_FIRMWARE_CACHE_MODE_CACHED (1ul << 3)
|
#define CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT (2ul << 3)
|
#define CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT (3ul << 3)
|
|
#define INTERFACE_ENTRY_NAME_OFFSET (0x14)
|
|
#define TL_METADATA_ENTRY_NAME_OFFSET (0x8)
|
|
#define CSF_MAX_FW_STOP_LOOPS (100000)
|
|
#define CSF_GLB_REQ_CFG_MASK \
|
(GLB_REQ_CFG_ALLOC_EN_MASK | GLB_REQ_CFG_PROGRESS_TIMER_MASK | \
|
GLB_REQ_CFG_PWROFF_TIMER_MASK)
|
|
static inline u32 input_page_read(const u32 *const input, const u32 offset)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
return input[offset / sizeof(u32)];
|
}
|
|
static inline void input_page_write(u32 *const input, const u32 offset,
|
const u32 value)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
input[offset / sizeof(u32)] = value;
|
}
|
|
static inline void input_page_partial_write(u32 *const input, const u32 offset,
|
u32 value, u32 mask)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
input[offset / sizeof(u32)] =
|
(input_page_read(input, offset) & ~mask) | (value & mask);
|
}
|
|
static inline u32 output_page_read(const u32 *const output, const u32 offset)
|
{
|
WARN_ON(offset % sizeof(u32));
|
|
return output[offset / sizeof(u32)];
|
}
|
|
static unsigned int entry_type(u32 header)
|
{
|
return header & 0xFF;
|
}
|
static unsigned int entry_size(u32 header)
|
{
|
return (header >> 8) & 0xFF;
|
}
|
static bool entry_update(u32 header)
|
{
|
return (header >> 30) & 0x1;
|
}
|
static bool entry_optional(u32 header)
|
{
|
return (header >> 31) & 0x1;
|
}
|
|
/**
|
* struct firmware_timeline_metadata -
|
* Timeline metadata item within the MCU firmware
|
*
|
* @node: List head linking all timeline metadata to
|
* kbase_device:csf.firmware_timeline_metadata.
|
* @name: NUL-terminated string naming the metadata.
|
* @data: Metadata content.
|
* @size: Metadata size.
|
*/
|
struct firmware_timeline_metadata {
|
struct list_head node;
|
char *name;
|
char *data;
|
size_t size;
|
};
|
|
/* The shared interface area, used for communicating with firmware, is managed
|
* like a virtual memory zone. Reserve the virtual space from that zone
|
* corresponding to shared interface entry parsed from the firmware image.
|
* The shared_reg_rbtree should have been initialized before calling this
|
* function.
|
*/
|
static int setup_shared_iface_static_region(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_firmware_interface *interface =
|
kbdev->csf.shared_interface;
|
struct kbase_va_region *reg;
|
int ret = -ENOMEM;
|
|
if (!interface)
|
return -EINVAL;
|
|
reg = kbase_alloc_free_region(&kbdev->csf.shared_reg_rbtree, 0,
|
interface->num_pages, KBASE_REG_ZONE_MCU_SHARED);
|
if (reg) {
|
ret = kbase_add_va_region_rbtree(kbdev, reg,
|
interface->virtual, interface->num_pages, 1);
|
if (ret)
|
kfree(reg);
|
else
|
reg->flags &= ~KBASE_REG_FREE;
|
}
|
|
return ret;
|
}
|
|
static int wait_mcu_status_value(struct kbase_device *kbdev, u32 val)
|
{
|
u32 max_loops = CSF_MAX_FW_STOP_LOOPS;
|
|
/* wait for the MCU_STATUS register to reach the given status value */
|
while (--max_loops &&
|
(kbase_reg_read(kbdev, GPU_CONTROL_REG(MCU_STATUS)) != val)) {
|
}
|
|
return (max_loops == 0) ? -1 : 0;
|
}
|
|
void kbase_csf_firmware_disable_mcu_wait(struct kbase_device *kbdev)
|
{
|
if (wait_mcu_status_value(kbdev, MCU_CNTRL_DISABLE) < 0)
|
dev_err(kbdev->dev, "MCU failed to get disabled");
|
}
|
|
static void wait_for_firmware_stop(struct kbase_device *kbdev)
|
{
|
if (wait_mcu_status_value(kbdev, MCU_CNTRL_DISABLE) < 0) {
|
/* This error shall go away once MIDJM-2371 is closed */
|
dev_err(kbdev->dev, "Firmware failed to stop");
|
}
|
}
|
|
static void stop_csf_firmware(struct kbase_device *kbdev)
|
{
|
/* Stop the MCU firmware */
|
kbase_csf_firmware_disable_mcu(kbdev);
|
|
wait_for_firmware_stop(kbdev);
|
}
|
|
static void wait_for_firmware_boot(struct kbase_device *kbdev)
|
{
|
const long wait_timeout =
|
kbase_csf_timeout_in_jiffies(csf_firmware_boot_timeout_ms);
|
long remaining;
|
|
/* Firmware will generate a global interface interrupt once booting
|
* is complete
|
*/
|
remaining = wait_event_timeout(kbdev->csf.event_wait,
|
kbdev->csf.interrupt_received == true, wait_timeout);
|
|
if (!remaining)
|
dev_err(kbdev->dev, "Timed out waiting for fw boot completion");
|
|
kbdev->csf.interrupt_received = false;
|
}
|
|
static void boot_csf_firmware(struct kbase_device *kbdev)
|
{
|
kbase_csf_firmware_enable_mcu(kbdev);
|
|
wait_for_firmware_boot(kbdev);
|
}
|
|
static void wait_ready(struct kbase_device *kbdev)
|
{
|
u32 max_loops = KBASE_AS_INACTIVE_MAX_LOOPS;
|
u32 val;
|
|
val = kbase_reg_read(kbdev, MMU_AS_REG(MCU_AS_NR, AS_STATUS));
|
|
/* Wait for a while for the update command to take effect */
|
while (--max_loops && (val & AS_STATUS_AS_ACTIVE))
|
val = kbase_reg_read(kbdev, MMU_AS_REG(MCU_AS_NR, AS_STATUS));
|
|
if (max_loops == 0)
|
dev_err(kbdev->dev, "AS_ACTIVE bit stuck, might be caused by slow/unstable GPU clock or possible faulty FPGA connector\n");
|
}
|
|
static void unload_mmu_tables(struct kbase_device *kbdev)
|
{
|
unsigned long irq_flags;
|
|
mutex_lock(&kbdev->mmu_hw_mutex);
|
spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
|
if (kbdev->pm.backend.gpu_powered)
|
kbase_mmu_disable_as(kbdev, MCU_AS_NR);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
|
mutex_unlock(&kbdev->mmu_hw_mutex);
|
}
|
|
static void load_mmu_tables(struct kbase_device *kbdev)
|
{
|
unsigned long irq_flags;
|
|
mutex_lock(&kbdev->mmu_hw_mutex);
|
spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
|
kbase_mmu_update(kbdev, &kbdev->csf.mcu_mmu, MCU_AS_NR);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
|
mutex_unlock(&kbdev->mmu_hw_mutex);
|
|
/* Wait for a while for the update command to take effect */
|
wait_ready(kbdev);
|
}
|
|
/**
|
* convert_mem_flags() - Convert firmware memory flags to GPU region flags
|
*
|
* Return: GPU memory region flags
|
*
|
* @kbdev: Instance of GPU platform device (used to determine system coherency)
|
* @flags: Flags of an "interface memory setup" section in a firmware image
|
* @cm: appropriate cache mode chosen for the "interface memory setup"
|
* section, which could be different from the cache mode requested by
|
* firmware.
|
*/
|
static unsigned long convert_mem_flags(const struct kbase_device * const kbdev,
|
const u32 flags, u32 *cm)
|
{
|
unsigned long mem_flags = 0;
|
u32 cache_mode = flags & CSF_FIRMWARE_ENTRY_CACHE_MODE;
|
bool is_shared = (flags & CSF_FIRMWARE_ENTRY_SHARED) ? true : false;
|
|
/* The memory flags control the access permissions for the MCU, the
|
* shader cores/tiler are not expected to access this memory
|
*/
|
if (flags & CSF_FIRMWARE_ENTRY_READ)
|
mem_flags |= KBASE_REG_GPU_RD;
|
|
if (flags & CSF_FIRMWARE_ENTRY_WRITE)
|
mem_flags |= KBASE_REG_GPU_WR;
|
|
if ((flags & CSF_FIRMWARE_ENTRY_EXECUTE) == 0)
|
mem_flags |= KBASE_REG_GPU_NX;
|
|
if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
|
mem_flags |= KBASE_REG_PROTECTED;
|
|
/* Substitute uncached coherent memory for cached coherent memory if
|
* the system does not support ACE coherency.
|
*/
|
if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) &&
|
(kbdev->system_coherency != COHERENCY_ACE))
|
cache_mode = CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT;
|
|
/* Substitute uncached incoherent memory for uncached coherent memory
|
* if the system does not support ACE-Lite coherency.
|
*/
|
if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT) &&
|
(kbdev->system_coherency == COHERENCY_NONE))
|
cache_mode = CSF_FIRMWARE_CACHE_MODE_NONE;
|
|
*cm = cache_mode;
|
|
switch (cache_mode) {
|
case CSF_FIRMWARE_CACHE_MODE_NONE:
|
mem_flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
break;
|
case CSF_FIRMWARE_CACHE_MODE_CACHED:
|
mem_flags |=
|
KBASE_REG_MEMATTR_INDEX(
|
AS_MEMATTR_INDEX_IMPL_DEF_CACHE_POLICY);
|
break;
|
case CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT:
|
case CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT:
|
WARN_ON(!is_shared);
|
mem_flags |= KBASE_REG_SHARE_BOTH |
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_SHARED);
|
break;
|
default:
|
dev_err(kbdev->dev,
|
"Firmware contains interface with unsupported cache mode\n");
|
break;
|
}
|
return mem_flags;
|
}
|
|
static void load_fw_image_section(struct kbase_device *kbdev, const u8 *data,
|
struct tagged_addr *phys, u32 num_pages, u32 flags,
|
u32 data_start, u32 data_end)
|
{
|
u32 data_pos = data_start;
|
u32 data_len = data_end - data_start;
|
u32 page_num;
|
u32 page_limit;
|
|
if (flags & CSF_FIRMWARE_ENTRY_ZERO)
|
page_limit = num_pages;
|
else
|
page_limit = (data_len + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
for (page_num = 0; page_num < page_limit; ++page_num) {
|
struct page *const page = as_page(phys[page_num]);
|
char *const p = kmap_atomic(page);
|
u32 const copy_len = min_t(u32, PAGE_SIZE, data_len);
|
|
if (copy_len > 0) {
|
memcpy(p, data + data_pos, copy_len);
|
data_pos += copy_len;
|
data_len -= copy_len;
|
}
|
|
if (flags & CSF_FIRMWARE_ENTRY_ZERO) {
|
u32 const zi_len = PAGE_SIZE - copy_len;
|
|
memset(p + copy_len, 0, zi_len);
|
}
|
|
kbase_sync_single_for_device(kbdev, kbase_dma_addr(page),
|
PAGE_SIZE, DMA_TO_DEVICE);
|
kunmap_atomic(p);
|
}
|
}
|
|
static int reload_fw_data_sections(struct kbase_device *kbdev)
|
{
|
const u32 magic = FIRMWARE_HEADER_MAGIC;
|
struct kbase_csf_firmware_interface *interface;
|
const struct firmware *firmware;
|
int ret = 0;
|
|
if (request_firmware(&firmware, fw_name, kbdev->dev) != 0) {
|
dev_err(kbdev->dev,
|
"Failed to reload firmware image '%s'\n",
|
fw_name);
|
return -ENOENT;
|
}
|
|
/* Do couple of basic sanity checks */
|
if (firmware->size < FIRMWARE_HEADER_LENGTH) {
|
dev_err(kbdev->dev, "Firmware image unexpectedly too small\n");
|
ret = -EINVAL;
|
goto out;
|
}
|
|
if (memcmp(firmware->data, &magic, sizeof(magic)) != 0) {
|
dev_err(kbdev->dev, "Incorrect magic value, firmware image could have been corrupted\n");
|
ret = -EINVAL;
|
goto out;
|
}
|
|
list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
|
/* Skip reload of text & read only data sections */
|
if ((interface->flags & CSF_FIRMWARE_ENTRY_EXECUTE) ||
|
!(interface->flags & CSF_FIRMWARE_ENTRY_WRITE))
|
continue;
|
|
load_fw_image_section(kbdev, firmware->data, interface->phys,
|
interface->num_pages, interface->flags,
|
interface->data_start, interface->data_end);
|
}
|
|
kbase_csf_firmware_reload_trace_buffers_data(kbdev);
|
|
out:
|
release_firmware(firmware);
|
return ret;
|
}
|
|
/**
|
* parse_memory_setup_entry() - Process an "interface memory setup" section
|
*
|
* Read an "interface memory setup" section from the firmware image and create
|
* the necessary memory region including the MMU page tables. If successful
|
* the interface will be added to the kbase_device:csf.firmware_interfaces list.
|
*
|
* Return: 0 if successful, negative error code on failure
|
*
|
* @kbdev: Kbase device structure
|
* @fw: The firmware image containing the section
|
* @entry: Pointer to the start of the section
|
* @size: Size (in bytes) of the section
|
*/
|
static int parse_memory_setup_entry(struct kbase_device *kbdev,
|
const struct firmware *fw,
|
const u32 *entry, unsigned int size)
|
{
|
int ret = 0;
|
const u32 flags = entry[0];
|
const u32 virtual_start = entry[1];
|
const u32 virtual_end = entry[2];
|
const u32 data_start = entry[3];
|
const u32 data_end = entry[4];
|
u32 num_pages;
|
char *name;
|
struct tagged_addr *phys = NULL;
|
struct kbase_csf_firmware_interface *interface = NULL;
|
bool allocated_pages = false, protected_mode = false;
|
unsigned long mem_flags = 0;
|
u32 cache_mode = 0;
|
struct protected_memory_allocation **pma = NULL;
|
|
if (data_end < data_start) {
|
dev_err(kbdev->dev, "Firmware corrupt, data_end < data_start (0x%x<0x%x)\n",
|
data_end, data_start);
|
return -EINVAL;
|
}
|
if (virtual_end < virtual_start) {
|
dev_err(kbdev->dev, "Firmware corrupt, virtual_end < virtual_start (0x%x<0x%x)\n",
|
virtual_end, virtual_start);
|
return -EINVAL;
|
}
|
if (data_end > fw->size) {
|
dev_err(kbdev->dev, "Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx\n",
|
data_end, fw->size);
|
return -EINVAL;
|
}
|
|
if ((virtual_start & ~PAGE_MASK) != 0 ||
|
(virtual_end & ~PAGE_MASK) != 0) {
|
dev_err(kbdev->dev, "Firmware corrupt: virtual addresses not page aligned: 0x%x-0x%x\n",
|
virtual_start, virtual_end);
|
return -EINVAL;
|
}
|
|
if ((flags & CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS) != flags) {
|
dev_err(kbdev->dev, "Firmware contains interface with unsupported flags (0x%x)\n",
|
flags);
|
return -EINVAL;
|
}
|
|
if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
|
protected_mode = true;
|
|
if (protected_mode && kbdev->csf.pma_dev == NULL) {
|
dev_err(kbdev->dev,
|
"Protected memory allocator not found, Firmware protected mode entry will not be supported");
|
return 0;
|
}
|
|
num_pages = (virtual_end - virtual_start)
|
>> PAGE_SHIFT;
|
|
phys = kmalloc_array(num_pages, sizeof(*phys), GFP_KERNEL);
|
if (!phys)
|
return -ENOMEM;
|
|
if (protected_mode) {
|
pma = kbase_csf_protected_memory_alloc(kbdev, phys, num_pages);
|
|
if (pma == NULL) {
|
ret = -ENOMEM;
|
goto out;
|
}
|
} else {
|
ret = kbase_mem_pool_alloc_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false);
|
if (ret < 0)
|
goto out;
|
}
|
|
allocated_pages = true;
|
load_fw_image_section(kbdev, fw->data, phys, num_pages, flags,
|
data_start, data_end);
|
|
/* Allocate enough memory for the struct kbase_csf_firmware_interface and
|
* the name of the interface. An extra byte is allocated to place a
|
* NUL-terminator in. This should already be included according to the
|
* specification but here we add it anyway to be robust against a
|
* corrupt firmware image.
|
*/
|
interface = kmalloc(sizeof(*interface) +
|
size - INTERFACE_ENTRY_NAME_OFFSET + 1, GFP_KERNEL);
|
if (!interface) {
|
ret = -ENOMEM;
|
goto out;
|
}
|
name = (void *)(interface + 1);
|
memcpy(name, entry + (INTERFACE_ENTRY_NAME_OFFSET / sizeof(*entry)),
|
size - INTERFACE_ENTRY_NAME_OFFSET);
|
name[size - INTERFACE_ENTRY_NAME_OFFSET] = 0;
|
|
interface->name = name;
|
interface->phys = phys;
|
interface->num_pages = num_pages;
|
interface->virtual = virtual_start;
|
interface->kernel_map = NULL;
|
interface->flags = flags;
|
interface->data_start = data_start;
|
interface->data_end = data_end;
|
interface->pma = pma;
|
|
mem_flags = convert_mem_flags(kbdev, flags, &cache_mode);
|
|
if (flags & CSF_FIRMWARE_ENTRY_SHARED) {
|
struct page **page_list;
|
u32 i;
|
pgprot_t cpu_map_prot;
|
u32 mem_attr_index = KBASE_REG_MEMATTR_VALUE(mem_flags);
|
|
/* Since SHARED memory type was used for mapping shared memory
|
* on GPU side, it can be mapped as cached on CPU side on both
|
* types of coherent platforms.
|
*/
|
if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) ||
|
(cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT)) {
|
WARN_ON(mem_attr_index !=
|
AS_MEMATTR_INDEX_SHARED);
|
cpu_map_prot = PAGE_KERNEL;
|
} else {
|
WARN_ON(mem_attr_index !=
|
AS_MEMATTR_INDEX_NON_CACHEABLE);
|
cpu_map_prot = pgprot_writecombine(PAGE_KERNEL);
|
}
|
|
page_list = kmalloc_array(num_pages, sizeof(*page_list),
|
GFP_KERNEL);
|
if (!page_list) {
|
ret = -ENOMEM;
|
goto out;
|
}
|
|
for (i = 0; i < num_pages; i++)
|
page_list[i] = as_page(phys[i]);
|
|
interface->kernel_map = vmap(page_list, num_pages, VM_MAP,
|
cpu_map_prot);
|
|
kfree(page_list);
|
|
if (!interface->kernel_map) {
|
ret = -ENOMEM;
|
goto out;
|
}
|
}
|
|
/* Start location of the shared interface area is fixed and is
|
* specified in firmware spec, and so there shall only be a
|
* single entry with that start address.
|
*/
|
if (virtual_start == (KBASE_REG_ZONE_MCU_SHARED_BASE << PAGE_SHIFT))
|
kbdev->csf.shared_interface = interface;
|
|
list_add(&interface->node, &kbdev->csf.firmware_interfaces);
|
|
ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu,
|
virtual_start >> PAGE_SHIFT, phys, num_pages, mem_flags,
|
KBASE_MEM_GROUP_CSF_FW);
|
|
if (ret != 0) {
|
dev_err(kbdev->dev, "Failed to insert firmware pages\n");
|
/* The interface has been added to the list, so cleanup will
|
* be handled by firmware unloading
|
*/
|
}
|
|
dev_dbg(kbdev->dev, "Processed section '%s'", name);
|
|
return ret;
|
|
out:
|
if (allocated_pages) {
|
if (protected_mode) {
|
kbase_csf_protected_memory_free(kbdev, pma, num_pages);
|
} else {
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false, false);
|
}
|
}
|
|
kfree(phys);
|
kfree(interface);
|
return ret;
|
}
|
|
/**
|
* parse_timeline_metadata_entry() - Process a "timeline metadata" section
|
*
|
* Return: 0 if successful, negative error code on failure
|
*
|
* @kbdev: Kbase device structure
|
* @fw: Firmware image containing the section
|
* @entry: Pointer to the section
|
* @size: Size (in bytes) of the section
|
*/
|
static int parse_timeline_metadata_entry(struct kbase_device *kbdev,
|
const struct firmware *fw, const u32 *entry, unsigned int size)
|
{
|
const u32 data_start = entry[0];
|
const u32 data_size = entry[1];
|
const u32 data_end = data_start + data_size;
|
const char *name = (char *)&entry[2];
|
struct firmware_timeline_metadata *metadata;
|
const unsigned int name_len =
|
size - TL_METADATA_ENTRY_NAME_OFFSET;
|
size_t allocation_size = sizeof(*metadata) + name_len + 1 + data_size;
|
|
if (data_end > fw->size) {
|
dev_err(kbdev->dev,
|
"Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx",
|
data_end, fw->size);
|
return -EINVAL;
|
}
|
|
/* Allocate enough space for firmware_timeline_metadata,
|
* its name and the content.
|
*/
|
metadata = kmalloc(allocation_size, GFP_KERNEL);
|
if (!metadata)
|
return -ENOMEM;
|
|
metadata->name = (char *)(metadata + 1);
|
metadata->data = (char *)(metadata + 1) + name_len + 1;
|
metadata->size = data_size;
|
|
memcpy(metadata->name, name, name_len);
|
metadata->name[name_len] = 0;
|
|
/* Copy metadata's content. */
|
memcpy(metadata->data, fw->data + data_start, data_size);
|
|
list_add(&metadata->node, &kbdev->csf.firmware_timeline_metadata);
|
|
dev_dbg(kbdev->dev, "Timeline metadata '%s'", metadata->name);
|
|
return 0;
|
}
|
|
/**
|
* load_firmware_entry() - Process an entry from a firmware image
|
*
|
* Read an entry from a firmware image and do any necessary work (e.g. loading
|
* the data into page accessible to the MCU).
|
*
|
* Unknown entries are ignored if the 'optional' flag is set within the entry,
|
* otherwise the function will fail with -EINVAL
|
*
|
* Return: 0 if successful, negative error code on failure
|
*
|
* @kbdev: Kbase device
|
* @fw: Firmware image containing the entry
|
* @offset: Byte offset within the image of the entry to load
|
* @header: Header word of the entry
|
*/
|
static int load_firmware_entry(struct kbase_device *kbdev,
|
const struct firmware *fw,
|
u32 offset, u32 header)
|
{
|
const unsigned int type = entry_type(header);
|
unsigned int size = entry_size(header);
|
const bool optional = entry_optional(header);
|
/* Update is used with configuration and tracebuffer entries to
|
* initiate a FIRMWARE_CONFIG_UPDATE, instead of triggering a
|
* silent reset.
|
*/
|
const bool updatable = entry_update(header);
|
const u32 *entry = (void *)(fw->data + offset);
|
|
if ((offset % sizeof(*entry)) || (size % sizeof(*entry))) {
|
dev_err(kbdev->dev, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n",
|
offset, size);
|
return -EINVAL;
|
}
|
|
if (size < sizeof(*entry)) {
|
dev_err(kbdev->dev, "Size field too small: %u\n", size);
|
return -EINVAL;
|
}
|
|
/* Remove the header */
|
entry++;
|
size -= sizeof(*entry);
|
|
switch (type) {
|
case CSF_FIRMWARE_ENTRY_TYPE_INTERFACE:
|
/* Interface memory setup */
|
if (size < INTERFACE_ENTRY_NAME_OFFSET + sizeof(*entry)) {
|
dev_err(kbdev->dev, "Interface memory setup entry too short (size=%u)\n",
|
size);
|
return -EINVAL;
|
}
|
return parse_memory_setup_entry(kbdev, fw, entry, size);
|
case CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION:
|
/* Configuration option */
|
if (size < CONFIGURATION_ENTRY_NAME_OFFSET + sizeof(*entry)) {
|
dev_err(kbdev->dev, "Configuration option entry too short (size=%u)\n",
|
size);
|
return -EINVAL;
|
}
|
return kbase_csf_firmware_cfg_option_entry_parse(
|
kbdev, fw, entry, size, updatable);
|
case CSF_FIRMWARE_ENTRY_TYPE_FUTF_TEST:
|
#ifndef MALI_KBASE_BUILD
|
/* FW UTF option */
|
if (size < 2*sizeof(*entry)) {
|
dev_err(kbdev->dev, "FW UTF entry too short (size=%u)\n",
|
size);
|
return -EINVAL;
|
}
|
return mali_kutf_process_fw_utf_entry(kbdev, fw->data,
|
fw->size, entry);
|
#endif
|
break;
|
case CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER:
|
/* Trace buffer */
|
if (size < TRACE_BUFFER_ENTRY_NAME_OFFSET + sizeof(*entry)) {
|
dev_err(kbdev->dev, "Trace Buffer entry too short (size=%u)\n",
|
size);
|
return -EINVAL;
|
}
|
return kbase_csf_firmware_parse_trace_buffer_entry(
|
kbdev, entry, size, updatable);
|
case CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA:
|
/* Meta data section */
|
if (size < TL_METADATA_ENTRY_NAME_OFFSET + sizeof(*entry)) {
|
dev_err(kbdev->dev, "Timeline metadata entry too short (size=%u)\n",
|
size);
|
return -EINVAL;
|
}
|
return parse_timeline_metadata_entry(kbdev, fw, entry, size);
|
}
|
|
if (!optional) {
|
dev_err(kbdev->dev,
|
"Unsupported non-optional entry type %u in firmware\n",
|
type);
|
return -EINVAL;
|
}
|
|
return 0;
|
}
|
|
static void free_global_iface(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
|
|
if (iface->groups) {
|
unsigned int gid;
|
|
for (gid = 0; gid < iface->group_num; ++gid)
|
kfree(iface->groups[gid].streams);
|
|
kfree(iface->groups);
|
iface->groups = NULL;
|
}
|
}
|
|
/**
|
* iface_gpu_va_to_cpu - Convert a GPU VA address within the shared interface
|
* region to a CPU address, using the existing mapping.
|
* @kbdev: Device pointer
|
* @gpu_va: GPU VA to convert
|
*
|
* Return: A CPU pointer to the location within the shared interface region, or
|
* NULL on failure.
|
*/
|
static inline void *iface_gpu_va_to_cpu(struct kbase_device *kbdev, u32 gpu_va)
|
{
|
struct kbase_csf_firmware_interface *interface =
|
kbdev->csf.shared_interface;
|
u8 *kernel_base = interface->kernel_map;
|
|
if (gpu_va < interface->virtual ||
|
gpu_va >= interface->virtual + interface->num_pages * PAGE_SIZE) {
|
dev_err(kbdev->dev,
|
"Interface address 0x%x not within %u-page region at 0x%x",
|
gpu_va, interface->num_pages,
|
interface->virtual);
|
return NULL;
|
}
|
|
return (void *)(kernel_base + (gpu_va - interface->virtual));
|
}
|
|
static int parse_cmd_stream_info(struct kbase_device *kbdev,
|
struct kbase_csf_cmd_stream_info *sinfo,
|
u32 *stream_base)
|
{
|
sinfo->kbdev = kbdev;
|
sinfo->features = stream_base[STREAM_FEATURES/4];
|
sinfo->input = iface_gpu_va_to_cpu(kbdev,
|
stream_base[STREAM_INPUT_VA/4]);
|
sinfo->output = iface_gpu_va_to_cpu(kbdev,
|
stream_base[STREAM_OUTPUT_VA/4]);
|
|
if (sinfo->input == NULL || sinfo->output == NULL)
|
return -EINVAL;
|
|
return 0;
|
}
|
|
static int parse_cmd_stream_group_info(struct kbase_device *kbdev,
|
struct kbase_csf_cmd_stream_group_info *ginfo,
|
u32 *group_base, u32 group_stride)
|
{
|
unsigned int sid;
|
|
ginfo->kbdev = kbdev;
|
ginfo->features = group_base[GROUP_FEATURES/4];
|
ginfo->input = iface_gpu_va_to_cpu(kbdev,
|
group_base[GROUP_INPUT_VA/4]);
|
ginfo->output = iface_gpu_va_to_cpu(kbdev,
|
group_base[GROUP_OUTPUT_VA/4]);
|
|
if (ginfo->input == NULL || ginfo->output == NULL)
|
return -ENOMEM;
|
|
ginfo->suspend_size = group_base[GROUP_SUSPEND_SIZE/4];
|
ginfo->protm_suspend_size = group_base[GROUP_PROTM_SUSPEND_SIZE/4];
|
ginfo->stream_num = group_base[GROUP_STREAM_NUM/4];
|
|
if (ginfo->stream_num < MIN_SUPPORTED_STREAMS_PER_GROUP ||
|
ginfo->stream_num > MAX_SUPPORTED_STREAMS_PER_GROUP) {
|
dev_err(kbdev->dev, "CSG with %u CSs out of range %u-%u",
|
ginfo->stream_num,
|
MIN_SUPPORTED_STREAMS_PER_GROUP,
|
MAX_SUPPORTED_STREAMS_PER_GROUP);
|
return -EINVAL;
|
}
|
|
ginfo->stream_stride = group_base[GROUP_STREAM_STRIDE/4];
|
|
if (ginfo->stream_num * ginfo->stream_stride > group_stride) {
|
dev_err(kbdev->dev,
|
"group stride of 0x%x exceeded by %u CSs with stride 0x%x",
|
group_stride, ginfo->stream_num,
|
ginfo->stream_stride);
|
return -EINVAL;
|
}
|
|
ginfo->streams = kmalloc_array(ginfo->stream_num,
|
sizeof(*ginfo->streams), GFP_KERNEL);
|
|
if (!ginfo->streams)
|
return -ENOMEM;
|
|
for (sid = 0; sid < ginfo->stream_num; sid++) {
|
int err;
|
u32 *stream_base = group_base + (STREAM_CONTROL_0 +
|
ginfo->stream_stride * sid) / 4;
|
|
err = parse_cmd_stream_info(kbdev, &ginfo->streams[sid],
|
stream_base);
|
if (err < 0) {
|
/* caller will free the memory for CSs array */
|
return err;
|
}
|
}
|
|
return 0;
|
}
|
|
static u32 get_firmware_version(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_firmware_interface *interface =
|
kbdev->csf.shared_interface;
|
u32 *shared_info = interface->kernel_map;
|
|
return shared_info[GLB_VERSION/4];
|
}
|
|
static int parse_capabilities(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_firmware_interface *interface =
|
kbdev->csf.shared_interface;
|
u32 *shared_info = interface->kernel_map;
|
struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
|
unsigned int gid;
|
|
/* All offsets are in bytes, so divide by 4 for access via a u32 pointer
|
*/
|
|
/* The version number of the global interface is expected to be a
|
* non-zero value. If it's not, the firmware may not have booted.
|
*/
|
iface->version = get_firmware_version(kbdev);
|
if (!iface->version) {
|
dev_err(kbdev->dev, "Version check failed. Firmware may have failed to boot.");
|
return -EINVAL;
|
}
|
|
|
iface->kbdev = kbdev;
|
iface->features = shared_info[GLB_FEATURES/4];
|
iface->input = iface_gpu_va_to_cpu(kbdev, shared_info[GLB_INPUT_VA/4]);
|
iface->output = iface_gpu_va_to_cpu(kbdev,
|
shared_info[GLB_OUTPUT_VA/4]);
|
|
if (iface->input == NULL || iface->output == NULL)
|
return -ENOMEM;
|
|
iface->group_num = shared_info[GLB_GROUP_NUM/4];
|
|
if (iface->group_num < MIN_SUPPORTED_CSGS ||
|
iface->group_num > MAX_SUPPORTED_CSGS) {
|
dev_err(kbdev->dev,
|
"Interface containing %u CSGs outside of range %u-%u",
|
iface->group_num, MIN_SUPPORTED_CSGS,
|
MAX_SUPPORTED_CSGS);
|
return -EINVAL;
|
}
|
|
iface->group_stride = shared_info[GLB_GROUP_STRIDE/4];
|
iface->prfcnt_size = shared_info[GLB_PRFCNT_SIZE/4];
|
|
if (iface->version >= kbase_csf_interface_version(1, 1, 0)) {
|
iface->instr_features = shared_info[GLB_INSTR_FEATURES / 4];
|
} else {
|
iface->instr_features = 0;
|
}
|
|
if ((GROUP_CONTROL_0 +
|
(unsigned long)iface->group_num * iface->group_stride) >
|
(interface->num_pages * PAGE_SIZE)) {
|
dev_err(kbdev->dev,
|
"interface size of %u pages exceeded by %u CSGs with stride 0x%x",
|
interface->num_pages, iface->group_num,
|
iface->group_stride);
|
return -EINVAL;
|
}
|
|
WARN_ON(iface->groups);
|
|
iface->groups = kcalloc(iface->group_num, sizeof(*iface->groups),
|
GFP_KERNEL);
|
if (!iface->groups)
|
return -ENOMEM;
|
|
for (gid = 0; gid < iface->group_num; gid++) {
|
int err;
|
u32 *group_base = shared_info + (GROUP_CONTROL_0 +
|
iface->group_stride * gid) / 4;
|
|
err = parse_cmd_stream_group_info(kbdev, &iface->groups[gid],
|
group_base, iface->group_stride);
|
if (err < 0) {
|
free_global_iface(kbdev);
|
return err;
|
}
|
}
|
|
return 0;
|
}
|
|
static inline void access_firmware_memory(struct kbase_device *kbdev,
|
u32 gpu_addr, u32 *value, const bool read)
|
{
|
struct kbase_csf_firmware_interface *interface;
|
|
list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
|
if ((gpu_addr >= interface->virtual) &&
|
(gpu_addr < interface->virtual + (interface->num_pages << PAGE_SHIFT))) {
|
u32 offset_bytes = gpu_addr - interface->virtual;
|
u32 page_num = offset_bytes >> PAGE_SHIFT;
|
u32 offset_in_page = offset_bytes & ~PAGE_MASK;
|
struct page *target_page = as_page(
|
interface->phys[page_num]);
|
u32 *cpu_addr = kmap_atomic(target_page);
|
|
if (read) {
|
kbase_sync_single_for_device(kbdev,
|
kbase_dma_addr(target_page) + offset_in_page,
|
sizeof(u32), DMA_BIDIRECTIONAL);
|
|
*value = cpu_addr[offset_in_page >> 2];
|
} else {
|
cpu_addr[offset_in_page >> 2] = *value;
|
|
kbase_sync_single_for_device(kbdev,
|
kbase_dma_addr(target_page) + offset_in_page,
|
sizeof(u32), DMA_BIDIRECTIONAL);
|
}
|
|
kunmap_atomic(cpu_addr);
|
return;
|
}
|
}
|
dev_warn(kbdev->dev, "Invalid GPU VA %x passed\n", gpu_addr);
|
}
|
|
void kbase_csf_read_firmware_memory(struct kbase_device *kbdev,
|
u32 gpu_addr, u32 *value)
|
{
|
access_firmware_memory(kbdev, gpu_addr, value, true);
|
}
|
|
void kbase_csf_update_firmware_memory(struct kbase_device *kbdev,
|
u32 gpu_addr, u32 value)
|
{
|
access_firmware_memory(kbdev, gpu_addr, &value, false);
|
}
|
|
void kbase_csf_firmware_cs_input(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
|
const u32 value)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x\n", offset, value);
|
input_page_write(info->input, offset, value);
|
}
|
|
u32 kbase_csf_firmware_cs_input_read(
|
const struct kbase_csf_cmd_stream_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = input_page_read(info->input, offset);
|
|
dev_dbg(kbdev->dev, "cs input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_cs_input_mask(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
|
const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
input_page_partial_write(info->input, offset, value, mask);
|
}
|
|
u32 kbase_csf_firmware_cs_output(
|
const struct kbase_csf_cmd_stream_info *const info, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = output_page_read(info->output, offset);
|
|
dev_dbg(kbdev->dev, "cs output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_csg_input(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset, const u32 value)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x\n",
|
offset, value);
|
input_page_write(info->input, offset, value);
|
}
|
|
u32 kbase_csf_firmware_csg_input_read(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = input_page_read(info->input, offset);
|
|
dev_dbg(kbdev->dev, "csg input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_csg_input_mask(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset, const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
|
dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
input_page_partial_write(info->input, offset, value, mask);
|
}
|
|
u32 kbase_csf_firmware_csg_output(
|
const struct kbase_csf_cmd_stream_group_info *const info,
|
const u32 offset)
|
{
|
const struct kbase_device * const kbdev = info->kbdev;
|
u32 const val = output_page_read(info->output, offset);
|
|
dev_dbg(kbdev->dev, "csg output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
void kbase_csf_firmware_global_input(
|
const struct kbase_csf_global_iface *const iface, const u32 offset,
|
const u32 value)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
|
dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x\n", offset, value);
|
input_page_write(iface->input, offset, value);
|
}
|
|
void kbase_csf_firmware_global_input_mask(
|
const struct kbase_csf_global_iface *const iface, const u32 offset,
|
const u32 value, const u32 mask)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
|
dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x mask %08x\n",
|
offset, value, mask);
|
input_page_partial_write(iface->input, offset, value, mask);
|
}
|
|
u32 kbase_csf_firmware_global_input_read(
|
const struct kbase_csf_global_iface *const iface, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
u32 const val = input_page_read(iface->input, offset);
|
|
dev_dbg(kbdev->dev, "glob input r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
u32 kbase_csf_firmware_global_output(
|
const struct kbase_csf_global_iface *const iface, const u32 offset)
|
{
|
const struct kbase_device * const kbdev = iface->kbdev;
|
u32 const val = output_page_read(iface->output, offset);
|
|
dev_dbg(kbdev->dev, "glob output r: reg %08x val %08x\n", offset, val);
|
return val;
|
}
|
|
/**
|
* handle_internal_firmware_fatal - Handler for CS internal firmware fault.
|
*
|
* @kbdev: Pointer to kbase device
|
*
|
* Report group fatal error to user space for all GPU command queue groups
|
* in the device, terminate them and reset GPU.
|
*/
|
static void handle_internal_firmware_fatal(struct kbase_device *const kbdev)
|
{
|
int as;
|
|
for (as = 0; as < kbdev->nr_hw_address_spaces; as++) {
|
unsigned long flags;
|
struct kbase_context *kctx;
|
struct kbase_fault fault;
|
|
if (as == MCU_AS_NR)
|
continue;
|
|
/* Only handle the fault for an active address space. Lock is
|
* taken here to atomically get reference to context in an
|
* active address space and retain its refcount.
|
*/
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kctx = kbase_ctx_sched_as_to_ctx_nolock(kbdev, as);
|
|
if (kctx) {
|
kbase_ctx_sched_retain_ctx_refcount(kctx);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
} else {
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
continue;
|
}
|
|
fault = (struct kbase_fault) {
|
.status = GPU_EXCEPTION_TYPE_SW_FAULT_1,
|
};
|
|
kbase_csf_ctx_handle_fault(kctx, &fault);
|
kbase_ctx_sched_release_ctx_lock(kctx);
|
}
|
|
if (kbase_prepare_to_reset_gpu(kbdev,
|
RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
|
kbase_reset_gpu(kbdev);
|
}
|
|
/**
|
* firmware_error_worker - Worker function for handling firmware internal error
|
*
|
* @data: Pointer to a work_struct embedded in kbase device.
|
*
|
* Handle the CS internal firmware error
|
*/
|
static void firmware_error_worker(struct work_struct *const data)
|
{
|
struct kbase_device *const kbdev =
|
container_of(data, struct kbase_device, csf.fw_error_work);
|
|
handle_internal_firmware_fatal(kbdev);
|
}
|
|
static bool global_request_complete(struct kbase_device *const kbdev,
|
u32 const req_mask)
|
{
|
struct kbase_csf_global_iface *global_iface =
|
&kbdev->csf.global_iface;
|
bool complete = false;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
if ((kbase_csf_firmware_global_output(global_iface, GLB_ACK) &
|
req_mask) ==
|
(kbase_csf_firmware_global_input_read(global_iface, GLB_REQ) &
|
req_mask))
|
complete = true;
|
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
return complete;
|
}
|
|
static int wait_for_global_request(struct kbase_device *const kbdev,
|
u32 const req_mask)
|
{
|
const long wait_timeout =
|
kbase_csf_timeout_in_jiffies(kbdev->csf.fw_timeout_ms);
|
long remaining;
|
int err = 0;
|
|
remaining = wait_event_timeout(kbdev->csf.event_wait,
|
global_request_complete(kbdev, req_mask),
|
wait_timeout);
|
|
if (!remaining) {
|
dev_warn(kbdev->dev, "Timed out waiting for global request %x to complete",
|
req_mask);
|
err = -ETIMEDOUT;
|
}
|
|
return err;
|
}
|
|
static void set_global_request(
|
const struct kbase_csf_global_iface *const global_iface,
|
u32 const req_mask)
|
{
|
u32 glb_req;
|
|
kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);
|
|
glb_req = kbase_csf_firmware_global_output(global_iface, GLB_ACK);
|
glb_req ^= req_mask;
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, glb_req,
|
req_mask);
|
}
|
|
static void enable_endpoints_global(
|
const struct kbase_csf_global_iface *const global_iface,
|
u64 const shader_core_mask)
|
{
|
kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_LO,
|
shader_core_mask & U32_MAX);
|
kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_HI,
|
shader_core_mask >> 32);
|
|
set_global_request(global_iface, GLB_REQ_CFG_ALLOC_EN_MASK);
|
}
|
|
static void enable_shader_poweroff_timer(struct kbase_device *const kbdev,
|
const struct kbase_csf_global_iface *const global_iface)
|
{
|
u32 pwroff_reg;
|
|
if (kbdev->csf.firmware_hctl_core_pwr)
|
pwroff_reg =
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SET(DISABLE_GLB_PWROFF_TIMER,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
pwroff_reg = kbdev->csf.mcu_core_pwroff_dur_count;
|
|
kbase_csf_firmware_global_input(global_iface, GLB_PWROFF_TIMER,
|
pwroff_reg);
|
set_global_request(global_iface, GLB_REQ_CFG_PWROFF_TIMER_MASK);
|
|
/* Save the programed reg value in its shadow field */
|
kbdev->csf.mcu_core_pwroff_reg_shadow = pwroff_reg;
|
|
dev_dbg(kbdev->dev, "GLB_PWROFF_TIMER set to 0x%.8x\n", pwroff_reg);
|
}
|
|
static void set_timeout_global(
|
const struct kbase_csf_global_iface *const global_iface,
|
u64 const timeout)
|
{
|
kbase_csf_firmware_global_input(global_iface, GLB_PROGRESS_TIMER,
|
timeout / GLB_PROGRESS_TIMER_TIMEOUT_SCALE);
|
|
set_global_request(global_iface, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
|
}
|
|
static void global_init(struct kbase_device *const kbdev, u64 core_mask)
|
{
|
u32 const ack_irq_mask = GLB_ACK_IRQ_MASK_CFG_ALLOC_EN_MASK |
|
GLB_ACK_IRQ_MASK_PING_MASK |
|
GLB_ACK_IRQ_MASK_CFG_PROGRESS_TIMER_MASK |
|
GLB_ACK_IRQ_MASK_PROTM_ENTER_MASK |
|
GLB_ACK_IRQ_MASK_PROTM_EXIT_MASK |
|
GLB_ACK_IRQ_MASK_FIRMWARE_CONFIG_UPDATE_MASK |
|
GLB_ACK_IRQ_MASK_CFG_PWROFF_TIMER_MASK |
|
GLB_ACK_IRQ_MASK_IDLE_EVENT_MASK;
|
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
/* Set the coherency mode for protected mode execution */
|
WARN_ON(kbdev->system_coherency == COHERENCY_ACE);
|
kbase_csf_firmware_global_input(global_iface, GLB_PROTM_COHERENCY,
|
kbdev->system_coherency);
|
|
/* Update shader core allocation enable mask */
|
enable_endpoints_global(global_iface, core_mask);
|
enable_shader_poweroff_timer(kbdev, global_iface);
|
|
set_timeout_global(global_iface, kbase_csf_timeout_get(kbdev));
|
|
/* Unmask the interrupts */
|
kbase_csf_firmware_global_input(global_iface,
|
GLB_ACK_IRQ_MASK, ack_irq_mask);
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
/**
|
* global_init_on_boot - Sends a global request to control various features.
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface
|
*
|
* Currently only the request to enable endpoints and timeout for GPU progress
|
* timer is sent.
|
*
|
* Return: 0 on success, or negative on failure.
|
*/
|
static int global_init_on_boot(struct kbase_device *const kbdev)
|
{
|
unsigned long flags;
|
u64 core_mask;
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
core_mask = kbase_pm_ca_get_core_mask(kbdev);
|
kbdev->csf.firmware_hctl_core_pwr =
|
kbase_pm_no_mcu_core_pwroff(kbdev);
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
global_init(kbdev, core_mask);
|
|
return wait_for_global_request(kbdev, CSF_GLB_REQ_CFG_MASK);
|
}
|
|
void kbase_csf_firmware_global_reinit(struct kbase_device *kbdev,
|
u64 core_mask)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbdev->csf.glb_init_request_pending = true;
|
kbdev->csf.firmware_hctl_core_pwr =
|
kbase_pm_no_mcu_core_pwroff(kbdev);
|
global_init(kbdev, core_mask);
|
}
|
|
bool kbase_csf_firmware_global_reinit_complete(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
WARN_ON(!kbdev->csf.glb_init_request_pending);
|
|
if (global_request_complete(kbdev, CSF_GLB_REQ_CFG_MASK))
|
kbdev->csf.glb_init_request_pending = false;
|
|
return !kbdev->csf.glb_init_request_pending;
|
}
|
|
void kbase_csf_firmware_update_core_attr(struct kbase_device *kbdev,
|
bool update_core_pwroff_timer, bool update_core_mask, u64 core_mask)
|
{
|
unsigned long flags;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
if (update_core_mask)
|
enable_endpoints_global(&kbdev->csf.global_iface, core_mask);
|
if (update_core_pwroff_timer)
|
enable_shader_poweroff_timer(kbdev, &kbdev->csf.global_iface);
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
bool kbase_csf_firmware_core_attr_updated(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
return global_request_complete(kbdev, GLB_REQ_CFG_ALLOC_EN_MASK |
|
GLB_REQ_CFG_PWROFF_TIMER_MASK);
|
}
|
|
/**
|
* kbase_csf_firmware_reload_worker() -
|
* reload the fw image and re-enable the MCU
|
* @work: CSF Work item for reloading the firmware.
|
*
|
* This helper function will reload the firmware image and re-enable the MCU.
|
* It is supposed to be called after MCU(GPU) has been reset.
|
* Unlike the initial boot the firmware binary image is not parsed completely.
|
* Only the data sections, which were loaded in memory during the initial boot,
|
* are re-initialized either by zeroing them or copying their data from the
|
* firmware binary image. The memory allocation for the firmware pages and
|
* MMU programming is not needed for the reboot, presuming the firmware binary
|
* file on the filesystem would not change.
|
*/
|
static void kbase_csf_firmware_reload_worker(struct work_struct *work)
|
{
|
struct kbase_device *kbdev = container_of(work, struct kbase_device,
|
csf.firmware_reload_work);
|
int err;
|
|
dev_info(kbdev->dev, "reloading firmware");
|
|
/* Reload just the data sections from firmware binary image */
|
err = reload_fw_data_sections(kbdev);
|
if (err)
|
return;
|
|
kbase_csf_tl_reader_reset(&kbdev->timeline->csf_tl_reader);
|
|
/* Reboot the firmware */
|
kbase_csf_firmware_enable_mcu(kbdev);
|
}
|
|
void kbase_csf_firmware_trigger_reload(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
kbdev->csf.firmware_reloaded = false;
|
|
if (kbdev->csf.firmware_reload_needed) {
|
kbdev->csf.firmware_reload_needed = false;
|
queue_work(system_wq, &kbdev->csf.firmware_reload_work);
|
} else {
|
kbase_csf_firmware_enable_mcu(kbdev);
|
}
|
}
|
|
void kbase_csf_firmware_reload_completed(struct kbase_device *kbdev)
|
{
|
u32 version;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
if (unlikely(!kbdev->csf.firmware_inited))
|
return;
|
|
/* Check firmware rebooted properly: we do not expect
|
* the version number to change with a running reboot.
|
*/
|
version = get_firmware_version(kbdev);
|
|
if (version != kbdev->csf.global_iface.version)
|
dev_err(kbdev->dev, "Version check failed in firmware reboot.");
|
|
KBASE_KTRACE_ADD(kbdev, FIRMWARE_REBOOT, NULL, 0u);
|
|
/* Tell MCU state machine to transit to next state */
|
kbdev->csf.firmware_reloaded = true;
|
kbase_pm_update_state(kbdev);
|
}
|
|
static u32 convert_dur_to_idle_count(struct kbase_device *kbdev, const u32 dur_ms)
|
{
|
#define HYSTERESIS_VAL_UNIT_SHIFT (10)
|
/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
|
u64 freq = arch_timer_get_cntfrq();
|
u64 dur_val = dur_ms;
|
u32 cnt_val_u32, reg_val_u32;
|
bool src_system_timestamp = freq > 0;
|
|
if (!src_system_timestamp) {
|
/* Get the cycle_counter source alternative */
|
spin_lock(&kbdev->pm.clk_rtm.lock);
|
if (kbdev->pm.clk_rtm.clks[0])
|
freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
|
else
|
dev_warn(kbdev->dev, "No GPU clock, unexpected intregration issue!");
|
spin_unlock(&kbdev->pm.clk_rtm.lock);
|
|
dev_info(kbdev->dev, "Can't get the timestamp frequency, "
|
"use cycle counter format with firmware idle hysteresis!");
|
}
|
|
/* Formula for dur_val = ((dur_ms/1000) * freq_HZ) >> 10) */
|
dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
|
dur_val = div_u64(dur_val, 1000);
|
|
/* Interface limits the value field to S32_MAX */
|
cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
|
|
reg_val_u32 = GLB_IDLE_TIMER_TIMEOUT_SET(0, cnt_val_u32);
|
/* add the source flag */
|
if (src_system_timestamp)
|
reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_IDLE_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_IDLE_TIMER_TIMER_SOURCE_GPU_COUNTER);
|
|
return reg_val_u32;
|
}
|
|
u32 kbase_csf_firmware_get_gpu_idle_hysteresis_time(struct kbase_device *kbdev)
|
{
|
return kbdev->csf.gpu_idle_hysteresis_ms;
|
}
|
|
u32 kbase_csf_firmware_set_gpu_idle_hysteresis_time(struct kbase_device *kbdev, u32 dur)
|
{
|
unsigned long flags;
|
const u32 hysteresis_val = convert_dur_to_idle_count(kbdev, dur);
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
kbdev->csf.gpu_idle_hysteresis_ms = dur;
|
kbdev->csf.gpu_idle_dur_count = hysteresis_val;
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
dev_dbg(kbdev->dev, "CSF set firmware idle hysteresis count-value: 0x%.8x",
|
hysteresis_val);
|
|
return hysteresis_val;
|
}
|
|
static u32 convert_dur_to_core_pwroff_count(struct kbase_device *kbdev, const u32 dur_us)
|
{
|
#define PWROFF_VAL_UNIT_SHIFT (10)
|
/* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
|
u64 freq = arch_timer_get_cntfrq();
|
u64 dur_val = dur_us;
|
u32 cnt_val_u32, reg_val_u32;
|
bool src_system_timestamp = freq > 0;
|
|
if (!src_system_timestamp) {
|
/* Get the cycle_counter source alternative */
|
spin_lock(&kbdev->pm.clk_rtm.lock);
|
if (kbdev->pm.clk_rtm.clks[0])
|
freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
|
else
|
dev_warn(kbdev->dev, "No GPU clock, unexpected integration issue!");
|
spin_unlock(&kbdev->pm.clk_rtm.lock);
|
|
dev_info(kbdev->dev, "Can't get the timestamp frequency, "
|
"use cycle counter with MCU Core Poweroff timer!");
|
}
|
|
/* Formula for dur_val = ((dur_us/1e6) * freq_HZ) >> 10) */
|
dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
|
dur_val = div_u64(dur_val, 1000000);
|
|
/* Interface limits the value field to S32_MAX */
|
cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
|
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMEOUT_SET(0, cnt_val_u32);
|
/* add the source flag */
|
if (src_system_timestamp)
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
|
else
|
reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
|
GLB_PWROFF_TIMER_TIMER_SOURCE_GPU_COUNTER);
|
|
return reg_val_u32;
|
}
|
|
u32 kbase_csf_firmware_get_mcu_core_pwroff_time(struct kbase_device *kbdev)
|
{
|
return kbdev->csf.mcu_core_pwroff_dur_us;
|
}
|
|
u32 kbase_csf_firmware_set_mcu_core_pwroff_time(struct kbase_device *kbdev, u32 dur)
|
{
|
unsigned long flags;
|
const u32 pwroff = convert_dur_to_core_pwroff_count(kbdev, dur);
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kbdev->csf.mcu_core_pwroff_dur_us = dur;
|
kbdev->csf.mcu_core_pwroff_dur_count = pwroff;
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
dev_dbg(kbdev->dev, "MCU Core Poweroff input update: 0x%.8x", pwroff);
|
|
return pwroff;
|
}
|
|
|
int kbase_csf_firmware_early_init(struct kbase_device *kbdev)
|
{
|
init_waitqueue_head(&kbdev->csf.event_wait);
|
kbdev->csf.interrupt_received = false;
|
kbdev->csf.fw_timeout_ms = CSF_FIRMWARE_TIMEOUT_MS;
|
|
INIT_LIST_HEAD(&kbdev->csf.firmware_interfaces);
|
INIT_LIST_HEAD(&kbdev->csf.firmware_config);
|
INIT_LIST_HEAD(&kbdev->csf.firmware_timeline_metadata);
|
INIT_LIST_HEAD(&kbdev->csf.firmware_trace_buffers.list);
|
INIT_WORK(&kbdev->csf.firmware_reload_work,
|
kbase_csf_firmware_reload_worker);
|
INIT_WORK(&kbdev->csf.fw_error_work, firmware_error_worker);
|
|
mutex_init(&kbdev->csf.reg_lock);
|
|
return 0;
|
}
|
|
int kbase_csf_firmware_init(struct kbase_device *kbdev)
|
{
|
const struct firmware *firmware;
|
const u32 magic = FIRMWARE_HEADER_MAGIC;
|
u8 version_major, version_minor;
|
u32 version_hash;
|
u32 entry_end_offset;
|
u32 entry_offset;
|
int ret;
|
|
lockdep_assert_held(&kbdev->fw_load_lock);
|
|
if (WARN_ON((kbdev->as_free & MCU_AS_BITMASK) == 0))
|
return -EINVAL;
|
kbdev->as_free &= ~MCU_AS_BITMASK;
|
|
ret = kbase_mmu_init(kbdev, &kbdev->csf.mcu_mmu, NULL,
|
BASE_MEM_GROUP_DEFAULT);
|
|
if (ret != 0) {
|
/* Release the address space */
|
kbdev->as_free |= MCU_AS_BITMASK;
|
return ret;
|
}
|
|
kbdev->csf.gpu_idle_hysteresis_ms = FIRMWARE_IDLE_HYSTERESIS_TIME_MS;
|
kbdev->csf.gpu_idle_dur_count = convert_dur_to_idle_count(
|
kbdev, FIRMWARE_IDLE_HYSTERESIS_TIME_MS);
|
|
kbdev->csf.mcu_core_pwroff_dur_us = DEFAULT_GLB_PWROFF_TIMEOUT_US;
|
kbdev->csf.mcu_core_pwroff_dur_count = convert_dur_to_core_pwroff_count(
|
kbdev, DEFAULT_GLB_PWROFF_TIMEOUT_US);
|
|
ret = kbase_mcu_shared_interface_region_tracker_init(kbdev);
|
if (ret != 0) {
|
dev_err(kbdev->dev,
|
"Failed to setup the rb tree for managing shared interface segment\n");
|
goto error;
|
}
|
|
if (request_firmware(&firmware, fw_name, kbdev->dev) != 0) {
|
dev_err(kbdev->dev,
|
"Failed to load firmware image '%s'\n",
|
fw_name);
|
ret = -ENOENT;
|
goto error;
|
}
|
|
if (firmware->size < FIRMWARE_HEADER_LENGTH) {
|
dev_err(kbdev->dev, "Firmware too small\n");
|
ret = -EINVAL;
|
goto error;
|
}
|
|
if (memcmp(firmware->data, &magic, sizeof(magic)) != 0) {
|
dev_err(kbdev->dev, "Incorrect firmware magic\n");
|
ret = -EINVAL;
|
goto error;
|
}
|
|
version_minor = firmware->data[4];
|
version_major = firmware->data[5];
|
|
if (version_major != FIRMWARE_HEADER_VERSION) {
|
dev_err(kbdev->dev,
|
"Firmware header version %d.%d not understood\n",
|
version_major, version_minor);
|
ret = -EINVAL;
|
goto error;
|
}
|
|
memcpy(&version_hash, &firmware->data[8], sizeof(version_hash));
|
|
dev_notice(kbdev->dev, "Loading Mali firmware 0x%x", version_hash);
|
|
memcpy(&entry_end_offset, &firmware->data[0x10],
|
sizeof(entry_end_offset));
|
|
if (entry_end_offset > firmware->size) {
|
dev_err(kbdev->dev, "Firmware image is truncated\n");
|
ret = -EINVAL;
|
goto error;
|
}
|
|
entry_offset = FIRMWARE_HEADER_LENGTH;
|
while (entry_offset < entry_end_offset) {
|
u32 header;
|
unsigned int size;
|
|
memcpy(&header, &firmware->data[entry_offset], sizeof(header));
|
|
size = entry_size(header);
|
|
ret = load_firmware_entry(kbdev, firmware, entry_offset,
|
header);
|
if (ret != 0) {
|
dev_err(kbdev->dev, "Failed to load firmware image\n");
|
goto error;
|
}
|
entry_offset += size;
|
}
|
|
if (!kbdev->csf.shared_interface) {
|
dev_err(kbdev->dev, "Shared interface region not found\n");
|
ret = -EINVAL;
|
goto error;
|
} else {
|
ret = setup_shared_iface_static_region(kbdev);
|
if (ret != 0) {
|
dev_err(kbdev->dev, "Failed to insert a region for shared iface entry parsed from fw image\n");
|
goto error;
|
}
|
}
|
|
ret = kbase_csf_firmware_trace_buffers_init(kbdev);
|
if (ret != 0) {
|
dev_err(kbdev->dev, "Failed to initialize trace buffers\n");
|
goto error;
|
}
|
|
/* Make sure L2 cache is powered up */
|
kbase_pm_wait_for_l2_powered(kbdev);
|
|
/* Load the MMU tables into the selected address space */
|
load_mmu_tables(kbdev);
|
|
boot_csf_firmware(kbdev);
|
|
ret = parse_capabilities(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_doorbell_mapping_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_scheduler_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_setup_dummy_user_reg_page(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_timeout_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = global_init_on_boot(kbdev);
|
if (ret != 0)
|
goto error;
|
|
ret = kbase_csf_firmware_cfg_init(kbdev);
|
if (ret != 0)
|
goto error;
|
|
|
/* Firmware loaded successfully */
|
release_firmware(firmware);
|
KBASE_KTRACE_ADD(kbdev, FIRMWARE_BOOT, NULL,
|
(((u64)version_hash) << 32) |
|
(((u64)version_major) << 8) | version_minor);
|
return 0;
|
|
error:
|
kbase_csf_firmware_term(kbdev);
|
release_firmware(firmware);
|
return ret;
|
}
|
|
void kbase_csf_firmware_term(struct kbase_device *kbdev)
|
{
|
unsigned long flags;
|
int ret = 0;
|
|
cancel_work_sync(&kbdev->csf.fw_error_work);
|
|
ret = kbase_reset_gpu_wait(kbdev);
|
|
WARN(ret, "failed to wait for GPU reset");
|
|
kbase_csf_firmware_cfg_term(kbdev);
|
|
kbase_csf_timeout_term(kbdev);
|
|
kbase_csf_free_dummy_user_reg_page(kbdev);
|
|
kbase_csf_scheduler_term(kbdev);
|
|
kbase_csf_doorbell_mapping_term(kbdev);
|
|
/* Explicitly trigger the disabling of MCU through the state machine and
|
* wait for its completion. It may not have been disabled yet due to the
|
* power policy.
|
*/
|
kbdev->pm.backend.mcu_desired = false;
|
kbase_pm_wait_for_desired_state(kbdev);
|
|
free_global_iface(kbdev);
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kbdev->csf.firmware_inited = false;
|
if (WARN_ON(kbdev->pm.backend.mcu_state != KBASE_MCU_OFF)) {
|
kbdev->pm.backend.mcu_state = KBASE_MCU_OFF;
|
stop_csf_firmware(kbdev);
|
}
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
|
unload_mmu_tables(kbdev);
|
|
kbase_csf_firmware_trace_buffers_term(kbdev);
|
|
while (!list_empty(&kbdev->csf.firmware_interfaces)) {
|
struct kbase_csf_firmware_interface *interface;
|
|
interface =
|
list_first_entry(&kbdev->csf.firmware_interfaces,
|
struct kbase_csf_firmware_interface,
|
node);
|
list_del(&interface->node);
|
|
vunmap(interface->kernel_map);
|
if (interface->flags & CSF_FIRMWARE_ENTRY_PROTECTED) {
|
kbase_csf_protected_memory_free(kbdev, interface->pma,
|
interface->num_pages);
|
} else {
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
interface->num_pages, interface->phys,
|
true, false);
|
}
|
|
kfree(interface->phys);
|
kfree(interface);
|
}
|
|
while (!list_empty(&kbdev->csf.firmware_timeline_metadata)) {
|
struct firmware_timeline_metadata *metadata;
|
|
metadata = list_first_entry(
|
&kbdev->csf.firmware_timeline_metadata,
|
struct firmware_timeline_metadata,
|
node);
|
list_del(&metadata->node);
|
|
kfree(metadata);
|
}
|
|
#ifndef MALI_KBASE_BUILD
|
mali_kutf_fw_utf_entry_cleanup(kbdev);
|
#endif
|
|
/* This will also free up the region allocated for the shared interface
|
* entry parsed from the firmware image.
|
*/
|
kbase_mcu_shared_interface_region_tracker_term(kbdev);
|
|
mutex_destroy(&kbdev->csf.reg_lock);
|
|
kbase_mmu_term(kbdev, &kbdev->csf.mcu_mmu);
|
|
/* Release the address space */
|
kbdev->as_free |= MCU_AS_BITMASK;
|
}
|
|
void kbase_csf_firmware_enable_gpu_idle_timer(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
const u32 glb_req =
|
kbase_csf_firmware_global_input_read(global_iface, GLB_REQ);
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
/* The scheduler is assumed to only call the enable when its internal
|
* state indicates that the idle timer has previously been disabled. So
|
* on entry the expected field values are:
|
* 1. GLOBAL_INPUT_BLOCK.GLB_REQ.IDLE_ENABLE: 0
|
* 2. GLOBAL_OUTPUT_BLOCK.GLB_ACK.IDLE_ENABLE: 0, or, on 1 -> 0
|
*/
|
|
if (glb_req & GLB_REQ_IDLE_ENABLE_MASK)
|
dev_err(kbdev->dev, "Incoherent scheduler state on REQ_IDLE_ENABLE!");
|
|
kbase_csf_firmware_global_input(global_iface, GLB_IDLE_TIMER,
|
kbdev->csf.gpu_idle_dur_count);
|
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
|
GLB_REQ_REQ_IDLE_ENABLE, GLB_REQ_IDLE_ENABLE_MASK);
|
|
dev_dbg(kbdev->dev, "Enabling GPU idle timer with count-value: 0x%.8x",
|
kbdev->csf.gpu_idle_dur_count);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
}
|
|
void kbase_csf_firmware_disable_gpu_idle_timer(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
|
GLB_REQ_REQ_IDLE_DISABLE,
|
GLB_REQ_IDLE_DISABLE_MASK);
|
dev_dbg(kbdev->dev, "Sending request to disable gpu idle timer");
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
}
|
|
void kbase_csf_firmware_ping(struct kbase_device *const kbdev)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_PING_MASK);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
int kbase_csf_firmware_ping_wait(struct kbase_device *const kbdev)
|
{
|
kbase_csf_firmware_ping(kbdev);
|
return wait_for_global_request(kbdev, GLB_REQ_PING_MASK);
|
}
|
|
int kbase_csf_firmware_set_timeout(struct kbase_device *const kbdev,
|
u64 const timeout)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
unsigned long flags;
|
int err;
|
|
/* The 'reg_lock' is also taken and is held till the update is not
|
* complete, to ensure the update of timeout value by multiple Users
|
* gets serialized.
|
*/
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_timeout_global(global_iface, timeout);
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
err = wait_for_global_request(kbdev, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
return err;
|
}
|
|
void kbase_csf_enter_protected_mode(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
int err;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_PROTM_ENTER_MASK);
|
dev_dbg(kbdev->dev, "Sending request to enter protected mode");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
err = wait_for_global_request(kbdev, GLB_REQ_PROTM_ENTER_MASK);
|
|
if (!err) {
|
unsigned long irq_flags;
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
kbdev->protected_mode = true;
|
kbase_ipa_protection_mode_switch_event(kbdev);
|
kbase_ipa_control_protm_entered(kbdev);
|
|
kbase_csf_scheduler_spin_lock(kbdev, &irq_flags);
|
kbase_hwcnt_backend_csf_protm_entered(&kbdev->hwcnt_gpu_iface);
|
kbase_csf_scheduler_spin_unlock(kbdev, irq_flags);
|
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
}
|
}
|
|
void kbase_csf_firmware_trigger_mcu_halt(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
set_global_request(global_iface, GLB_REQ_HALT_MASK);
|
dev_dbg(kbdev->dev, "Sending request to HALT MCU");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
}
|
|
int kbase_csf_trigger_firmware_config_update(struct kbase_device *kbdev)
|
{
|
struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
|
unsigned long flags;
|
int err = 0;
|
|
/* Ensure GPU is powered-up until we complete config update.*/
|
kbase_csf_scheduler_pm_active(kbdev);
|
|
/* The 'reg_lock' is also taken and is held till the update is
|
* complete, to ensure the config update gets serialized.
|
*/
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
|
set_global_request(global_iface, GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
|
dev_dbg(kbdev->dev, "Sending request for FIRMWARE_CONFIG_UPDATE");
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
err = wait_for_global_request(kbdev,
|
GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
kbase_csf_scheduler_pm_idle(kbdev);
|
return err;
|
}
|
|
/**
|
* copy_grp_and_stm - Copy CS and/or group data
|
*
|
* @iface: Global CSF interface provided by the firmware.
|
* @group_data: Pointer where to store all the group data
|
* (sequentially).
|
* @max_group_num: The maximum number of groups to be read. Can be 0, in
|
* which case group_data is unused.
|
* @stream_data: Pointer where to store all the CS data
|
* (sequentially).
|
* @max_total_stream_num: The maximum number of CSs to be read.
|
* Can be 0, in which case stream_data is unused.
|
*
|
* Return: Total number of CSs, summed across all groups.
|
*/
|
static u32 copy_grp_and_stm(
|
const struct kbase_csf_global_iface * const iface,
|
struct basep_cs_group_control * const group_data,
|
u32 max_group_num,
|
struct basep_cs_stream_control * const stream_data,
|
u32 max_total_stream_num)
|
{
|
u32 i, total_stream_num = 0;
|
|
if (WARN_ON((max_group_num > 0) && !group_data))
|
max_group_num = 0;
|
|
if (WARN_ON((max_total_stream_num > 0) && !stream_data))
|
max_total_stream_num = 0;
|
|
for (i = 0; i < iface->group_num; i++) {
|
u32 j;
|
|
if (i < max_group_num) {
|
group_data[i].features = iface->groups[i].features;
|
group_data[i].stream_num = iface->groups[i].stream_num;
|
group_data[i].suspend_size =
|
iface->groups[i].suspend_size;
|
}
|
for (j = 0; j < iface->groups[i].stream_num; j++) {
|
if (total_stream_num < max_total_stream_num)
|
stream_data[total_stream_num].features =
|
iface->groups[i].streams[j].features;
|
total_stream_num++;
|
}
|
}
|
|
return total_stream_num;
|
}
|
|
u32 kbase_csf_firmware_get_glb_iface(
|
struct kbase_device *kbdev,
|
struct basep_cs_group_control *const group_data,
|
u32 const max_group_num,
|
struct basep_cs_stream_control *const stream_data,
|
u32 const max_total_stream_num, u32 *const glb_version,
|
u32 *const features, u32 *const group_num, u32 *const prfcnt_size,
|
u32 *instr_features)
|
{
|
const struct kbase_csf_global_iface * const iface =
|
&kbdev->csf.global_iface;
|
|
if (WARN_ON(!glb_version) || WARN_ON(!features) ||
|
WARN_ON(!group_num) || WARN_ON(!prfcnt_size) ||
|
WARN_ON(!instr_features))
|
return 0;
|
|
*glb_version = iface->version;
|
*features = iface->features;
|
*group_num = iface->group_num;
|
*prfcnt_size = iface->prfcnt_size;
|
*instr_features = iface->instr_features;
|
|
return copy_grp_and_stm(iface, group_data, max_group_num,
|
stream_data, max_total_stream_num);
|
}
|
|
const char *kbase_csf_firmware_get_timeline_metadata(
|
struct kbase_device *kbdev, const char *name, size_t *size)
|
{
|
struct firmware_timeline_metadata *metadata;
|
|
list_for_each_entry(
|
metadata, &kbdev->csf.firmware_timeline_metadata, node) {
|
if (!strcmp(metadata->name, name)) {
|
*size = metadata->size;
|
return metadata->data;
|
}
|
}
|
|
*size = 0;
|
return NULL;
|
}
|
|
int kbase_csf_firmware_mcu_shared_mapping_init(
|
struct kbase_device *kbdev,
|
unsigned int num_pages,
|
unsigned long cpu_map_properties,
|
unsigned long gpu_map_properties,
|
struct kbase_csf_mapping *csf_mapping)
|
{
|
struct tagged_addr *phys;
|
struct kbase_va_region *va_reg;
|
struct page **page_list;
|
void *cpu_addr;
|
int i, ret = 0;
|
pgprot_t cpu_map_prot = PAGE_KERNEL;
|
unsigned long gpu_map_prot;
|
|
if (cpu_map_properties & PROT_READ)
|
cpu_map_prot = PAGE_KERNEL_RO;
|
|
if (kbdev->system_coherency == COHERENCY_ACE) {
|
gpu_map_prot =
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
|
} else {
|
gpu_map_prot =
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
cpu_map_prot = pgprot_writecombine(cpu_map_prot);
|
};
|
|
phys = kmalloc_array(num_pages, sizeof(*phys), GFP_KERNEL);
|
if (!phys)
|
goto out;
|
|
page_list = kmalloc_array(num_pages, sizeof(*page_list), GFP_KERNEL);
|
if (!page_list)
|
goto page_list_alloc_error;
|
|
ret = kbase_mem_pool_alloc_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false);
|
if (ret <= 0)
|
goto phys_mem_pool_alloc_error;
|
|
for (i = 0; i < num_pages; i++)
|
page_list[i] = as_page(phys[i]);
|
|
cpu_addr = vmap(page_list, num_pages, VM_MAP, cpu_map_prot);
|
if (!cpu_addr)
|
goto vmap_error;
|
|
va_reg = kbase_alloc_free_region(&kbdev->csf.shared_reg_rbtree, 0,
|
num_pages, KBASE_REG_ZONE_MCU_SHARED);
|
if (!va_reg)
|
goto va_region_alloc_error;
|
|
mutex_lock(&kbdev->csf.reg_lock);
|
ret = kbase_add_va_region_rbtree(kbdev, va_reg, 0, num_pages, 1);
|
va_reg->flags &= ~KBASE_REG_FREE;
|
if (ret)
|
goto va_region_add_error;
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
gpu_map_properties &= (KBASE_REG_GPU_RD | KBASE_REG_GPU_WR);
|
gpu_map_properties |= gpu_map_prot;
|
|
ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu,
|
va_reg->start_pfn, &phys[0], num_pages,
|
gpu_map_properties, KBASE_MEM_GROUP_CSF_FW);
|
if (ret)
|
goto mmu_insert_pages_error;
|
|
kfree(page_list);
|
csf_mapping->phys = phys;
|
csf_mapping->cpu_addr = cpu_addr;
|
csf_mapping->va_reg = va_reg;
|
csf_mapping->num_pages = num_pages;
|
|
return 0;
|
|
mmu_insert_pages_error:
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_remove_va_region(va_reg);
|
va_region_add_error:
|
kbase_free_alloced_region(va_reg);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
va_region_alloc_error:
|
vunmap(cpu_addr);
|
vmap_error:
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
num_pages, phys, false, false);
|
|
phys_mem_pool_alloc_error:
|
kfree(page_list);
|
page_list_alloc_error:
|
kfree(phys);
|
out:
|
/* Zero-initialize the mapping to make sure that the termination
|
* function doesn't try to unmap or free random addresses.
|
*/
|
csf_mapping->phys = NULL;
|
csf_mapping->cpu_addr = NULL;
|
csf_mapping->va_reg = NULL;
|
csf_mapping->num_pages = 0;
|
|
return -ENOMEM;
|
}
|
|
void kbase_csf_firmware_mcu_shared_mapping_term(
|
struct kbase_device *kbdev, struct kbase_csf_mapping *csf_mapping)
|
{
|
if (csf_mapping->va_reg) {
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_remove_va_region(csf_mapping->va_reg);
|
kbase_free_alloced_region(csf_mapping->va_reg);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
}
|
|
if (csf_mapping->phys) {
|
kbase_mem_pool_free_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
csf_mapping->num_pages, csf_mapping->phys, false,
|
false);
|
}
|
|
vunmap(csf_mapping->cpu_addr);
|
kfree(csf_mapping->phys);
|
}
|