hc
2024-12-19 9370bb92b2d16684ee45cf24e879c93c509162da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_HASH_H
#define _ASM_HASH_H
 
/*
 * Fortunately, most people who want to run Linux on Microblaze enable
 * both multiplier and barrel shifter, but omitting them is technically
 * a supported configuration.
 *
 * With just a barrel shifter, we can implement an efficient constant
 * multiply using shifts and adds.  GCC can find a 9-step solution, but
 * this 6-step solution was found by Yevgen Voronenko's implementation
 * of the Hcub algorithm at http://spiral.ece.cmu.edu/mcm/gen.html.
 *
 * That software is really not designed for a single multiplier this large,
 * but if you run it enough times with different seeds, it'll find several
 * 6-shift, 6-add sequences for computing x * 0x61C88647.  They are all
 *    c = (x << 19) + x;
 *    a = (x <<  9) + c;
 *    b = (x << 23) + a;
 *    return (a<<11) + (b<<6) + (c<<3) - b;
 * with variations on the order of the final add.
 *
 * Without even a shifter, it's hopless; any hash function will suck.
 */
 
#if CONFIG_XILINX_MICROBLAZE0_USE_HW_MUL == 0
 
#define HAVE_ARCH__HASH_32 1
 
/* Multiply by GOLDEN_RATIO_32 = 0x61C88647 */
static inline u32 __attribute_const__ __hash_32(u32 a)
{
#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL
   unsigned int b, c;
 
   /* Phase 1: Compute three intermediate values */
   b =  a << 23;
   c = (a << 19) + a;
   a = (a <<  9) + c;
   b += a;
 
   /* Phase 2: Compute (a << 11) + (b << 6) + (c << 3) - b */
   a <<= 5;
   a += b;        /* (a << 5) + b */
   a <<= 3;
   a += c;        /* (a << 8) + (b << 3) + c */
   a <<= 3;
   return a - b;    /* (a << 11) + (b << 6) + (c << 3) - b */
#else
   /*
    * "This is really going to hurt."
    *
    * Without a barrel shifter, left shifts are implemented as
    * repeated additions, and the best we can do is an optimal
    * addition-subtraction chain.  This one is not known to be
    * optimal, but at 37 steps, it's decent for a 31-bit multiplier.
    *
    * Question: given its size (37*4 = 148 bytes per instance),
    * and slowness, is this worth having inline?
    */
   unsigned int b, c, d;
 
   b = a << 4;    /* 4    */
   c = b << 1;    /* 1  5 */
   b += a;        /* 1  6 */
   c += b;        /* 1  7 */
   c <<= 3;    /* 3 10 */
   c -= a;        /* 1 11 */
   d = c << 7;    /* 7 18 */
   d += b;        /* 1 19 */
   d <<= 8;    /* 8 27 */
   d += a;        /* 1 28 */
   d <<= 1;    /* 1 29 */
   d += b;        /* 1 30 */
   d <<= 6;    /* 6 36 */
   return d + c;    /* 1 37 total instructions*/
#endif
}
 
#endif /* !CONFIG_XILINX_MICROBLAZE0_USE_HW_MUL */
#endif /* _ASM_HASH_H */