// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2018-2021 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
#include <mali_kbase.h>
|
#include <gpu/mali_kbase_gpu_fault.h>
|
#include <mali_kbase_reset_gpu.h>
|
#include "mali_kbase_csf.h"
|
#include "backend/gpu/mali_kbase_pm_internal.h"
|
#include <linux/export.h>
|
#include <linux/priority_control_manager.h>
|
#include <linux/shmem_fs.h>
|
#include <uapi/gpu/arm/bifrost/csf/mali_gpu_csf_registers.h>
|
#include "mali_kbase_csf_tiler_heap.h"
|
#include <mmu/mali_kbase_mmu.h>
|
#include "mali_kbase_csf_timeout.h"
|
#include <csf/ipa_control/mali_kbase_csf_ipa_control.h>
|
|
#define CS_REQ_EXCEPTION_MASK (CS_REQ_FAULT_MASK | CS_REQ_FATAL_MASK)
|
#define CS_ACK_EXCEPTION_MASK (CS_ACK_FAULT_MASK | CS_ACK_FATAL_MASK)
|
#define POWER_DOWN_LATEST_FLUSH_VALUE ((u32)1)
|
|
/**
|
* struct kbase_csf_event - CSF event callback.
|
*
|
* This structure belongs to the list of events which is part of a Kbase
|
* context, and describes a callback function with a custom parameter to pass
|
* to it when a CSF event is signalled.
|
*
|
* @link: Link to the rest of the list.
|
* @kctx: Pointer to the Kbase context this event belongs to.
|
* @callback: Callback function to call when a CSF event is signalled.
|
* @param: Parameter to pass to the callback function.
|
*/
|
struct kbase_csf_event {
|
struct list_head link;
|
struct kbase_context *kctx;
|
kbase_csf_event_callback *callback;
|
void *param;
|
};
|
|
const u8 kbasep_csf_queue_group_priority_to_relative[BASE_QUEUE_GROUP_PRIORITY_COUNT] = {
|
KBASE_QUEUE_GROUP_PRIORITY_HIGH,
|
KBASE_QUEUE_GROUP_PRIORITY_MEDIUM,
|
KBASE_QUEUE_GROUP_PRIORITY_LOW,
|
KBASE_QUEUE_GROUP_PRIORITY_REALTIME
|
};
|
const u8 kbasep_csf_relative_to_queue_group_priority[KBASE_QUEUE_GROUP_PRIORITY_COUNT] = {
|
BASE_QUEUE_GROUP_PRIORITY_REALTIME,
|
BASE_QUEUE_GROUP_PRIORITY_HIGH,
|
BASE_QUEUE_GROUP_PRIORITY_MEDIUM,
|
BASE_QUEUE_GROUP_PRIORITY_LOW
|
};
|
|
static void put_user_pages_mmap_handle(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
unsigned long cookie_nr;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (queue->handle == BASEP_MEM_INVALID_HANDLE)
|
return;
|
|
cookie_nr =
|
PFN_DOWN(queue->handle - BASEP_MEM_CSF_USER_IO_PAGES_HANDLE);
|
|
if (!WARN_ON(kctx->csf.user_pages_info[cookie_nr] != queue)) {
|
/* free up cookie */
|
kctx->csf.user_pages_info[cookie_nr] = NULL;
|
bitmap_set(kctx->csf.cookies, cookie_nr, 1);
|
}
|
|
queue->handle = BASEP_MEM_INVALID_HANDLE;
|
}
|
|
/* Reserve a cookie, to be returned as a handle to userspace for creating
|
* the CPU mapping of the pair of input/output pages and Hw doorbell page.
|
* Will return 0 in case of success otherwise negative on failure.
|
*/
|
static int get_user_pages_mmap_handle(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
unsigned long cookie, cookie_nr;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (bitmap_empty(kctx->csf.cookies,
|
KBASE_CSF_NUM_USER_IO_PAGES_HANDLE)) {
|
dev_err(kctx->kbdev->dev,
|
"No csf cookies available for allocation!");
|
return -ENOMEM;
|
}
|
|
/* allocate a cookie */
|
cookie_nr = find_first_bit(kctx->csf.cookies,
|
KBASE_CSF_NUM_USER_IO_PAGES_HANDLE);
|
if (kctx->csf.user_pages_info[cookie_nr]) {
|
dev_err(kctx->kbdev->dev,
|
"Inconsistent state of csf cookies!");
|
return -EINVAL;
|
}
|
kctx->csf.user_pages_info[cookie_nr] = queue;
|
bitmap_clear(kctx->csf.cookies, cookie_nr, 1);
|
|
/* relocate to correct base */
|
cookie = cookie_nr + PFN_DOWN(BASEP_MEM_CSF_USER_IO_PAGES_HANDLE);
|
cookie <<= PAGE_SHIFT;
|
|
queue->handle = (u64)cookie;
|
|
return 0;
|
}
|
|
static void gpu_munmap_user_io_pages(struct kbase_context *kctx,
|
struct kbase_va_region *reg)
|
{
|
size_t num_pages = 2;
|
|
kbase_mmu_teardown_pages(kctx->kbdev, &kctx->kbdev->csf.mcu_mmu,
|
reg->start_pfn, num_pages, MCU_AS_NR);
|
|
WARN_ON(reg->flags & KBASE_REG_FREE);
|
|
mutex_lock(&kctx->kbdev->csf.reg_lock);
|
kbase_remove_va_region(reg);
|
mutex_unlock(&kctx->kbdev->csf.reg_lock);
|
}
|
|
static void init_user_io_pages(struct kbase_queue *queue)
|
{
|
u32 *input_addr = (u32 *)(queue->user_io_addr);
|
u32 *output_addr = (u32 *)(queue->user_io_addr + PAGE_SIZE);
|
|
input_addr[CS_INSERT_LO/4] = 0;
|
input_addr[CS_INSERT_HI/4] = 0;
|
|
input_addr[CS_EXTRACT_INIT_LO/4] = 0;
|
input_addr[CS_EXTRACT_INIT_HI/4] = 0;
|
|
output_addr[CS_EXTRACT_LO/4] = 0;
|
output_addr[CS_EXTRACT_HI/4] = 0;
|
|
output_addr[CS_ACTIVE/4] = 0;
|
}
|
|
/* Map the input/output pages in the shared interface segment of MCU firmware
|
* address space.
|
*/
|
static int gpu_mmap_user_io_pages(struct kbase_device *kbdev,
|
struct tagged_addr *phys, struct kbase_va_region *reg)
|
{
|
unsigned long mem_flags = KBASE_REG_GPU_RD;
|
const size_t num_pages = 2;
|
int ret;
|
|
#if ((KERNEL_VERSION(4, 4, 147) >= LINUX_VERSION_CODE) || \
|
((KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE) && \
|
(KERNEL_VERSION(4, 5, 0) <= LINUX_VERSION_CODE)))
|
mem_flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
#else
|
if (kbdev->system_coherency == COHERENCY_NONE) {
|
mem_flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
} else {
|
mem_flags |= KBASE_REG_SHARE_BOTH |
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_SHARED);
|
}
|
#endif
|
|
mutex_lock(&kbdev->csf.reg_lock);
|
ret = kbase_add_va_region_rbtree(kbdev, reg, 0, num_pages, 1);
|
reg->flags &= ~KBASE_REG_FREE;
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
if (ret)
|
return ret;
|
|
/* Map input page */
|
ret = kbase_mmu_insert_pages(kbdev, &kbdev->csf.mcu_mmu,
|
reg->start_pfn, &phys[0],
|
1, mem_flags, MCU_AS_NR,
|
KBASE_MEM_GROUP_CSF_IO);
|
if (ret)
|
goto bad_insert;
|
|
/* Map output page, it needs rw access */
|
mem_flags |= KBASE_REG_GPU_WR;
|
ret = kbase_mmu_insert_pages(kbdev, &kbdev->csf.mcu_mmu,
|
reg->start_pfn + 1, &phys[1],
|
1, mem_flags, MCU_AS_NR,
|
KBASE_MEM_GROUP_CSF_IO);
|
if (ret)
|
goto bad_insert_output_page;
|
|
return 0;
|
|
bad_insert_output_page:
|
kbase_mmu_teardown_pages(kbdev, &kbdev->csf.mcu_mmu,
|
reg->start_pfn, 1, MCU_AS_NR);
|
bad_insert:
|
mutex_lock(&kbdev->csf.reg_lock);
|
kbase_remove_va_region(reg);
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
return ret;
|
}
|
|
static void kernel_unmap_user_io_pages(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
const size_t num_pages = 2;
|
|
kbase_gpu_vm_lock(kctx);
|
|
vunmap(queue->user_io_addr);
|
|
WARN_ON(num_pages > atomic_read(&kctx->permanent_mapped_pages));
|
atomic_sub(num_pages, &kctx->permanent_mapped_pages);
|
|
kbase_gpu_vm_unlock(kctx);
|
}
|
|
static int kernel_map_user_io_pages(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
struct page *page_list[2];
|
pgprot_t cpu_map_prot;
|
int ret = 0;
|
size_t i;
|
|
kbase_gpu_vm_lock(kctx);
|
|
if (ARRAY_SIZE(page_list) > (KBASE_PERMANENTLY_MAPPED_MEM_LIMIT_PAGES -
|
atomic_read(&kctx->permanent_mapped_pages))) {
|
ret = -ENOMEM;
|
goto unlock;
|
}
|
|
/* The pages are mapped to Userspace also, so use the same mapping
|
* attributes as used inside the CPU page fault handler.
|
*/
|
#if ((KERNEL_VERSION(4, 4, 147) >= LINUX_VERSION_CODE) || \
|
((KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE) && \
|
(KERNEL_VERSION(4, 5, 0) <= LINUX_VERSION_CODE)))
|
cpu_map_prot = pgprot_device(PAGE_KERNEL);
|
#else
|
if (kctx->kbdev->system_coherency == COHERENCY_NONE)
|
cpu_map_prot = pgprot_writecombine(PAGE_KERNEL);
|
else
|
cpu_map_prot = PAGE_KERNEL;
|
#endif
|
|
for (i = 0; i < ARRAY_SIZE(page_list); i++)
|
page_list[i] = as_page(queue->phys[i]);
|
|
queue->user_io_addr = vmap(page_list, ARRAY_SIZE(page_list), VM_MAP, cpu_map_prot);
|
|
if (!queue->user_io_addr)
|
ret = -ENOMEM;
|
else
|
atomic_add(ARRAY_SIZE(page_list), &kctx->permanent_mapped_pages);
|
|
unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return ret;
|
}
|
|
static void term_queue_group(struct kbase_queue_group *group);
|
static void get_queue(struct kbase_queue *queue);
|
static void release_queue(struct kbase_queue *queue);
|
|
/**
|
* kbase_csf_free_command_stream_user_pages() - Free the resources allocated
|
* for a queue at the time of bind.
|
*
|
* @kctx: Address of the kbase context within which the queue was created.
|
* @queue: Pointer to the queue to be unlinked.
|
*
|
* This function will free the pair of physical pages allocated for a GPU
|
* command queue, and also release the hardware doorbell page, that were mapped
|
* into the process address space to enable direct submission of commands to
|
* the hardware. Also releases the reference taken on the queue when the mapping
|
* was created.
|
*
|
* This function will be called only when the mapping is being removed and
|
* so the resources for queue will not get freed up until the mapping is
|
* removed even though userspace could have terminated the queue.
|
* Kernel will ensure that the termination of Kbase context would only be
|
* triggered after the mapping is removed.
|
*
|
* If an explicit or implicit unbind was missed by the userspace then the
|
* mapping will persist. On process exit kernel itself will remove the mapping.
|
*/
|
static void kbase_csf_free_command_stream_user_pages(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
const size_t num_pages = 2;
|
|
gpu_munmap_user_io_pages(kctx, queue->reg);
|
kernel_unmap_user_io_pages(kctx, queue);
|
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
|
num_pages, queue->phys, true, false);
|
|
kfree(queue->reg);
|
queue->reg = NULL;
|
|
/* If the queue has already been terminated by userspace
|
* then the ref count for queue object will drop to 0 here.
|
*/
|
release_queue(queue);
|
}
|
|
int kbase_csf_alloc_command_stream_user_pages(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
struct kbase_device *kbdev = kctx->kbdev;
|
struct kbase_va_region *reg;
|
const size_t num_pages = 2;
|
int ret;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
reg = kbase_alloc_free_region(&kctx->kbdev->csf.shared_reg_rbtree, 0,
|
num_pages, KBASE_REG_ZONE_MCU_SHARED);
|
if (!reg)
|
return -ENOMEM;
|
|
ret = kbase_mem_pool_alloc_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
|
num_pages, queue->phys, false);
|
|
if (ret != num_pages)
|
goto phys_alloc_failed;
|
|
ret = kernel_map_user_io_pages(kctx, queue);
|
if (ret)
|
goto kernel_map_failed;
|
|
init_user_io_pages(queue);
|
|
ret = gpu_mmap_user_io_pages(kctx->kbdev, queue->phys, reg);
|
if (ret)
|
goto gpu_mmap_failed;
|
|
queue->reg = reg;
|
|
mutex_lock(&kbdev->csf.reg_lock);
|
if (kbdev->csf.db_file_offsets >
|
(U32_MAX - BASEP_QUEUE_NR_MMAP_USER_PAGES + 1))
|
kbdev->csf.db_file_offsets = 0;
|
|
queue->db_file_offset = kbdev->csf.db_file_offsets;
|
kbdev->csf.db_file_offsets += BASEP_QUEUE_NR_MMAP_USER_PAGES;
|
|
WARN(atomic_read(&queue->refcount) != 1, "Incorrect refcounting for queue object\n");
|
/* This is the second reference taken on the queue object and
|
* would be dropped only when the IO mapping is removed either
|
* explicitly by userspace or implicitly by kernel on process exit.
|
*/
|
get_queue(queue);
|
queue->bind_state = KBASE_CSF_QUEUE_BOUND;
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
return 0;
|
|
gpu_mmap_failed:
|
kernel_unmap_user_io_pages(kctx, queue);
|
|
kernel_map_failed:
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_IO],
|
num_pages, queue->phys, false, false);
|
|
phys_alloc_failed:
|
kfree(reg);
|
|
return -ENOMEM;
|
}
|
|
static struct kbase_queue_group *find_queue_group(struct kbase_context *kctx,
|
u8 group_handle)
|
{
|
uint index = group_handle;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (index < MAX_QUEUE_GROUP_NUM && kctx->csf.queue_groups[index]) {
|
if (WARN_ON(kctx->csf.queue_groups[index]->handle != index))
|
return NULL;
|
return kctx->csf.queue_groups[index];
|
}
|
|
return NULL;
|
}
|
|
int kbase_csf_queue_group_handle_is_valid(struct kbase_context *kctx,
|
u8 group_handle)
|
{
|
struct kbase_queue_group *group;
|
|
mutex_lock(&kctx->csf.lock);
|
group = find_queue_group(kctx, group_handle);
|
mutex_unlock(&kctx->csf.lock);
|
|
return group ? 0 : -EINVAL;
|
}
|
|
static struct kbase_queue *find_queue(struct kbase_context *kctx, u64 base_addr)
|
{
|
struct kbase_queue *queue;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
list_for_each_entry(queue, &kctx->csf.queue_list, link) {
|
if (base_addr == queue->base_addr)
|
return queue;
|
}
|
|
return NULL;
|
}
|
|
static void get_queue(struct kbase_queue *queue)
|
{
|
WARN_ON(!atomic_inc_not_zero(&queue->refcount));
|
}
|
|
static void release_queue(struct kbase_queue *queue)
|
{
|
lockdep_assert_held(&queue->kctx->csf.lock);
|
|
WARN_ON(atomic_read(&queue->refcount) <= 0);
|
|
if (atomic_dec_and_test(&queue->refcount)) {
|
/* The queue can't still be on the per context list. */
|
WARN_ON(!list_empty(&queue->link));
|
WARN_ON(queue->group);
|
kfree(queue);
|
}
|
}
|
|
static void oom_event_worker(struct work_struct *data);
|
static void fatal_event_worker(struct work_struct *data);
|
|
/* Between reg and reg_ex, one and only one must be null */
|
static int csf_queue_register_internal(struct kbase_context *kctx,
|
struct kbase_ioctl_cs_queue_register *reg,
|
struct kbase_ioctl_cs_queue_register_ex *reg_ex)
|
{
|
struct kbase_queue *queue;
|
int ret = 0;
|
struct kbase_va_region *region;
|
u64 queue_addr;
|
size_t queue_size;
|
|
/* Only one pointer expected, otherwise coding error */
|
if ((reg == NULL && reg_ex == NULL) || (reg && reg_ex)) {
|
dev_err(kctx->kbdev->dev,
|
"Error, one and only one param-ptr expected!");
|
return -EINVAL;
|
}
|
|
/* struct kbase_ioctl_cs_queue_register_ex contains a full
|
* struct kbase_ioctl_cs_queue_register at the start address. So
|
* the pointer can be safely cast to pointing to a
|
* kbase_ioctl_cs_queue_register object.
|
*/
|
if (reg_ex)
|
reg = (struct kbase_ioctl_cs_queue_register *)reg_ex;
|
|
/* Validate the queue priority */
|
if (reg->priority > BASE_QUEUE_MAX_PRIORITY)
|
return -EINVAL;
|
|
queue_addr = reg->buffer_gpu_addr;
|
queue_size = reg->buffer_size >> PAGE_SHIFT;
|
|
mutex_lock(&kctx->csf.lock);
|
|
/* Check if queue is already registered */
|
if (find_queue(kctx, queue_addr) != NULL) {
|
ret = -EINVAL;
|
goto out;
|
}
|
|
/* Check if the queue address is valid */
|
kbase_gpu_vm_lock(kctx);
|
region = kbase_region_tracker_find_region_enclosing_address(kctx,
|
queue_addr);
|
|
if (kbase_is_region_invalid_or_free(region)) {
|
ret = -ENOENT;
|
goto out_unlock_vm;
|
}
|
|
if (queue_size > (region->nr_pages -
|
((queue_addr >> PAGE_SHIFT) - region->start_pfn))) {
|
ret = -EINVAL;
|
goto out_unlock_vm;
|
}
|
|
/* Check address validity on cs_trace buffer etc. Don't care
|
* if not enabled (i.e. when size is 0).
|
*/
|
if (reg_ex && reg_ex->ex_buffer_size) {
|
int buf_pages = (reg_ex->ex_buffer_size +
|
(1 << PAGE_SHIFT) - 1) >> PAGE_SHIFT;
|
|
region = kbase_region_tracker_find_region_enclosing_address(
|
kctx, reg_ex->ex_buffer_base);
|
if (kbase_is_region_invalid_or_free(region)) {
|
ret = -ENOENT;
|
goto out_unlock_vm;
|
}
|
|
if (buf_pages > (region->nr_pages -
|
((reg_ex->ex_buffer_base >> PAGE_SHIFT) -
|
region->start_pfn))) {
|
ret = -EINVAL;
|
goto out_unlock_vm;
|
}
|
|
region = kbase_region_tracker_find_region_enclosing_address(
|
kctx, reg_ex->ex_offset_var_addr);
|
if (kbase_is_region_invalid_or_free(region)) {
|
ret = -ENOENT;
|
goto out_unlock_vm;
|
}
|
}
|
|
queue = kzalloc(sizeof(struct kbase_queue), GFP_KERNEL);
|
|
if (!queue) {
|
ret = -ENOMEM;
|
goto out_unlock_vm;
|
}
|
|
queue->kctx = kctx;
|
queue->base_addr = queue_addr;
|
queue->queue_reg = region;
|
queue->size = (queue_size << PAGE_SHIFT);
|
queue->csi_index = KBASEP_IF_NR_INVALID;
|
queue->enabled = false;
|
|
queue->priority = reg->priority;
|
atomic_set(&queue->refcount, 1);
|
|
queue->group = NULL;
|
queue->bind_state = KBASE_CSF_QUEUE_UNBOUND;
|
queue->handle = BASEP_MEM_INVALID_HANDLE;
|
queue->doorbell_nr = KBASEP_USER_DB_NR_INVALID;
|
|
queue->status_wait = 0;
|
queue->sync_ptr = 0;
|
queue->sync_value = 0;
|
|
queue->sb_status = 0;
|
queue->blocked_reason = CS_STATUS_BLOCKED_REASON_REASON_UNBLOCKED;
|
|
INIT_LIST_HEAD(&queue->link);
|
INIT_LIST_HEAD(&queue->error.link);
|
INIT_WORK(&queue->oom_event_work, oom_event_worker);
|
INIT_WORK(&queue->fatal_event_work, fatal_event_worker);
|
list_add(&queue->link, &kctx->csf.queue_list);
|
|
region->flags |= KBASE_REG_NO_USER_FREE;
|
|
/* Initialize the cs_trace configuration parameters, When buffer_size
|
* is 0, trace is disabled. Here we only update the fields when
|
* enabled, otherwise leave them as default zeros.
|
*/
|
if (reg_ex && reg_ex->ex_buffer_size) {
|
u32 cfg = CS_INSTR_CONFIG_EVENT_SIZE_SET(
|
0, reg_ex->ex_event_size);
|
cfg = CS_INSTR_CONFIG_EVENT_STATE_SET(
|
cfg, reg_ex->ex_event_state);
|
|
queue->trace_cfg = cfg;
|
queue->trace_buffer_size = reg_ex->ex_buffer_size;
|
queue->trace_buffer_base = reg_ex->ex_buffer_base;
|
queue->trace_offset_ptr = reg_ex->ex_offset_var_addr;
|
}
|
|
out_unlock_vm:
|
kbase_gpu_vm_unlock(kctx);
|
out:
|
mutex_unlock(&kctx->csf.lock);
|
|
return ret;
|
}
|
|
int kbase_csf_queue_register(struct kbase_context *kctx,
|
struct kbase_ioctl_cs_queue_register *reg)
|
{
|
return csf_queue_register_internal(kctx, reg, NULL);
|
}
|
|
int kbase_csf_queue_register_ex(struct kbase_context *kctx,
|
struct kbase_ioctl_cs_queue_register_ex *reg)
|
{
|
struct kbase_csf_global_iface const *const iface =
|
&kctx->kbdev->csf.global_iface;
|
u32 const glb_version = iface->version;
|
u32 instr = iface->instr_features;
|
u8 max_size = GLB_INSTR_FEATURES_EVENT_SIZE_MAX_GET(instr);
|
u32 min_buf_size = (1u << reg->ex_event_size) *
|
GLB_INSTR_FEATURES_OFFSET_UPDATE_RATE_GET(instr);
|
|
/* If cs_trace_command not supported, the call fails */
|
if (glb_version < kbase_csf_interface_version(1, 1, 0))
|
return -EINVAL;
|
|
/* Validate the cs_trace configuration parameters */
|
if (reg->ex_buffer_size &&
|
((reg->ex_event_size > max_size) ||
|
(reg->ex_buffer_size & (reg->ex_buffer_size - 1)) ||
|
(reg->ex_buffer_size < min_buf_size)))
|
return -EINVAL;
|
|
return csf_queue_register_internal(kctx, NULL, reg);
|
}
|
|
static void unbind_queue(struct kbase_context *kctx,
|
struct kbase_queue *queue);
|
|
void kbase_csf_queue_terminate(struct kbase_context *kctx,
|
struct kbase_ioctl_cs_queue_terminate *term)
|
{
|
struct kbase_device *kbdev = kctx->kbdev;
|
struct kbase_queue *queue;
|
int err;
|
bool reset_prevented = false;
|
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err)
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when terminating queue (buffer_addr=0x%.16llx), attempting to terminate regardless",
|
term->buffer_gpu_addr);
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
queue = find_queue(kctx, term->buffer_gpu_addr);
|
|
if (queue) {
|
unsigned long flags;
|
|
/* As the GPU queue has been terminated by the
|
* user space, undo the actions that were performed when the
|
* queue was registered i.e. remove the queue from the per
|
* context list & release the initial reference. The subsequent
|
* lookups for the queue in find_queue() would fail.
|
*/
|
list_del_init(&queue->link);
|
|
/* Stop the CSI to which queue was bound */
|
unbind_queue(kctx, queue);
|
|
kbase_gpu_vm_lock(kctx);
|
if (!WARN_ON(!queue->queue_reg)) {
|
/* After this the Userspace would be able to free the
|
* memory for GPU queue. In case the Userspace missed
|
* terminating the queue, the cleanup will happen on
|
* context termination where teardown of region tracker
|
* would free up the GPU queue memory.
|
*/
|
queue->queue_reg->flags &= ~KBASE_REG_NO_USER_FREE;
|
}
|
kbase_gpu_vm_unlock(kctx);
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
dev_dbg(kctx->kbdev->dev,
|
"Remove any pending command queue fatal from context %pK\n",
|
(void *)kctx);
|
list_del_init(&queue->error.link);
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
|
release_queue(queue);
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kbdev);
|
}
|
|
int kbase_csf_queue_bind(struct kbase_context *kctx, union kbase_ioctl_cs_queue_bind *bind)
|
{
|
struct kbase_queue *queue;
|
struct kbase_queue_group *group;
|
u8 max_streams;
|
int ret = -EINVAL;
|
|
mutex_lock(&kctx->csf.lock);
|
|
group = find_queue_group(kctx, bind->in.group_handle);
|
queue = find_queue(kctx, bind->in.buffer_gpu_addr);
|
|
if (!group || !queue)
|
goto out;
|
|
/* For the time being, all CSGs have the same number of CSs
|
* so we check CSG 0 for this number
|
*/
|
max_streams = kctx->kbdev->csf.global_iface.groups[0].stream_num;
|
|
if (bind->in.csi_index >= max_streams)
|
goto out;
|
|
if (group->run_state == KBASE_CSF_GROUP_TERMINATED)
|
goto out;
|
|
if (queue->group || group->bound_queues[bind->in.csi_index])
|
goto out;
|
|
ret = get_user_pages_mmap_handle(kctx, queue);
|
if (ret)
|
goto out;
|
|
bind->out.mmap_handle = queue->handle;
|
group->bound_queues[bind->in.csi_index] = queue;
|
queue->group = group;
|
queue->csi_index = bind->in.csi_index;
|
queue->bind_state = KBASE_CSF_QUEUE_BIND_IN_PROGRESS;
|
|
out:
|
mutex_unlock(&kctx->csf.lock);
|
|
return ret;
|
}
|
|
static struct kbase_queue_group *get_bound_queue_group(
|
struct kbase_queue *queue)
|
{
|
struct kbase_context *kctx = queue->kctx;
|
struct kbase_queue_group *group;
|
|
if (queue->bind_state == KBASE_CSF_QUEUE_UNBOUND)
|
return NULL;
|
|
if (!queue->group)
|
return NULL;
|
|
if (queue->csi_index == KBASEP_IF_NR_INVALID) {
|
dev_warn(kctx->kbdev->dev, "CS interface index is incorrect\n");
|
return NULL;
|
}
|
|
group = queue->group;
|
|
if (group->bound_queues[queue->csi_index] != queue) {
|
dev_warn(kctx->kbdev->dev, "Incorrect mapping between queues & queue groups\n");
|
return NULL;
|
}
|
|
return group;
|
}
|
|
void kbase_csf_ring_csg_doorbell(struct kbase_device *kbdev, int slot)
|
{
|
if (WARN_ON(slot < 0))
|
return;
|
|
kbase_csf_ring_csg_slots_doorbell(kbdev, (u32) (1 << slot));
|
}
|
|
void kbase_csf_ring_csg_slots_doorbell(struct kbase_device *kbdev,
|
u32 slot_bitmap)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
const u32 allowed_bitmap =
|
(u32) ((1U << kbdev->csf.global_iface.group_num) - 1);
|
u32 value;
|
|
if (WARN_ON(slot_bitmap > allowed_bitmap))
|
return;
|
|
value = kbase_csf_firmware_global_output(global_iface, GLB_DB_ACK);
|
value ^= slot_bitmap;
|
kbase_csf_firmware_global_input_mask(global_iface, GLB_DB_REQ, value,
|
slot_bitmap);
|
|
kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
|
}
|
|
void kbase_csf_ring_cs_user_doorbell(struct kbase_device *kbdev,
|
struct kbase_queue *queue)
|
{
|
mutex_lock(&kbdev->csf.reg_lock);
|
|
if (queue->doorbell_nr != KBASEP_USER_DB_NR_INVALID)
|
kbase_csf_ring_doorbell(kbdev, queue->doorbell_nr);
|
|
mutex_unlock(&kbdev->csf.reg_lock);
|
}
|
|
void kbase_csf_ring_cs_kernel_doorbell(struct kbase_device *kbdev,
|
int csi_index, int csg_nr,
|
bool ring_csg_doorbell)
|
{
|
struct kbase_csf_cmd_stream_group_info *ginfo;
|
u32 value;
|
|
if (WARN_ON(csg_nr < 0) ||
|
WARN_ON(csg_nr >= kbdev->csf.global_iface.group_num))
|
return;
|
|
ginfo = &kbdev->csf.global_iface.groups[csg_nr];
|
|
if (WARN_ON(csi_index < 0) ||
|
WARN_ON(csi_index >= ginfo->stream_num))
|
return;
|
|
value = kbase_csf_firmware_csg_output(ginfo, CSG_DB_ACK);
|
value ^= (1 << csi_index);
|
kbase_csf_firmware_csg_input_mask(ginfo, CSG_DB_REQ, value,
|
1 << csi_index);
|
|
if (likely(ring_csg_doorbell))
|
kbase_csf_ring_csg_doorbell(kbdev, csg_nr);
|
}
|
|
int kbase_csf_queue_kick(struct kbase_context *kctx,
|
struct kbase_ioctl_cs_queue_kick *kick)
|
{
|
struct kbase_device *kbdev = kctx->kbdev;
|
struct kbase_queue_group *group;
|
struct kbase_queue *queue;
|
int err = 0;
|
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err) {
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when kicking queue (buffer_addr=0x%.16llx)",
|
kick->buffer_gpu_addr);
|
return err;
|
}
|
|
mutex_lock(&kctx->csf.lock);
|
queue = find_queue(kctx, kick->buffer_gpu_addr);
|
if (!queue)
|
err = -EINVAL;
|
|
if (!err) {
|
group = get_bound_queue_group(queue);
|
if (!group) {
|
dev_err(kctx->kbdev->dev, "queue not bound\n");
|
err = -EINVAL;
|
}
|
}
|
|
if (!err)
|
err = kbase_csf_scheduler_queue_start(queue);
|
mutex_unlock(&kctx->csf.lock);
|
kbase_reset_gpu_allow(kbdev);
|
|
return err;
|
}
|
|
static void unbind_stopped_queue(struct kbase_context *kctx,
|
struct kbase_queue *queue)
|
{
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (queue->bind_state != KBASE_CSF_QUEUE_UNBOUND) {
|
unsigned long flags;
|
|
kbase_csf_scheduler_spin_lock(kctx->kbdev, &flags);
|
bitmap_clear(queue->group->protm_pending_bitmap,
|
queue->csi_index, 1);
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kctx->kbdev, PROTM_PENDING_CLEAR,
|
queue->group, queue, queue->group->protm_pending_bitmap[0]);
|
queue->group->bound_queues[queue->csi_index] = NULL;
|
queue->group = NULL;
|
kbase_csf_scheduler_spin_unlock(kctx->kbdev, flags);
|
|
put_user_pages_mmap_handle(kctx, queue);
|
queue->bind_state = KBASE_CSF_QUEUE_UNBOUND;
|
}
|
}
|
/**
|
* unbind_queue() - Remove the linkage between a GPU command queue and the group
|
* to which it was bound or being bound.
|
*
|
* @kctx: Address of the kbase context within which the queue was created.
|
* @queue: Pointer to the queue to be unlinked.
|
*
|
* This function will also send the stop request to firmware for the CS
|
* if the group to which the GPU command queue was bound is scheduled.
|
*
|
* This function would be called when :-
|
* - queue is being unbound. This would happen when the IO mapping
|
* created on bind is removed explicitly by userspace or the process
|
* is getting exited.
|
* - queue group is being terminated which still has queues bound
|
* to it. This could happen on an explicit terminate request from userspace
|
* or when the kbase context is being terminated.
|
* - queue is being terminated without completing the bind operation.
|
* This could happen if either the queue group is terminated
|
* after the CS_QUEUE_BIND ioctl but before the 2nd part of bind operation
|
* to create the IO mapping is initiated.
|
* - There is a failure in executing the 2nd part of bind operation, inside the
|
* mmap handler, which creates the IO mapping for queue.
|
*/
|
|
static void unbind_queue(struct kbase_context *kctx, struct kbase_queue *queue)
|
{
|
kbase_reset_gpu_assert_failed_or_prevented(kctx->kbdev);
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (queue->bind_state != KBASE_CSF_QUEUE_UNBOUND) {
|
if (queue->bind_state == KBASE_CSF_QUEUE_BOUND)
|
kbase_csf_scheduler_queue_stop(queue);
|
|
unbind_stopped_queue(kctx, queue);
|
}
|
}
|
|
void kbase_csf_queue_unbind(struct kbase_queue *queue)
|
{
|
struct kbase_context *kctx = queue->kctx;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
/* As the process itself is exiting, the termination of queue group can
|
* be done which would be much faster than stopping of individual
|
* queues. This would ensure a faster exit for the process especially
|
* in the case where CSI gets stuck.
|
* The CSI STOP request will wait for the in flight work to drain
|
* whereas CSG TERM request would result in an immediate abort or
|
* cancellation of the pending work.
|
*/
|
if (current->flags & PF_EXITING) {
|
struct kbase_queue_group *group = get_bound_queue_group(queue);
|
|
if (group)
|
term_queue_group(group);
|
|
WARN_ON(queue->bind_state != KBASE_CSF_QUEUE_UNBOUND);
|
} else {
|
unbind_queue(kctx, queue);
|
}
|
|
/* Free the resources, if allocated for this queue. */
|
if (queue->reg)
|
kbase_csf_free_command_stream_user_pages(kctx, queue);
|
}
|
|
void kbase_csf_queue_unbind_stopped(struct kbase_queue *queue)
|
{
|
struct kbase_context *kctx = queue->kctx;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
WARN_ON(queue->bind_state == KBASE_CSF_QUEUE_BOUND);
|
unbind_stopped_queue(kctx, queue);
|
|
/* Free the resources, if allocated for this queue. */
|
if (queue->reg)
|
kbase_csf_free_command_stream_user_pages(kctx, queue);
|
}
|
|
/**
|
* find_free_group_handle() - Find a free handle for a queue group
|
*
|
* @kctx: Address of the kbase context within which the queue group
|
* is to be created.
|
*
|
* Return: a queue group handle on success, or a negative error code on failure.
|
*/
|
static int find_free_group_handle(struct kbase_context *const kctx)
|
{
|
/* find the available index in the array of CSGs per this context */
|
int idx, group_handle = -ENOMEM;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
for (idx = 0;
|
(idx != MAX_QUEUE_GROUP_NUM) && (group_handle < 0);
|
idx++) {
|
if (!kctx->csf.queue_groups[idx])
|
group_handle = idx;
|
}
|
|
return group_handle;
|
}
|
|
/**
|
* iface_has_enough_streams() - Check that at least one CSG supports
|
* a given number of CS
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
* @cs_min: Minimum number of CSs required.
|
*
|
* Return: true if at least one CSG supports the given number
|
* of CSs (or more); otherwise false.
|
*/
|
static bool iface_has_enough_streams(struct kbase_device *const kbdev,
|
u32 const cs_min)
|
{
|
bool has_enough = false;
|
struct kbase_csf_cmd_stream_group_info *const groups =
|
kbdev->csf.global_iface.groups;
|
const u32 group_num = kbdev->csf.global_iface.group_num;
|
u32 i;
|
|
for (i = 0; (i < group_num) && !has_enough; i++) {
|
if (groups[i].stream_num >= cs_min)
|
has_enough = true;
|
}
|
|
return has_enough;
|
}
|
|
/**
|
* create_normal_suspend_buffer() - Create normal-mode suspend buffer per
|
* queue group
|
*
|
* @kctx: Pointer to kbase context where the queue group is created at
|
* @s_buf: Pointer to suspend buffer that is attached to queue group
|
*
|
* Return: 0 if suspend buffer is successfully allocated and reflected to GPU
|
* MMU page table. Otherwise -ENOMEM.
|
*/
|
static int create_normal_suspend_buffer(struct kbase_context *const kctx,
|
struct kbase_normal_suspend_buffer *s_buf)
|
{
|
struct kbase_va_region *reg = NULL;
|
const unsigned long mem_flags = KBASE_REG_GPU_RD | KBASE_REG_GPU_WR;
|
const size_t nr_pages =
|
PFN_UP(kctx->kbdev->csf.global_iface.groups[0].suspend_size);
|
int err = 0;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
/* Allocate and initialize Region Object */
|
reg = kbase_alloc_free_region(&kctx->kbdev->csf.shared_reg_rbtree, 0,
|
nr_pages, KBASE_REG_ZONE_MCU_SHARED);
|
|
if (!reg)
|
return -ENOMEM;
|
|
s_buf->phy = kcalloc(nr_pages, sizeof(*s_buf->phy), GFP_KERNEL);
|
|
if (!s_buf->phy) {
|
err = -ENOMEM;
|
goto phy_alloc_failed;
|
}
|
|
/* Get physical page for a normal suspend buffer */
|
err = kbase_mem_pool_alloc_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
nr_pages, &s_buf->phy[0], false);
|
|
if (err < 0)
|
goto phy_pages_alloc_failed;
|
|
/* Insert Region Object into rbtree and make virtual address available
|
* to map it to physical page
|
*/
|
mutex_lock(&kctx->kbdev->csf.reg_lock);
|
err = kbase_add_va_region_rbtree(kctx->kbdev, reg, 0, nr_pages, 1);
|
reg->flags &= ~KBASE_REG_FREE;
|
mutex_unlock(&kctx->kbdev->csf.reg_lock);
|
|
if (err)
|
goto add_va_region_failed;
|
|
/* Update MMU table */
|
err = kbase_mmu_insert_pages(kctx->kbdev, &kctx->kbdev->csf.mcu_mmu,
|
reg->start_pfn, &s_buf->phy[0],
|
nr_pages, mem_flags,
|
MCU_AS_NR, KBASE_MEM_GROUP_CSF_FW);
|
if (err)
|
goto mmu_insert_failed;
|
|
s_buf->reg = reg;
|
|
return 0;
|
|
mmu_insert_failed:
|
mutex_lock(&kctx->kbdev->csf.reg_lock);
|
WARN_ON(kbase_remove_va_region(reg));
|
mutex_unlock(&kctx->kbdev->csf.reg_lock);
|
|
add_va_region_failed:
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], nr_pages,
|
&s_buf->phy[0], false, false);
|
|
phy_pages_alloc_failed:
|
kfree(s_buf->phy);
|
phy_alloc_failed:
|
kfree(reg);
|
|
return err;
|
}
|
|
/**
|
* create_protected_suspend_buffer() - Create protected-mode suspend buffer
|
* per queue group
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
* @s_buf: Pointer to suspend buffer that is attached to queue group
|
*
|
* Return: 0 if suspend buffer is successfully allocated and reflected to GPU
|
* MMU page table. Otherwise -ENOMEM.
|
*/
|
static int create_protected_suspend_buffer(struct kbase_device *const kbdev,
|
struct kbase_protected_suspend_buffer *s_buf)
|
{
|
struct kbase_va_region *reg = NULL;
|
struct tagged_addr *phys = NULL;
|
const unsigned long mem_flags = KBASE_REG_GPU_RD | KBASE_REG_GPU_WR;
|
const size_t nr_pages =
|
PFN_UP(kbdev->csf.global_iface.groups[0].suspend_size);
|
int err = 0;
|
|
/* Allocate and initialize Region Object */
|
reg = kbase_alloc_free_region(&kbdev->csf.shared_reg_rbtree, 0,
|
nr_pages, KBASE_REG_ZONE_MCU_SHARED);
|
|
if (!reg)
|
return -ENOMEM;
|
|
phys = kcalloc(nr_pages, sizeof(*phys), GFP_KERNEL);
|
if (!phys) {
|
err = -ENOMEM;
|
goto phy_alloc_failed;
|
}
|
|
s_buf->pma = kbase_csf_protected_memory_alloc(kbdev, phys,
|
nr_pages);
|
if (s_buf->pma == NULL) {
|
err = -ENOMEM;
|
goto pma_alloc_failed;
|
}
|
|
/* Insert Region Object into rbtree and make virtual address available
|
* to map it to physical page
|
*/
|
mutex_lock(&kbdev->csf.reg_lock);
|
err = kbase_add_va_region_rbtree(kbdev, reg, 0, nr_pages, 1);
|
reg->flags &= ~KBASE_REG_FREE;
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
if (err)
|
goto add_va_region_failed;
|
|
/* Update MMU table */
|
err = kbase_mmu_insert_pages(kbdev, &kbdev->csf.mcu_mmu,
|
reg->start_pfn, phys,
|
nr_pages, mem_flags, MCU_AS_NR,
|
KBASE_MEM_GROUP_CSF_FW);
|
if (err)
|
goto mmu_insert_failed;
|
|
s_buf->reg = reg;
|
kfree(phys);
|
return 0;
|
|
mmu_insert_failed:
|
mutex_lock(&kbdev->csf.reg_lock);
|
WARN_ON(kbase_remove_va_region(reg));
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
add_va_region_failed:
|
kbase_csf_protected_memory_free(kbdev, s_buf->pma, nr_pages);
|
pma_alloc_failed:
|
kfree(phys);
|
phy_alloc_failed:
|
kfree(reg);
|
|
return err;
|
}
|
|
static void timer_event_worker(struct work_struct *data);
|
static void protm_event_worker(struct work_struct *data);
|
static void term_normal_suspend_buffer(struct kbase_context *const kctx,
|
struct kbase_normal_suspend_buffer *s_buf);
|
|
/**
|
* create_suspend_buffers - Setup normal and protected mode
|
* suspend buffers.
|
*
|
* @kctx: Address of the kbase context within which the queue group
|
* is to be created.
|
* @group: Pointer to GPU command queue group data.
|
*
|
* Return: 0 if suspend buffers are successfully allocated. Otherwise -ENOMEM.
|
*/
|
static int create_suspend_buffers(struct kbase_context *const kctx,
|
struct kbase_queue_group * const group)
|
{
|
int err = 0;
|
|
if (create_normal_suspend_buffer(kctx, &group->normal_suspend_buf)) {
|
dev_err(kctx->kbdev->dev, "Failed to create normal suspend buffer\n");
|
return -ENOMEM;
|
}
|
|
if (kctx->kbdev->csf.pma_dev) {
|
err = create_protected_suspend_buffer(kctx->kbdev,
|
&group->protected_suspend_buf);
|
if (err) {
|
term_normal_suspend_buffer(kctx,
|
&group->normal_suspend_buf);
|
dev_err(kctx->kbdev->dev, "Failed to create protected suspend buffer\n");
|
}
|
} else {
|
group->protected_suspend_buf.reg = NULL;
|
}
|
|
return err;
|
}
|
|
/**
|
* generate_group_uid() - Makes an ID unique to all kernel base devices
|
* and contexts, for a queue group and CSG.
|
*
|
* Return: A unique ID in the form of an unsigned 32-bit integer
|
*/
|
static u32 generate_group_uid(void)
|
{
|
/* use first KBase device to store max UID */
|
struct kbase_device *kbdev = kbase_find_device(-1);
|
u32 uid = 1;
|
|
if (kbdev)
|
uid = (u32) atomic_inc_return(&kbdev->group_max_uid_in_devices);
|
else
|
WARN(1, "NULL kbase device pointer in group UID generation");
|
|
return uid;
|
}
|
|
/**
|
* create_queue_group() - Create a queue group
|
*
|
* @kctx: Address of the kbase context within which the queue group
|
* is to be created.
|
* @create: Address of a structure which contains details of the
|
* queue group which is to be created.
|
*
|
* Return: a queue group handle on success, or a negative error code on failure.
|
*/
|
static int create_queue_group(struct kbase_context *const kctx,
|
union kbase_ioctl_cs_queue_group_create *const create)
|
{
|
int group_handle = find_free_group_handle(kctx);
|
|
if (group_handle < 0) {
|
dev_err(kctx->kbdev->dev,
|
"All queue group handles are already in use\n");
|
} else {
|
struct kbase_queue_group * const group =
|
kmalloc(sizeof(struct kbase_queue_group),
|
GFP_KERNEL);
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
if (!group) {
|
dev_err(kctx->kbdev->dev, "Failed to allocate a queue\n");
|
group_handle = -ENOMEM;
|
} else {
|
int err = 0;
|
|
group->kctx = kctx;
|
group->handle = group_handle;
|
group->csg_nr = KBASEP_CSG_NR_INVALID;
|
|
group->tiler_mask = create->in.tiler_mask;
|
group->fragment_mask = create->in.fragment_mask;
|
group->compute_mask = create->in.compute_mask;
|
|
group->tiler_max = create->in.tiler_max;
|
group->fragment_max = create->in.fragment_max;
|
group->compute_max = create->in.compute_max;
|
group->priority = kbase_csf_priority_queue_group_priority_to_relative(
|
kbase_csf_priority_check(kctx->kbdev, create->in.priority));
|
group->doorbell_nr = KBASEP_USER_DB_NR_INVALID;
|
group->faulted = false;
|
|
group->group_uid = generate_group_uid();
|
create->out.group_uid = group->group_uid;
|
|
INIT_LIST_HEAD(&group->link);
|
INIT_LIST_HEAD(&group->link_to_schedule);
|
INIT_LIST_HEAD(&group->error_fatal.link);
|
INIT_LIST_HEAD(&group->error_timeout.link);
|
INIT_LIST_HEAD(&group->error_tiler_oom.link);
|
INIT_WORK(&group->timer_event_work, timer_event_worker);
|
INIT_WORK(&group->protm_event_work, protm_event_worker);
|
bitmap_zero(group->protm_pending_bitmap,
|
MAX_SUPPORTED_STREAMS_PER_GROUP);
|
|
group->run_state = KBASE_CSF_GROUP_INACTIVE;
|
err = create_suspend_buffers(kctx, group);
|
|
if (err < 0) {
|
kfree(group);
|
group_handle = err;
|
} else {
|
int j;
|
|
kctx->csf.queue_groups[group_handle] = group;
|
for (j = 0; j < MAX_SUPPORTED_STREAMS_PER_GROUP;
|
j++)
|
group->bound_queues[j] = NULL;
|
}
|
}
|
}
|
|
return group_handle;
|
}
|
|
int kbase_csf_queue_group_create(struct kbase_context *const kctx,
|
union kbase_ioctl_cs_queue_group_create *const create)
|
{
|
int err = 0;
|
const u32 tiler_count = hweight64(create->in.tiler_mask);
|
const u32 fragment_count = hweight64(create->in.fragment_mask);
|
const u32 compute_count = hweight64(create->in.compute_mask);
|
|
mutex_lock(&kctx->csf.lock);
|
|
if ((create->in.tiler_max > tiler_count) ||
|
(create->in.fragment_max > fragment_count) ||
|
(create->in.compute_max > compute_count)) {
|
dev_err(kctx->kbdev->dev,
|
"Invalid maximum number of endpoints for a queue group\n");
|
err = -EINVAL;
|
} else if (create->in.priority >= BASE_QUEUE_GROUP_PRIORITY_COUNT) {
|
dev_err(kctx->kbdev->dev, "Invalid queue group priority %u\n",
|
(unsigned int)create->in.priority);
|
err = -EINVAL;
|
} else if (!iface_has_enough_streams(kctx->kbdev, create->in.cs_min)) {
|
dev_err(kctx->kbdev->dev,
|
"No CSG has at least %d CSs\n",
|
create->in.cs_min);
|
err = -EINVAL;
|
} else {
|
/* For the CSG which satisfies the condition for having
|
* the needed number of CSs, check whether it also conforms
|
* with the requirements for at least one of its CSs having
|
* the iterator of the needed type
|
* (note: for CSF v1.0 all CSs in a CSG will have access to
|
* the same iterators)
|
*/
|
const int group_handle = create_queue_group(kctx, create);
|
|
if (group_handle >= 0)
|
create->out.group_handle = group_handle;
|
else
|
err = group_handle;
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
|
return err;
|
}
|
|
/**
|
* term_normal_suspend_buffer() - Free normal-mode suspend buffer of queue group
|
*
|
* @kctx: Pointer to kbase context where queue group belongs to
|
* @s_buf: Pointer to queue group suspend buffer to be freed
|
*/
|
static void term_normal_suspend_buffer(struct kbase_context *const kctx,
|
struct kbase_normal_suspend_buffer *s_buf)
|
{
|
const size_t nr_pages =
|
PFN_UP(kctx->kbdev->csf.global_iface.groups[0].suspend_size);
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
WARN_ON(kbase_mmu_teardown_pages(
|
kctx->kbdev, &kctx->kbdev->csf.mcu_mmu,
|
s_buf->reg->start_pfn, nr_pages, MCU_AS_NR));
|
|
WARN_ON(s_buf->reg->flags & KBASE_REG_FREE);
|
|
mutex_lock(&kctx->kbdev->csf.reg_lock);
|
WARN_ON(kbase_remove_va_region(s_buf->reg));
|
mutex_unlock(&kctx->kbdev->csf.reg_lock);
|
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
nr_pages, &s_buf->phy[0], false, false);
|
|
kfree(s_buf->phy);
|
s_buf->phy = NULL;
|
kfree(s_buf->reg);
|
s_buf->reg = NULL;
|
}
|
|
/**
|
* term_protected_suspend_buffer() - Free normal-mode suspend buffer of
|
* queue group
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
* @s_buf: Pointer to queue group suspend buffer to be freed
|
*/
|
static void term_protected_suspend_buffer(struct kbase_device *const kbdev,
|
struct kbase_protected_suspend_buffer *s_buf)
|
{
|
const size_t nr_pages =
|
PFN_UP(kbdev->csf.global_iface.groups[0].suspend_size);
|
|
WARN_ON(kbase_mmu_teardown_pages(
|
kbdev, &kbdev->csf.mcu_mmu,
|
s_buf->reg->start_pfn, nr_pages, MCU_AS_NR));
|
|
WARN_ON(s_buf->reg->flags & KBASE_REG_FREE);
|
|
mutex_lock(&kbdev->csf.reg_lock);
|
WARN_ON(kbase_remove_va_region(s_buf->reg));
|
mutex_unlock(&kbdev->csf.reg_lock);
|
|
kbase_csf_protected_memory_free(kbdev, s_buf->pma, nr_pages);
|
s_buf->pma = NULL;
|
kfree(s_buf->reg);
|
s_buf->reg = NULL;
|
}
|
|
void kbase_csf_term_descheduled_queue_group(struct kbase_queue_group *group)
|
{
|
struct kbase_context *kctx = group->kctx;
|
|
/* Currently each group supports the same number of CS */
|
u32 max_streams =
|
kctx->kbdev->csf.global_iface.groups[0].stream_num;
|
u32 i;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
WARN_ON(group->run_state != KBASE_CSF_GROUP_INACTIVE &&
|
group->run_state != KBASE_CSF_GROUP_FAULT_EVICTED);
|
|
for (i = 0; i < max_streams; i++) {
|
struct kbase_queue *queue =
|
group->bound_queues[i];
|
|
/* The group is already being evicted from the scheduler */
|
if (queue)
|
unbind_stopped_queue(kctx, queue);
|
}
|
|
term_normal_suspend_buffer(kctx, &group->normal_suspend_buf);
|
if (kctx->kbdev->csf.pma_dev)
|
term_protected_suspend_buffer(kctx->kbdev,
|
&group->protected_suspend_buf);
|
|
group->run_state = KBASE_CSF_GROUP_TERMINATED;
|
}
|
|
/**
|
* term_queue_group - Terminate a GPU command queue group.
|
*
|
* @group: Pointer to GPU command queue group data.
|
*
|
* Terminates a GPU command queue group. From the userspace perspective the
|
* group will still exist but it can't bind new queues to it. Userspace can
|
* still add work in queues bound to the group but it won't be executed. (This
|
* is because the IO mapping created upon binding such queues is still intact.)
|
*/
|
static void term_queue_group(struct kbase_queue_group *group)
|
{
|
struct kbase_context *kctx = group->kctx;
|
|
kbase_reset_gpu_assert_failed_or_prevented(kctx->kbdev);
|
lockdep_assert_held(&kctx->csf.lock);
|
|
/* Stop the group and evict it from the scheduler */
|
kbase_csf_scheduler_group_deschedule(group);
|
|
if (group->run_state == KBASE_CSF_GROUP_TERMINATED)
|
return;
|
|
dev_dbg(kctx->kbdev->dev, "group %d terminating", group->handle);
|
|
kbase_csf_term_descheduled_queue_group(group);
|
}
|
|
static void cancel_queue_group_events(struct kbase_queue_group *group)
|
{
|
cancel_work_sync(&group->timer_event_work);
|
cancel_work_sync(&group->protm_event_work);
|
}
|
|
void kbase_csf_queue_group_terminate(struct kbase_context *kctx,
|
u8 group_handle)
|
{
|
struct kbase_queue_group *group;
|
int err;
|
bool reset_prevented = false;
|
struct kbase_device *const kbdev = kctx->kbdev;
|
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err)
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when terminating group %d, attempting to terminate regardless",
|
group_handle);
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
|
group = find_queue_group(kctx, group_handle);
|
|
if (group) {
|
unsigned long flags;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
dev_dbg(kbdev->dev,
|
"Remove any pending group fatal error from context %pK\n",
|
(void *)group->kctx);
|
|
list_del_init(&group->error_tiler_oom.link);
|
list_del_init(&group->error_timeout.link);
|
list_del_init(&group->error_fatal.link);
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
|
term_queue_group(group);
|
kctx->csf.queue_groups[group_handle] = NULL;
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kbdev);
|
|
if (!group)
|
return;
|
|
/* Cancel any pending event callbacks. If one is in progress
|
* then this thread waits synchronously for it to complete (which
|
* is why we must unlock the context first). We already ensured
|
* that no more callbacks can be enqueued by terminating the group.
|
*/
|
cancel_queue_group_events(group);
|
kfree(group);
|
}
|
|
int kbase_csf_queue_group_suspend(struct kbase_context *kctx,
|
struct kbase_suspend_copy_buffer *sus_buf,
|
u8 group_handle)
|
{
|
struct kbase_device *const kbdev = kctx->kbdev;
|
int err;
|
struct kbase_queue_group *group;
|
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err) {
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when suspending group %d",
|
group_handle);
|
return err;
|
}
|
mutex_lock(&kctx->csf.lock);
|
|
group = find_queue_group(kctx, group_handle);
|
if (group)
|
err = kbase_csf_scheduler_group_copy_suspend_buf(group,
|
sus_buf);
|
else
|
err = -EINVAL;
|
|
mutex_unlock(&kctx->csf.lock);
|
kbase_reset_gpu_allow(kbdev);
|
|
return err;
|
}
|
|
/**
|
* add_error() - Add an error to the list of errors to report to user space
|
*
|
* @kctx: Address of a base context associated with a GPU address space.
|
* @error: Address of the item to be added to the context's pending error list.
|
* @data: Error data to be returned to userspace.
|
*
|
* Does not wake up the event queue blocking a user thread in kbase_poll. This
|
* is to make it more efficient to add multiple errors.
|
*
|
* The added error must not already be on the context's list of errors waiting
|
* to be reported (e.g. because a previous error concerning the same object has
|
* not yet been reported).
|
*/
|
static void add_error(struct kbase_context *const kctx,
|
struct kbase_csf_notification *const error,
|
struct base_csf_notification const *const data)
|
{
|
unsigned long flags;
|
|
if (WARN_ON(!kctx))
|
return;
|
|
if (WARN_ON(!error))
|
return;
|
|
if (WARN_ON(!data))
|
return;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
if (!WARN_ON(!list_empty(&error->link))) {
|
error->data = *data;
|
list_add_tail(&error->link, &kctx->csf.error_list);
|
dev_dbg(kctx->kbdev->dev,
|
"Added error %pK of type %d in context %pK\n",
|
(void *)error, data->type, (void *)kctx);
|
}
|
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
}
|
|
void kbase_csf_add_group_fatal_error(
|
struct kbase_queue_group *const group,
|
struct base_gpu_queue_group_error const *const err_payload)
|
{
|
struct base_csf_notification error;
|
|
if (WARN_ON(!group))
|
return;
|
|
if (WARN_ON(!err_payload))
|
return;
|
|
error = (struct base_csf_notification) {
|
.type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
|
.payload = {
|
.csg_error = {
|
.handle = group->handle,
|
.error = *err_payload
|
}
|
}
|
};
|
|
add_error(group->kctx, &group->error_fatal, &error);
|
}
|
|
void kbase_csf_active_queue_groups_reset(struct kbase_device *kbdev,
|
struct kbase_context *kctx)
|
{
|
struct list_head evicted_groups;
|
struct kbase_queue_group *group;
|
int i;
|
|
INIT_LIST_HEAD(&evicted_groups);
|
|
mutex_lock(&kctx->csf.lock);
|
|
kbase_csf_scheduler_evict_ctx_slots(kbdev, kctx, &evicted_groups);
|
while (!list_empty(&evicted_groups)) {
|
group = list_first_entry(&evicted_groups,
|
struct kbase_queue_group, link);
|
|
dev_dbg(kbdev->dev, "Context %d_%d active group %d terminated",
|
kctx->tgid, kctx->id, group->handle);
|
kbase_csf_term_descheduled_queue_group(group);
|
list_del_init(&group->link);
|
}
|
|
/* Acting on the queue groups that are pending to be terminated. */
|
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
|
group = kctx->csf.queue_groups[i];
|
if (group &&
|
group->run_state == KBASE_CSF_GROUP_FAULT_EVICTED)
|
kbase_csf_term_descheduled_queue_group(group);
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
}
|
|
int kbase_csf_ctx_init(struct kbase_context *kctx)
|
{
|
struct kbase_device *kbdev = kctx->kbdev;
|
int err = -ENOMEM;
|
|
INIT_LIST_HEAD(&kctx->csf.event_callback_list);
|
INIT_LIST_HEAD(&kctx->csf.queue_list);
|
INIT_LIST_HEAD(&kctx->csf.link);
|
INIT_LIST_HEAD(&kctx->csf.error_list);
|
|
spin_lock_init(&kctx->csf.event_lock);
|
kctx->csf.user_reg_vma = NULL;
|
mutex_lock(&kbdev->pm.lock);
|
/* The inode information for /dev/malixx file is not available at the
|
* time of device probe as the inode is created when the device node
|
* is created by udevd (through mknod).
|
*/
|
if (kctx->filp) {
|
if (!kbdev->csf.mali_file_inode)
|
kbdev->csf.mali_file_inode = kctx->filp->f_inode;
|
|
/* inode is unique for a file */
|
WARN_ON(kbdev->csf.mali_file_inode != kctx->filp->f_inode);
|
}
|
mutex_unlock(&kbdev->pm.lock);
|
|
/* Mark all the cookies as 'free' */
|
bitmap_fill(kctx->csf.cookies, KBASE_CSF_NUM_USER_IO_PAGES_HANDLE);
|
|
kctx->csf.wq = alloc_workqueue("mali_kbase_csf_wq",
|
WQ_UNBOUND, 1);
|
|
if (likely(kctx->csf.wq)) {
|
err = kbase_csf_scheduler_context_init(kctx);
|
|
if (likely(!err)) {
|
err = kbase_csf_kcpu_queue_context_init(kctx);
|
|
if (likely(!err)) {
|
err = kbase_csf_tiler_heap_context_init(kctx);
|
|
if (likely(!err))
|
mutex_init(&kctx->csf.lock);
|
else
|
kbase_csf_kcpu_queue_context_term(kctx);
|
}
|
|
if (unlikely(err))
|
kbase_csf_scheduler_context_term(kctx);
|
}
|
|
if (unlikely(err))
|
destroy_workqueue(kctx->csf.wq);
|
}
|
|
return err;
|
}
|
|
void kbase_csf_ctx_handle_fault(struct kbase_context *kctx,
|
struct kbase_fault *fault)
|
{
|
int gr;
|
bool reported = false;
|
struct base_gpu_queue_group_error err_payload;
|
int err;
|
struct kbase_device *kbdev;
|
|
if (WARN_ON(!kctx))
|
return;
|
|
if (WARN_ON(!fault))
|
return;
|
|
kbdev = kctx->kbdev;
|
err = kbase_reset_gpu_try_prevent(kbdev);
|
/* Regardless of whether reset failed or is currently happening, exit
|
* early
|
*/
|
if (err)
|
return;
|
|
err_payload = (struct base_gpu_queue_group_error) {
|
.error_type = BASE_GPU_QUEUE_GROUP_ERROR_FATAL,
|
.payload = {
|
.fatal_group = {
|
.sideband = fault->addr,
|
.status = fault->status,
|
}
|
}
|
};
|
|
mutex_lock(&kctx->csf.lock);
|
|
for (gr = 0; gr < MAX_QUEUE_GROUP_NUM; gr++) {
|
struct kbase_queue_group *const group =
|
kctx->csf.queue_groups[gr];
|
|
if (group && group->run_state != KBASE_CSF_GROUP_TERMINATED) {
|
term_queue_group(group);
|
kbase_csf_add_group_fatal_error(group, &err_payload);
|
reported = true;
|
}
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
|
if (reported)
|
kbase_event_wakeup(kctx);
|
|
kbase_reset_gpu_allow(kbdev);
|
}
|
|
void kbase_csf_ctx_term(struct kbase_context *kctx)
|
{
|
struct kbase_device *kbdev = kctx->kbdev;
|
struct kbase_as *as = NULL;
|
unsigned long flags;
|
u32 i;
|
int err;
|
bool reset_prevented = false;
|
|
/* As the kbase context is terminating, its debugfs sub-directory would
|
* have been removed already and so would be the debugfs file created
|
* for queue groups & kcpu queues, hence no need to explicitly remove
|
* those debugfs files.
|
*/
|
kbase_csf_event_wait_remove_all(kctx);
|
|
/* Wait for a GPU reset if it is happening, prevent it if not happening */
|
err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
if (err)
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when terminating csf context (%d_%d), attempting to terminate regardless",
|
kctx->tgid, kctx->id);
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
/* Iterate through the queue groups that were not terminated by
|
* userspace and issue the term request to firmware for them.
|
*/
|
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
|
if (kctx->csf.queue_groups[i])
|
term_queue_group(kctx->csf.queue_groups[i]);
|
}
|
mutex_unlock(&kctx->csf.lock);
|
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kbdev);
|
|
/* Now that all queue groups have been terminated, there can be no
|
* more OoM or timer event interrupts but there can be inflight work
|
* items. Destroying the wq will implicitly flush those work items.
|
*/
|
destroy_workqueue(kctx->csf.wq);
|
|
/* Wait for the firmware error work item to also finish as it could
|
* be affecting this outgoing context also.
|
*/
|
flush_work(&kctx->kbdev->csf.fw_error_work);
|
|
/* A work item to handle page_fault/bus_fault/gpu_fault could be
|
* pending for the outgoing context. Flush the workqueue that will
|
* execute that work item.
|
*/
|
spin_lock_irqsave(&kctx->kbdev->hwaccess_lock, flags);
|
if (kctx->as_nr != KBASEP_AS_NR_INVALID)
|
as = &kctx->kbdev->as[kctx->as_nr];
|
spin_unlock_irqrestore(&kctx->kbdev->hwaccess_lock, flags);
|
if (as)
|
flush_workqueue(as->pf_wq);
|
|
mutex_lock(&kctx->csf.lock);
|
|
for (i = 0; i < MAX_QUEUE_GROUP_NUM; i++) {
|
kfree(kctx->csf.queue_groups[i]);
|
kctx->csf.queue_groups[i] = NULL;
|
}
|
|
/* Iterate through the queues that were not terminated by
|
* userspace and do the required cleanup for them.
|
*/
|
while (!list_empty(&kctx->csf.queue_list)) {
|
struct kbase_queue *queue;
|
|
queue = list_first_entry(&kctx->csf.queue_list,
|
struct kbase_queue, link);
|
|
/* The reference held when the IO mapping was created on bind
|
* would have been dropped otherwise the termination of Kbase
|
* context itself wouldn't have kicked-in. So there shall be
|
* only one reference left that was taken when queue was
|
* registered.
|
*/
|
if (atomic_read(&queue->refcount) != 1)
|
dev_warn(kctx->kbdev->dev,
|
"Releasing queue with incorrect refcounting!\n");
|
list_del_init(&queue->link);
|
release_queue(queue);
|
}
|
|
mutex_unlock(&kctx->csf.lock);
|
|
kbase_csf_tiler_heap_context_term(kctx);
|
kbase_csf_kcpu_queue_context_term(kctx);
|
kbase_csf_scheduler_context_term(kctx);
|
|
mutex_destroy(&kctx->csf.lock);
|
}
|
|
int kbase_csf_event_wait_add(struct kbase_context *kctx,
|
kbase_csf_event_callback *callback, void *param)
|
{
|
int err = -ENOMEM;
|
struct kbase_csf_event *event =
|
kzalloc(sizeof(struct kbase_csf_event), GFP_KERNEL);
|
|
if (event) {
|
unsigned long flags;
|
|
event->kctx = kctx;
|
event->callback = callback;
|
event->param = param;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
list_add_tail(&event->link, &kctx->csf.event_callback_list);
|
dev_dbg(kctx->kbdev->dev,
|
"Added event handler %pK with param %pK\n", event,
|
event->param);
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
|
err = 0;
|
}
|
|
return err;
|
}
|
|
void kbase_csf_event_wait_remove(struct kbase_context *kctx,
|
kbase_csf_event_callback *callback, void *param)
|
{
|
struct kbase_csf_event *event;
|
unsigned long flags;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
list_for_each_entry(event, &kctx->csf.event_callback_list, link) {
|
if ((event->callback == callback) && (event->param == param)) {
|
list_del(&event->link);
|
dev_dbg(kctx->kbdev->dev,
|
"Removed event handler %pK with param %pK\n",
|
event, event->param);
|
kfree(event);
|
break;
|
}
|
}
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
}
|
|
bool kbase_csf_read_error(struct kbase_context *kctx,
|
struct base_csf_notification *event_data)
|
{
|
bool got_event = true;
|
struct kbase_csf_notification *error_data = NULL;
|
unsigned long flags;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
if (likely(!list_empty(&kctx->csf.error_list))) {
|
error_data = list_first_entry(&kctx->csf.error_list,
|
struct kbase_csf_notification, link);
|
list_del_init(&error_data->link);
|
*event_data = error_data->data;
|
dev_dbg(kctx->kbdev->dev, "Dequeued error %pK in context %pK\n",
|
(void *)error_data, (void *)kctx);
|
} else {
|
got_event = false;
|
}
|
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
|
return got_event;
|
}
|
|
bool kbase_csf_error_pending(struct kbase_context *kctx)
|
{
|
bool event_pended = false;
|
unsigned long flags;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
event_pended = !list_empty(&kctx->csf.error_list);
|
dev_dbg(kctx->kbdev->dev, "%s error is pending in context %pK\n",
|
event_pended ? "An" : "No", (void *)kctx);
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
|
return event_pended;
|
}
|
|
void kbase_csf_event_signal(struct kbase_context *kctx, bool notify_gpu)
|
{
|
struct kbase_csf_event *event, *next_event;
|
unsigned long flags;
|
|
dev_dbg(kctx->kbdev->dev,
|
"Signal event (%s GPU notify) for context %pK\n",
|
notify_gpu ? "with" : "without", (void *)kctx);
|
|
/* First increment the signal count and wake up event thread.
|
*/
|
atomic_set(&kctx->event_count, 1);
|
kbase_event_wakeup(kctx);
|
|
/* Signal the CSF firmware. This is to ensure that pending command
|
* stream synch object wait operations are re-evaluated.
|
* Write to GLB_DOORBELL would suffice as spec says that all pending
|
* synch object wait operations are re-evaluated on a write to any
|
* CS_DOORBELL/GLB_DOORBELL register.
|
*/
|
if (notify_gpu) {
|
spin_lock_irqsave(&kctx->kbdev->hwaccess_lock, flags);
|
if (kctx->kbdev->pm.backend.gpu_powered)
|
kbase_csf_ring_doorbell(kctx->kbdev, CSF_KERNEL_DOORBELL_NR);
|
KBASE_KTRACE_ADD(kctx->kbdev, SYNC_UPDATE_EVENT_NOTIFY_GPU, kctx, 0u);
|
spin_unlock_irqrestore(&kctx->kbdev->hwaccess_lock, flags);
|
}
|
|
/* Now invoke the callbacks registered on backend side.
|
* Allow item removal inside the loop, if requested by the callback.
|
*/
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
list_for_each_entry_safe(
|
event, next_event, &kctx->csf.event_callback_list, link) {
|
enum kbase_csf_event_callback_action action;
|
|
dev_dbg(kctx->kbdev->dev,
|
"Calling event handler %pK with param %pK\n",
|
(void *)event, event->param);
|
action = event->callback(event->param);
|
if (action == KBASE_CSF_EVENT_CALLBACK_REMOVE) {
|
list_del(&event->link);
|
kfree(event);
|
}
|
}
|
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
}
|
|
void kbase_csf_event_wait_remove_all(struct kbase_context *kctx)
|
{
|
struct kbase_csf_event *event, *next_event;
|
unsigned long flags;
|
|
spin_lock_irqsave(&kctx->csf.event_lock, flags);
|
|
list_for_each_entry_safe(
|
event, next_event, &kctx->csf.event_callback_list, link) {
|
list_del(&event->link);
|
dev_dbg(kctx->kbdev->dev,
|
"Removed event handler %pK with param %pK\n",
|
(void *)event, event->param);
|
kfree(event);
|
}
|
|
spin_unlock_irqrestore(&kctx->csf.event_lock, flags);
|
}
|
|
/**
|
* handle_oom_event - Handle the OoM event generated by the firmware for the
|
* CSI.
|
*
|
* This function will handle the OoM event request from the firmware for the
|
* CS. It will retrieve the address of heap context and heap's
|
* statistics (like number of render passes in-flight) from the CS's kernel
|
* kernel output page and pass them to the tiler heap function to allocate a
|
* new chunk.
|
* It will also update the CS's kernel input page with the address
|
* of a new chunk that was allocated.
|
*
|
* @kctx: Pointer to the kbase context in which the tiler heap was initialized.
|
* @stream: Pointer to the structure containing info provided by the firmware
|
* about the CSI.
|
*
|
* Return: 0 if successfully handled the request, otherwise a negative error
|
* code on failure.
|
*/
|
static int handle_oom_event(struct kbase_context *const kctx,
|
struct kbase_csf_cmd_stream_info const *const stream)
|
{
|
u64 gpu_heap_va =
|
kbase_csf_firmware_cs_output(stream, CS_HEAP_ADDRESS_LO) |
|
((u64)kbase_csf_firmware_cs_output(stream, CS_HEAP_ADDRESS_HI) << 32);
|
const u32 vt_start =
|
kbase_csf_firmware_cs_output(stream, CS_HEAP_VT_START);
|
const u32 vt_end =
|
kbase_csf_firmware_cs_output(stream, CS_HEAP_VT_END);
|
const u32 frag_end =
|
kbase_csf_firmware_cs_output(stream, CS_HEAP_FRAG_END);
|
u32 renderpasses_in_flight;
|
u32 pending_frag_count;
|
u64 new_chunk_ptr;
|
int err;
|
|
if ((frag_end > vt_end) || (vt_end >= vt_start)) {
|
dev_warn(kctx->kbdev->dev, "Invalid Heap statistics provided by firmware: vt_start %d, vt_end %d, frag_end %d\n",
|
vt_start, vt_end, frag_end);
|
return -EINVAL;
|
}
|
|
renderpasses_in_flight = vt_start - frag_end;
|
pending_frag_count = vt_end - frag_end;
|
|
err = kbase_csf_tiler_heap_alloc_new_chunk(kctx,
|
gpu_heap_va, renderpasses_in_flight, pending_frag_count, &new_chunk_ptr);
|
|
/* It is okay to acknowledge with a NULL chunk (firmware will then wait
|
* for the fragment jobs to complete and release chunks)
|
*/
|
if (err == -EBUSY)
|
new_chunk_ptr = 0;
|
else if (err)
|
return err;
|
|
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_START_LO,
|
new_chunk_ptr & 0xFFFFFFFF);
|
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_START_HI,
|
new_chunk_ptr >> 32);
|
|
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_END_LO,
|
new_chunk_ptr & 0xFFFFFFFF);
|
kbase_csf_firmware_cs_input(stream, CS_TILER_HEAP_END_HI,
|
new_chunk_ptr >> 32);
|
|
return 0;
|
}
|
|
/**
|
* report_tiler_oom_error - Report a CSG error due to a tiler heap OOM event
|
*
|
* @group: Pointer to the GPU command queue group that encountered the error
|
*/
|
static void report_tiler_oom_error(struct kbase_queue_group *group)
|
{
|
struct base_csf_notification const
|
error = { .type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
|
.payload = {
|
.csg_error = {
|
.handle = group->handle,
|
.error = {
|
.error_type =
|
BASE_GPU_QUEUE_GROUP_ERROR_TILER_HEAP_OOM,
|
} } } };
|
|
add_error(group->kctx, &group->error_tiler_oom, &error);
|
kbase_event_wakeup(group->kctx);
|
}
|
|
/**
|
* kbase_queue_oom_event - Handle tiler out-of-memory for a GPU command queue.
|
*
|
* @queue: Pointer to queue for which out-of-memory event was received.
|
*
|
* Called with the CSF locked for the affected GPU virtual address space.
|
* Do not call in interrupt context.
|
*
|
* Handles tiler out-of-memory for a GPU command queue and then clears the
|
* notification to allow the firmware to report out-of-memory again in future.
|
* If the out-of-memory condition was successfully handled then this function
|
* rings the relevant doorbell to notify the firmware; otherwise, it terminates
|
* the GPU command queue group to which the queue is bound. See
|
* term_queue_group() for details.
|
*/
|
static void kbase_queue_oom_event(struct kbase_queue *const queue)
|
{
|
struct kbase_context *const kctx = queue->kctx;
|
struct kbase_device *const kbdev = kctx->kbdev;
|
struct kbase_queue_group *group;
|
int slot_num, err;
|
struct kbase_csf_cmd_stream_group_info const *ginfo;
|
struct kbase_csf_cmd_stream_info const *stream;
|
int csi_index = queue->csi_index;
|
u32 cs_oom_ack, cs_oom_req;
|
|
lockdep_assert_held(&kctx->csf.lock);
|
|
group = get_bound_queue_group(queue);
|
if (!group) {
|
dev_warn(kctx->kbdev->dev, "queue not bound\n");
|
return;
|
}
|
|
kbase_csf_scheduler_lock(kbdev);
|
|
slot_num = kbase_csf_scheduler_group_get_slot(group);
|
|
/* The group could have gone off slot before this work item got
|
* a chance to execute.
|
*/
|
if (slot_num < 0)
|
goto unlock;
|
|
/* If the bound group is on slot yet the kctx is marked with disabled
|
* on address-space fault, the group is pending to be killed. So skip
|
* the inflight oom operation.
|
*/
|
if (kbase_ctx_flag(kctx, KCTX_AS_DISABLED_ON_FAULT))
|
goto unlock;
|
|
ginfo = &kbdev->csf.global_iface.groups[slot_num];
|
stream = &ginfo->streams[csi_index];
|
cs_oom_ack = kbase_csf_firmware_cs_output(stream, CS_ACK) &
|
CS_ACK_TILER_OOM_MASK;
|
cs_oom_req = kbase_csf_firmware_cs_input_read(stream, CS_REQ) &
|
CS_REQ_TILER_OOM_MASK;
|
|
/* The group could have already undergone suspend-resume cycle before
|
* this work item got a chance to execute. On CSG resume the CS_ACK
|
* register is set by firmware to reflect the CS_REQ register, which
|
* implies that all events signaled before suspension are implicitly
|
* acknowledged.
|
* A new OoM event is expected to be generated after resume.
|
*/
|
if (cs_oom_ack == cs_oom_req)
|
goto unlock;
|
|
err = handle_oom_event(kctx, stream);
|
|
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_oom_ack,
|
CS_REQ_TILER_OOM_MASK);
|
|
if (err) {
|
dev_warn(
|
kbdev->dev,
|
"Queue group to be terminated, couldn't handle the OoM event\n");
|
kbase_csf_scheduler_unlock(kbdev);
|
term_queue_group(group);
|
report_tiler_oom_error(group);
|
return;
|
}
|
|
kbase_csf_ring_cs_kernel_doorbell(kbdev, csi_index, slot_num, true);
|
unlock:
|
kbase_csf_scheduler_unlock(kbdev);
|
}
|
|
/**
|
* oom_event_worker - Tiler out-of-memory handler called from a workqueue.
|
*
|
* @data: Pointer to a work_struct embedded in GPU command queue data.
|
*
|
* Handles a tiler out-of-memory condition for a GPU command queue and then
|
* releases a reference that was added to prevent the queue being destroyed
|
* while this work item was pending on a workqueue.
|
*/
|
static void oom_event_worker(struct work_struct *data)
|
{
|
struct kbase_queue *queue =
|
container_of(data, struct kbase_queue, oom_event_work);
|
struct kbase_context *kctx = queue->kctx;
|
struct kbase_device *const kbdev = kctx->kbdev;
|
|
int err = kbase_reset_gpu_try_prevent(kbdev);
|
/* Regardless of whether reset failed or is currently happening, exit
|
* early
|
*/
|
if (err)
|
return;
|
|
mutex_lock(&kctx->csf.lock);
|
|
kbase_queue_oom_event(queue);
|
release_queue(queue);
|
|
mutex_unlock(&kctx->csf.lock);
|
kbase_reset_gpu_allow(kbdev);
|
}
|
|
/**
|
* report_group_timeout_error - Report the timeout error for the group to userspace.
|
*
|
* @group: Pointer to the group for which timeout error occurred
|
*/
|
static void report_group_timeout_error(struct kbase_queue_group *const group)
|
{
|
struct base_csf_notification const
|
error = { .type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
|
.payload = {
|
.csg_error = {
|
.handle = group->handle,
|
.error = {
|
.error_type =
|
BASE_GPU_QUEUE_GROUP_ERROR_TIMEOUT,
|
} } } };
|
|
dev_warn(group->kctx->kbdev->dev,
|
"Notify the event notification thread, forward progress timeout (%llu cycles)\n",
|
kbase_csf_timeout_get(group->kctx->kbdev));
|
|
add_error(group->kctx, &group->error_timeout, &error);
|
kbase_event_wakeup(group->kctx);
|
}
|
|
/**
|
* timer_event_worker - Handle the progress timeout error for the group
|
*
|
* @data: Pointer to a work_struct embedded in GPU command queue group data.
|
*
|
* Terminate the CSG and report the error to userspace
|
*/
|
static void timer_event_worker(struct work_struct *data)
|
{
|
struct kbase_queue_group *const group =
|
container_of(data, struct kbase_queue_group, timer_event_work);
|
struct kbase_context *const kctx = group->kctx;
|
bool reset_prevented = false;
|
int err = kbase_reset_gpu_prevent_and_wait(kctx->kbdev);
|
|
if (err)
|
dev_warn(
|
kctx->kbdev->dev,
|
"Unsuccessful GPU reset detected when terminating group %d on progress timeout, attempting to terminate regardless",
|
group->handle);
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
|
term_queue_group(group);
|
report_group_timeout_error(group);
|
|
mutex_unlock(&kctx->csf.lock);
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kctx->kbdev);
|
}
|
|
/**
|
* handle_progress_timer_event - Progress timer timeout event handler.
|
*
|
* @group: Pointer to GPU queue group for which the timeout event is received.
|
*
|
* Enqueue a work item to terminate the group and notify the event notification
|
* thread of progress timeout fault for the GPU command queue group.
|
*/
|
static void handle_progress_timer_event(struct kbase_queue_group *const group)
|
{
|
queue_work(group->kctx->csf.wq, &group->timer_event_work);
|
}
|
|
/**
|
* protm_event_worker - Protected mode switch request event handler
|
* called from a workqueue.
|
*
|
* @data: Pointer to a work_struct embedded in GPU command queue group data.
|
*
|
* Request to switch to protected mode.
|
*/
|
static void protm_event_worker(struct work_struct *data)
|
{
|
struct kbase_queue_group *const group =
|
container_of(data, struct kbase_queue_group, protm_event_work);
|
|
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, PROTM_EVENT_WORKER_BEGIN,
|
group, 0u);
|
kbase_csf_scheduler_group_protm_enter(group);
|
KBASE_KTRACE_ADD_CSF_GRP(group->kctx->kbdev, PROTM_EVENT_WORKER_END,
|
group, 0u);
|
}
|
|
static void report_queue_fatal_error(struct kbase_queue *const queue,
|
u32 cs_fatal, u64 cs_fatal_info,
|
u8 group_handle)
|
{
|
struct base_csf_notification error =
|
{ .type = BASE_CSF_NOTIFICATION_GPU_QUEUE_GROUP_ERROR,
|
.payload = {
|
.csg_error = {
|
.handle = group_handle,
|
.error = {
|
.error_type =
|
BASE_GPU_QUEUE_GROUP_QUEUE_ERROR_FATAL,
|
.payload = {
|
.fatal_queue = {
|
.sideband =
|
cs_fatal_info,
|
.status = cs_fatal,
|
.csi_index =
|
queue->csi_index,
|
} } } } } };
|
|
add_error(queue->kctx, &queue->error, &error);
|
kbase_event_wakeup(queue->kctx);
|
}
|
|
/**
|
* handle_fault_event - Handler for CS fault.
|
*
|
* @queue: Pointer to queue for which fault event was received.
|
* @stream: Pointer to the structure containing info provided by the
|
* firmware about the CSI.
|
*
|
* Prints meaningful CS fault information.
|
*
|
*/
|
static void
|
handle_fault_event(struct kbase_queue *const queue,
|
struct kbase_csf_cmd_stream_info const *const stream)
|
{
|
const u32 cs_fault = kbase_csf_firmware_cs_output(stream, CS_FAULT);
|
const u64 cs_fault_info =
|
kbase_csf_firmware_cs_output(stream, CS_FAULT_INFO_LO) |
|
((u64)kbase_csf_firmware_cs_output(stream, CS_FAULT_INFO_HI)
|
<< 32);
|
const u8 cs_fault_exception_type =
|
CS_FAULT_EXCEPTION_TYPE_GET(cs_fault);
|
const u32 cs_fault_exception_data =
|
CS_FAULT_EXCEPTION_DATA_GET(cs_fault);
|
const u64 cs_fault_info_exception_data =
|
CS_FAULT_INFO_EXCEPTION_DATA_GET(cs_fault_info);
|
struct kbase_device *const kbdev = queue->kctx->kbdev;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
dev_warn(kbdev->dev,
|
"Ctx %d_%d Group %d CSG %d CSI: %d\n"
|
"CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
|
"CS_FAULT.EXCEPTION_DATA: 0x%x\n"
|
"CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
|
queue->kctx->tgid, queue->kctx->id, queue->group->handle,
|
queue->group->csg_nr, queue->csi_index,
|
cs_fault_exception_type,
|
kbase_gpu_exception_name(cs_fault_exception_type),
|
cs_fault_exception_data, cs_fault_info_exception_data);
|
|
if (cs_fault_exception_type ==
|
CS_FAULT_EXCEPTION_TYPE_RESOURCE_EVICTION_TIMEOUT)
|
report_queue_fatal_error(queue, GPU_EXCEPTION_TYPE_SW_FAULT_2,
|
0, queue->group->handle);
|
}
|
|
/**
|
* fatal_event_worker - Handle the fatal error for the GPU queue
|
*
|
* @data: Pointer to a work_struct embedded in GPU command queue.
|
*
|
* Terminate the CSG and report the error to userspace.
|
*/
|
static void fatal_event_worker(struct work_struct *const data)
|
{
|
struct kbase_queue *const queue =
|
container_of(data, struct kbase_queue, fatal_event_work);
|
struct kbase_context *const kctx = queue->kctx;
|
struct kbase_device *const kbdev = kctx->kbdev;
|
struct kbase_queue_group *group;
|
u8 group_handle;
|
bool reset_prevented = false;
|
int err = kbase_reset_gpu_prevent_and_wait(kbdev);
|
|
if (err)
|
dev_warn(
|
kbdev->dev,
|
"Unsuccessful GPU reset detected when terminating group to handle fatal event, attempting to terminate regardless");
|
else
|
reset_prevented = true;
|
|
mutex_lock(&kctx->csf.lock);
|
|
group = get_bound_queue_group(queue);
|
if (!group) {
|
dev_warn(kbdev->dev, "queue not bound when handling fatal event");
|
goto unlock;
|
}
|
|
group_handle = group->handle;
|
term_queue_group(group);
|
report_queue_fatal_error(queue, queue->cs_fatal, queue->cs_fatal_info,
|
group_handle);
|
|
unlock:
|
release_queue(queue);
|
mutex_unlock(&kctx->csf.lock);
|
if (reset_prevented)
|
kbase_reset_gpu_allow(kbdev);
|
}
|
|
/**
|
* handle_fatal_event - Handler for CS fatal.
|
*
|
* @queue: Pointer to queue for which fatal event was received.
|
* @stream: Pointer to the structure containing info provided by the
|
* firmware about the CSI.
|
*
|
* Prints meaningful CS fatal information.
|
* Enqueue a work item to terminate the group and report the fatal error
|
* to user space.
|
*/
|
static void
|
handle_fatal_event(struct kbase_queue *const queue,
|
struct kbase_csf_cmd_stream_info const *const stream)
|
{
|
const u32 cs_fatal = kbase_csf_firmware_cs_output(stream, CS_FATAL);
|
const u64 cs_fatal_info =
|
kbase_csf_firmware_cs_output(stream, CS_FATAL_INFO_LO) |
|
((u64)kbase_csf_firmware_cs_output(stream, CS_FATAL_INFO_HI)
|
<< 32);
|
const u32 cs_fatal_exception_type =
|
CS_FATAL_EXCEPTION_TYPE_GET(cs_fatal);
|
const u32 cs_fatal_exception_data =
|
CS_FATAL_EXCEPTION_DATA_GET(cs_fatal);
|
const u64 cs_fatal_info_exception_data =
|
CS_FATAL_INFO_EXCEPTION_DATA_GET(cs_fatal_info);
|
struct kbase_device *const kbdev = queue->kctx->kbdev;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
dev_warn(kbdev->dev,
|
"Ctx %d_%d Group %d CSG %d CSI: %d\n"
|
"CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
|
"CS_FATAL.EXCEPTION_DATA: 0x%x\n"
|
"CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
|
queue->kctx->tgid, queue->kctx->id, queue->group->handle,
|
queue->group->csg_nr, queue->csi_index,
|
cs_fatal_exception_type,
|
kbase_gpu_exception_name(cs_fatal_exception_type),
|
cs_fatal_exception_data, cs_fatal_info_exception_data);
|
|
if (cs_fatal_exception_type ==
|
CS_FATAL_EXCEPTION_TYPE_FIRMWARE_INTERNAL_ERROR) {
|
queue_work(system_wq, &kbdev->csf.fw_error_work);
|
} else {
|
get_queue(queue);
|
queue->cs_fatal = cs_fatal;
|
queue->cs_fatal_info = cs_fatal_info;
|
if (!queue_work(queue->kctx->csf.wq, &queue->fatal_event_work))
|
release_queue(queue);
|
}
|
}
|
|
/**
|
* handle_queue_exception_event - Handler for CS fatal/fault exception events.
|
*
|
* @queue: Pointer to queue for which fatal/fault event was received.
|
* @cs_req: Value of the CS_REQ register from the CS's input page.
|
* @cs_ack: Value of the CS_ACK register from the CS's output page.
|
*/
|
static void handle_queue_exception_event(struct kbase_queue *const queue,
|
const u32 cs_req, const u32 cs_ack)
|
{
|
struct kbase_csf_cmd_stream_group_info const *ginfo;
|
struct kbase_csf_cmd_stream_info const *stream;
|
struct kbase_context *const kctx = queue->kctx;
|
struct kbase_device *const kbdev = kctx->kbdev;
|
struct kbase_queue_group *group = queue->group;
|
int csi_index = queue->csi_index;
|
int slot_num = group->csg_nr;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
ginfo = &kbdev->csf.global_iface.groups[slot_num];
|
stream = &ginfo->streams[csi_index];
|
|
if ((cs_ack & CS_ACK_FATAL_MASK) != (cs_req & CS_REQ_FATAL_MASK)) {
|
handle_fatal_event(queue, stream);
|
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_ack,
|
CS_REQ_FATAL_MASK);
|
}
|
|
if ((cs_ack & CS_ACK_FAULT_MASK) != (cs_req & CS_REQ_FAULT_MASK)) {
|
handle_fault_event(queue, stream);
|
kbase_csf_firmware_cs_input_mask(stream, CS_REQ, cs_ack,
|
CS_REQ_FAULT_MASK);
|
kbase_csf_ring_cs_kernel_doorbell(kbdev, csi_index, slot_num, true);
|
}
|
}
|
|
/**
|
* process_cs_interrupts - Process interrupts for a CS.
|
*
|
* @group: Pointer to GPU command queue group data.
|
* @ginfo: The CSG interface provided by the firmware.
|
* @irqreq: CSG's IRQ request bitmask (one bit per CS).
|
* @irqack: CSG's IRQ acknowledge bitmask (one bit per CS).
|
*
|
* If the interrupt request bitmask differs from the acknowledge bitmask
|
* then the firmware is notifying the host of an event concerning those
|
* CSs indicated by bits whose value differs. The actions required
|
* are then determined by examining which notification flags differ between
|
* the request and acknowledge registers for the individual CS(s).
|
*/
|
static void process_cs_interrupts(struct kbase_queue_group *const group,
|
struct kbase_csf_cmd_stream_group_info const *const ginfo,
|
u32 const irqreq, u32 const irqack)
|
{
|
struct kbase_device *const kbdev = group->kctx->kbdev;
|
u32 remaining = irqreq ^ irqack;
|
bool protm_pend = false;
|
const bool group_suspending =
|
!kbase_csf_scheduler_group_events_enabled(kbdev, group);
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
while (remaining != 0) {
|
int const i = ffs(remaining) - 1;
|
struct kbase_queue *const queue = group->bound_queues[i];
|
|
remaining &= ~(1 << i);
|
|
/* The queue pointer can be NULL, but if it isn't NULL then it
|
* cannot disappear since scheduler spinlock is held and before
|
* freeing a bound queue it has to be first unbound which
|
* requires scheduler spinlock.
|
*/
|
if (queue && !WARN_ON(queue->csi_index != i)) {
|
struct kbase_csf_cmd_stream_info const *const stream =
|
&ginfo->streams[i];
|
u32 const cs_req = kbase_csf_firmware_cs_input_read(
|
stream, CS_REQ);
|
u32 const cs_ack =
|
kbase_csf_firmware_cs_output(stream, CS_ACK);
|
struct workqueue_struct *wq = group->kctx->csf.wq;
|
|
if ((cs_req & CS_REQ_EXCEPTION_MASK) ^
|
(cs_ack & CS_ACK_EXCEPTION_MASK)) {
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_FAULT_INTERRUPT, group, queue, cs_req ^ cs_ack);
|
handle_queue_exception_event(queue, cs_req, cs_ack);
|
}
|
|
/* PROTM_PEND and TILER_OOM can be safely ignored
|
* because they will be raised again if the group
|
* is assigned a CSG slot in future.
|
*/
|
if (group_suspending) {
|
u32 const cs_req_remain = cs_req & ~CS_REQ_EXCEPTION_MASK;
|
u32 const cs_ack_remain = cs_ack & ~CS_ACK_EXCEPTION_MASK;
|
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_IGNORED_INTERRUPTS_GROUP_SUSPEND,
|
group, queue, cs_req_remain ^ cs_ack_remain);
|
continue;
|
}
|
|
if (((cs_req & CS_REQ_TILER_OOM_MASK) ^
|
(cs_ack & CS_ACK_TILER_OOM_MASK))) {
|
get_queue(queue);
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_TILER_OOM_INTERRUPT, group, queue,
|
cs_req ^ cs_ack);
|
if (WARN_ON(!queue_work(wq, &queue->oom_event_work))) {
|
/* The work item shall not have been
|
* already queued, there can be only
|
* one pending OoM event for a
|
* queue.
|
*/
|
release_queue(queue);
|
}
|
}
|
|
if ((cs_req & CS_REQ_PROTM_PEND_MASK) ^
|
(cs_ack & CS_ACK_PROTM_PEND_MASK)) {
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, CSI_PROTM_PEND_INTERRUPT, group, queue,
|
cs_req ^ cs_ack);
|
|
dev_dbg(kbdev->dev,
|
"Protected mode entry request for queue on csi %d bound to group-%d on slot %d",
|
queue->csi_index, group->handle,
|
group->csg_nr);
|
|
bitmap_set(group->protm_pending_bitmap, i, 1);
|
KBASE_KTRACE_ADD_CSF_GRP_Q(kbdev, PROTM_PENDING_SET, group, queue,
|
group->protm_pending_bitmap[0]);
|
protm_pend = true;
|
}
|
}
|
}
|
|
if (protm_pend)
|
queue_work(group->kctx->csf.wq, &group->protm_event_work);
|
}
|
|
/**
|
* process_csg_interrupts - Process interrupts for a CSG.
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
* @csg_nr: CSG number.
|
*
|
* Handles interrupts for a CSG and for CSs within it.
|
*
|
* If the CSG's request register value differs from its acknowledge register
|
* then the firmware is notifying the host of an event concerning the whole
|
* group. The actions required are then determined by examining which
|
* notification flags differ between those two register values.
|
*
|
* See process_cs_interrupts() for details of per-stream interrupt handling.
|
*/
|
static void process_csg_interrupts(struct kbase_device *const kbdev,
|
int const csg_nr)
|
{
|
struct kbase_csf_cmd_stream_group_info *ginfo;
|
struct kbase_queue_group *group = NULL;
|
u32 req, ack, irqreq, irqack;
|
|
kbase_csf_scheduler_spin_lock_assert_held(kbdev);
|
|
if (WARN_ON(csg_nr >= kbdev->csf.global_iface.group_num))
|
return;
|
|
KBASE_KTRACE_ADD(kbdev, CSG_INTERRUPT_PROCESS, NULL, csg_nr);
|
|
ginfo = &kbdev->csf.global_iface.groups[csg_nr];
|
req = kbase_csf_firmware_csg_input_read(ginfo, CSG_REQ);
|
ack = kbase_csf_firmware_csg_output(ginfo, CSG_ACK);
|
irqreq = kbase_csf_firmware_csg_output(ginfo, CSG_IRQ_REQ);
|
irqack = kbase_csf_firmware_csg_input_read(ginfo, CSG_IRQ_ACK);
|
|
/* There may not be any pending CSG/CS interrupts to process */
|
if ((req == ack) && (irqreq == irqack))
|
goto out;
|
|
/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
|
* examining the CS_ACK & CS_REQ bits. This would ensure that Host
|
* doesn't misses an interrupt for the CS in the race scenario where
|
* whilst Host is servicing an interrupt for the CS, firmware sends
|
* another interrupt for that CS.
|
*/
|
kbase_csf_firmware_csg_input(ginfo, CSG_IRQ_ACK, irqreq);
|
|
group = kbase_csf_scheduler_get_group_on_slot(kbdev, csg_nr);
|
|
/* The group pointer can be NULL here if interrupts for the group
|
* (like SYNC_UPDATE, IDLE notification) were delayed and arrived
|
* just after the suspension of group completed. However if not NULL
|
* then the group pointer cannot disappear even if User tries to
|
* terminate the group whilst this loop is running as scheduler
|
* spinlock is held and for freeing a group that is resident on a CSG
|
* slot scheduler spinlock is required.
|
*/
|
if (!group)
|
goto out;
|
|
if (WARN_ON(kbase_csf_scheduler_group_get_slot_locked(group) != csg_nr))
|
goto out;
|
|
if ((req ^ ack) & CSG_REQ_SYNC_UPDATE_MASK) {
|
kbase_csf_firmware_csg_input_mask(ginfo,
|
CSG_REQ, ack, CSG_REQ_SYNC_UPDATE_MASK);
|
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_SYNC_UPDATE_INTERRUPT, group, req ^ ack);
|
kbase_csf_event_signal_cpu_only(group->kctx);
|
}
|
|
if ((req ^ ack) & CSG_REQ_IDLE_MASK) {
|
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
|
|
kbase_csf_firmware_csg_input_mask(ginfo, CSG_REQ, ack,
|
CSG_REQ_IDLE_MASK);
|
|
set_bit(csg_nr, scheduler->csg_slots_idle_mask);
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_SLOT_IDLE_SET, group,
|
scheduler->csg_slots_idle_mask[0]);
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_IDLE_INTERRUPT, group, req ^ ack);
|
dev_dbg(kbdev->dev, "Idle notification received for Group %u on slot %d\n",
|
group->handle, csg_nr);
|
|
/* Check if the scheduling tick can be advanced */
|
if (kbase_csf_scheduler_all_csgs_idle(kbdev) &&
|
!scheduler->gpu_idle_fw_timer_enabled) {
|
kbase_csf_scheduler_advance_tick_nolock(kbdev);
|
}
|
}
|
|
if ((req ^ ack) & CSG_REQ_PROGRESS_TIMER_EVENT_MASK) {
|
kbase_csf_firmware_csg_input_mask(ginfo, CSG_REQ, ack,
|
CSG_REQ_PROGRESS_TIMER_EVENT_MASK);
|
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_PROGRESS_TIMER_INTERRUPT,
|
group, req ^ ack);
|
dev_info(kbdev->dev,
|
"Timeout notification received for group %u of ctx %d_%d on slot %d\n",
|
group->handle, group->kctx->tgid, group->kctx->id, csg_nr);
|
|
handle_progress_timer_event(group);
|
}
|
|
process_cs_interrupts(group, ginfo, irqreq, irqack);
|
|
out:
|
/* group may still be NULL here */
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, CSG_INTERRUPT_PROCESS_END, group,
|
((u64)req ^ ack) | (((u64)irqreq ^ irqack) << 32));
|
}
|
|
/**
|
* process_prfcnt_interrupts - Process performance counter interrupts.
|
*
|
* @kbdev: Instance of a GPU platform device that implements a CSF interface.
|
* @glb_req: Global request register value.
|
* @glb_ack: Global acknowledge register value.
|
*
|
* Handles interrupts issued by the firmware that relate to the performance
|
* counters. For example, on completion of a performance counter sample. It is
|
* expected that the scheduler spinlock is already held on calling this
|
* function.
|
*/
|
static void process_prfcnt_interrupts(struct kbase_device *kbdev, u32 glb_req,
|
u32 glb_ack)
|
{
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
|
lockdep_assert_held(&kbdev->csf.scheduler.interrupt_lock);
|
|
/* Process PRFCNT_SAMPLE interrupt. */
|
if (kbdev->csf.hwcnt.request_pending &&
|
((glb_req & GLB_REQ_PRFCNT_SAMPLE_MASK) ==
|
(glb_ack & GLB_REQ_PRFCNT_SAMPLE_MASK))) {
|
kbdev->csf.hwcnt.request_pending = false;
|
|
dev_dbg(kbdev->dev, "PRFCNT_SAMPLE done interrupt received.");
|
|
kbase_hwcnt_backend_csf_on_prfcnt_sample(
|
&kbdev->hwcnt_gpu_iface);
|
}
|
|
/* Process PRFCNT_ENABLE interrupt. */
|
if (kbdev->csf.hwcnt.enable_pending &&
|
((glb_req & GLB_REQ_PRFCNT_ENABLE_MASK) ==
|
(glb_ack & GLB_REQ_PRFCNT_ENABLE_MASK))) {
|
kbdev->csf.hwcnt.enable_pending = false;
|
|
dev_dbg(kbdev->dev,
|
"PRFCNT_ENABLE status changed interrupt received.");
|
|
if (glb_ack & GLB_REQ_PRFCNT_ENABLE_MASK)
|
kbase_hwcnt_backend_csf_on_prfcnt_enable(
|
&kbdev->hwcnt_gpu_iface);
|
else
|
kbase_hwcnt_backend_csf_on_prfcnt_disable(
|
&kbdev->hwcnt_gpu_iface);
|
}
|
|
/* Process PRFCNT_THRESHOLD interrupt. */
|
if ((glb_req ^ glb_ack) & GLB_REQ_PRFCNT_THRESHOLD_MASK) {
|
dev_dbg(kbdev->dev, "PRFCNT_THRESHOLD interrupt received.");
|
|
kbase_hwcnt_backend_csf_on_prfcnt_threshold(
|
&kbdev->hwcnt_gpu_iface);
|
|
/* Set the GLB_REQ.PRFCNT_THRESHOLD flag back to
|
* the same value as GLB_ACK.PRFCNT_THRESHOLD
|
* flag in order to enable reporting of another
|
* PRFCNT_THRESHOLD event.
|
*/
|
kbase_csf_firmware_global_input_mask(
|
global_iface, GLB_REQ, glb_ack,
|
GLB_REQ_PRFCNT_THRESHOLD_MASK);
|
}
|
|
/* Process PRFCNT_OVERFLOW interrupt. */
|
if ((glb_req ^ glb_ack) & GLB_REQ_PRFCNT_OVERFLOW_MASK) {
|
dev_dbg(kbdev->dev, "PRFCNT_OVERFLOW interrupt received.");
|
|
kbase_hwcnt_backend_csf_on_prfcnt_overflow(
|
&kbdev->hwcnt_gpu_iface);
|
|
/* Set the GLB_REQ.PRFCNT_OVERFLOW flag back to
|
* the same value as GLB_ACK.PRFCNT_OVERFLOW
|
* flag in order to enable reporting of another
|
* PRFCNT_OVERFLOW event.
|
*/
|
kbase_csf_firmware_global_input_mask(
|
global_iface, GLB_REQ, glb_ack,
|
GLB_REQ_PRFCNT_OVERFLOW_MASK);
|
}
|
}
|
|
void kbase_csf_interrupt(struct kbase_device *kbdev, u32 val)
|
{
|
unsigned long flags;
|
u32 remaining = val;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT, NULL, val);
|
kbase_reg_write(kbdev, JOB_CONTROL_REG(JOB_IRQ_CLEAR), val);
|
|
if (val & JOB_IRQ_GLOBAL_IF) {
|
const struct kbase_csf_global_iface *const global_iface =
|
&kbdev->csf.global_iface;
|
struct kbase_csf_scheduler *scheduler = &kbdev->csf.scheduler;
|
|
kbdev->csf.interrupt_received = true;
|
remaining &= ~JOB_IRQ_GLOBAL_IF;
|
|
if (!kbdev->csf.firmware_reloaded)
|
kbase_csf_firmware_reload_completed(kbdev);
|
else if (global_iface->output) {
|
u32 glb_req, glb_ack;
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
glb_req = kbase_csf_firmware_global_input_read(
|
global_iface, GLB_REQ);
|
glb_ack = kbase_csf_firmware_global_output(
|
global_iface, GLB_ACK);
|
KBASE_KTRACE_ADD(kbdev, GLB_REQ_ACQ, NULL, glb_req ^ glb_ack);
|
|
if ((glb_req ^ glb_ack) & GLB_REQ_PROTM_EXIT_MASK) {
|
dev_dbg(kbdev->dev, "Protected mode exit interrupt received");
|
kbase_csf_firmware_global_input_mask(
|
global_iface, GLB_REQ, glb_ack,
|
GLB_REQ_PROTM_EXIT_MASK);
|
WARN_ON(!kbase_csf_scheduler_protected_mode_in_use(kbdev));
|
KBASE_KTRACE_ADD_CSF_GRP(kbdev, SCHEDULER_EXIT_PROTM, scheduler->active_protm_grp, 0u);
|
scheduler->active_protm_grp = NULL;
|
kbdev->protected_mode = false;
|
kbase_ipa_control_protm_exited(kbdev);
|
kbase_hwcnt_backend_csf_protm_exited(
|
&kbdev->hwcnt_gpu_iface);
|
}
|
|
/* Handle IDLE Hysteresis notification event */
|
if ((glb_req ^ glb_ack) & GLB_REQ_IDLE_EVENT_MASK) {
|
int non_idle_offslot_grps;
|
bool can_suspend_on_idle;
|
dev_dbg(kbdev->dev, "Idle-hysteresis event flagged");
|
kbase_csf_firmware_global_input_mask(
|
global_iface, GLB_REQ, glb_ack,
|
GLB_REQ_IDLE_EVENT_MASK);
|
|
non_idle_offslot_grps = atomic_read(&scheduler->non_idle_offslot_grps);
|
can_suspend_on_idle = kbase_pm_idle_groups_sched_suspendable(kbdev);
|
KBASE_KTRACE_ADD(kbdev, SCHEDULER_CAN_IDLE, NULL,
|
((u64)(u32)non_idle_offslot_grps) | (((u64)can_suspend_on_idle) << 32));
|
|
if (!non_idle_offslot_grps) {
|
if (can_suspend_on_idle)
|
queue_work(system_highpri_wq,
|
&scheduler->gpu_idle_work);
|
} else {
|
/* Advance the scheduling tick to get
|
* the non-idle suspended groups loaded
|
* soon.
|
*/
|
kbase_csf_scheduler_advance_tick_nolock(
|
kbdev);
|
}
|
}
|
|
process_prfcnt_interrupts(kbdev, glb_req, glb_ack);
|
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
/* Invoke the MCU state machine as a state transition
|
* might have completed.
|
*/
|
kbase_pm_update_state(kbdev);
|
}
|
|
if (!remaining) {
|
wake_up_all(&kbdev->csf.event_wait);
|
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT_END, NULL, val);
|
return;
|
}
|
}
|
|
kbase_csf_scheduler_spin_lock(kbdev, &flags);
|
while (remaining != 0) {
|
int const csg_nr = ffs(remaining) - 1;
|
|
process_csg_interrupts(kbdev, csg_nr);
|
remaining &= ~(1 << csg_nr);
|
}
|
kbase_csf_scheduler_spin_unlock(kbdev, flags);
|
|
wake_up_all(&kbdev->csf.event_wait);
|
KBASE_KTRACE_ADD(kbdev, CSF_INTERRUPT_END, NULL, val);
|
}
|
|
void kbase_csf_doorbell_mapping_term(struct kbase_device *kbdev)
|
{
|
if (kbdev->csf.db_filp) {
|
struct page *page = as_page(kbdev->csf.dummy_db_page);
|
|
kbase_mem_pool_free(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
page, false);
|
|
fput(kbdev->csf.db_filp);
|
}
|
}
|
|
int kbase_csf_doorbell_mapping_init(struct kbase_device *kbdev)
|
{
|
struct tagged_addr phys;
|
struct file *filp;
|
int ret;
|
|
filp = shmem_file_setup("mali csf", MAX_LFS_FILESIZE, VM_NORESERVE);
|
if (IS_ERR(filp))
|
return PTR_ERR(filp);
|
|
ret = kbase_mem_pool_alloc_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
|
1, &phys, false);
|
|
if (ret <= 0) {
|
fput(filp);
|
return ret;
|
}
|
|
kbdev->csf.db_filp = filp;
|
kbdev->csf.dummy_db_page = phys;
|
kbdev->csf.db_file_offsets = 0;
|
|
return 0;
|
}
|
|
void kbase_csf_free_dummy_user_reg_page(struct kbase_device *kbdev)
|
{
|
if (as_phys_addr_t(kbdev->csf.dummy_user_reg_page)) {
|
struct page *page = as_page(kbdev->csf.dummy_user_reg_page);
|
|
kbase_mem_pool_free(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], page,
|
false);
|
}
|
}
|
|
int kbase_csf_setup_dummy_user_reg_page(struct kbase_device *kbdev)
|
{
|
struct tagged_addr phys;
|
struct page *page;
|
u32 *addr;
|
int ret;
|
|
kbdev->csf.dummy_user_reg_page = as_tagged(0);
|
|
ret = kbase_mem_pool_alloc_pages(
|
&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], 1, &phys,
|
false);
|
|
if (ret <= 0)
|
return ret;
|
|
page = as_page(phys);
|
addr = kmap_atomic(page);
|
|
/* Write a special value for the latest flush register inside the
|
* dummy page
|
*/
|
addr[LATEST_FLUSH / sizeof(u32)] = POWER_DOWN_LATEST_FLUSH_VALUE;
|
|
kbase_sync_single_for_device(kbdev, kbase_dma_addr(page), sizeof(u32),
|
DMA_BIDIRECTIONAL);
|
kunmap_atomic(addr);
|
|
kbdev->csf.dummy_user_reg_page = phys;
|
|
return 0;
|
}
|
|
u8 kbase_csf_priority_check(struct kbase_device *kbdev, u8 req_priority)
|
{
|
struct priority_control_manager_device *pcm_device = kbdev->pcm_dev;
|
u8 out_priority = req_priority;
|
|
if (pcm_device) {
|
req_priority = kbase_csf_priority_queue_group_priority_to_relative(req_priority);
|
out_priority = pcm_device->ops.pcm_scheduler_priority_check(pcm_device, current, req_priority);
|
out_priority = kbase_csf_priority_relative_to_queue_group_priority(out_priority);
|
}
|
|
return out_priority;
|
}
|