hc
2024-12-19 9370bb92b2d16684ee45cf24e879c93c509162da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright 2005, Paul Mackerras, IBM Corporation.
 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 */
 
#include <linux/sched.h>
#include <linux/memblock.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/dma.h>
 
#include <mm/mmu_decl.h>
 
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
 * the vmalloc space using normal page tables, though the size of
 * pages encoded in the PTEs can be different
 */
int __meminit vmemmap_create_mapping(unsigned long start,
                    unsigned long page_size,
                    unsigned long phys)
{
   /* Create a PTE encoding without page size */
   unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
       _PAGE_KERNEL_RW;
 
   /* PTEs only contain page size encodings up to 32M */
   BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
 
   /* Encode the size in the PTE */
   flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
 
   /* For each PTE for that area, map things. Note that we don't
    * increment phys because all PTEs are of the large size and
    * thus must have the low bits clear
    */
   for (i = 0; i < page_size; i += PAGE_SIZE)
       BUG_ON(map_kernel_page(start + i, phys, __pgprot(flags)));
 
   return 0;
}
 
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_remove_mapping(unsigned long start,
               unsigned long page_size)
{
}
#endif
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 
static void __init *early_alloc_pgtable(unsigned long size)
{
   void *ptr;
 
   ptr = memblock_alloc_try_nid(size, size, MEMBLOCK_LOW_LIMIT,
                    __pa(MAX_DMA_ADDRESS), NUMA_NO_NODE);
 
   if (!ptr)
       panic("%s: Failed to allocate %lu bytes align=0x%lx max_addr=%lx\n",
             __func__, size, size, __pa(MAX_DMA_ADDRESS));
 
   return ptr;
}
 
/*
 * map_kernel_page currently only called by __ioremap
 * map_kernel_page adds an entry to the ioremap page table
 * and adds an entry to the HPT, possibly bolting it
 */
int __ref map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
   pgd_t *pgdp;
   p4d_t *p4dp;
   pud_t *pudp;
   pmd_t *pmdp;
   pte_t *ptep;
 
   BUILD_BUG_ON(TASK_SIZE_USER64 > PGTABLE_RANGE);
   if (slab_is_available()) {
       pgdp = pgd_offset_k(ea);
       p4dp = p4d_offset(pgdp, ea);
       pudp = pud_alloc(&init_mm, p4dp, ea);
       if (!pudp)
           return -ENOMEM;
       pmdp = pmd_alloc(&init_mm, pudp, ea);
       if (!pmdp)
           return -ENOMEM;
       ptep = pte_alloc_kernel(pmdp, ea);
       if (!ptep)
           return -ENOMEM;
   } else {
       pgdp = pgd_offset_k(ea);
       p4dp = p4d_offset(pgdp, ea);
       if (p4d_none(*p4dp)) {
           pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
           p4d_populate(&init_mm, p4dp, pudp);
       }
       pudp = pud_offset(p4dp, ea);
       if (pud_none(*pudp)) {
           pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
           pud_populate(&init_mm, pudp, pmdp);
       }
       pmdp = pmd_offset(pudp, ea);
       if (!pmd_present(*pmdp)) {
           ptep = early_alloc_pgtable(PTE_TABLE_SIZE);
           pmd_populate_kernel(&init_mm, pmdp, ptep);
       }
       ptep = pte_offset_kernel(pmdp, ea);
   }
   set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
 
   smp_wmb();
   return 0;
}