extern "C" {
|
#include <stddef.h>
|
#include <assert.h>
|
#include <tee_api.h>
|
#include <trace.h>
|
#include <stdlib.h>
|
|
}
|
|
|
// Default deleter for pointer types.
|
template <typename T>
|
struct DefaultDelete {
|
enum { type_must_be_complete = sizeof(T) };
|
DefaultDelete() {}
|
void operator()(T* p) const {
|
delete p;
|
}
|
};
|
|
// Default deleter for array types.
|
template <typename T>
|
struct DefaultDelete<T[]> {
|
enum { type_must_be_complete = sizeof(T) };
|
void operator()(T* p) const {
|
delete[] p;
|
}
|
};
|
|
// A smart pointer that deletes the given pointer on destruction.
|
// Equivalent to C++0x's std::unique_ptr (a combination of boost::scoped_ptr
|
// and boost::scoped_array).
|
// Named to be in keeping with Android style but also to avoid
|
// collision with any other implementation, until we can switch over
|
// to unique_ptr.
|
// Use thus:
|
// UniquePtr<C> c(new C);
|
template <typename T, typename D = DefaultDelete<T> >
|
class UniquePtr {
|
template<typename U, typename UD>
|
friend
|
class UniquePtr;
|
public:
|
UniquePtr() : mPtr(nullptr) {}
|
// Construct a new UniquePtr, taking ownership of the given raw pointer.
|
explicit UniquePtr(T* ptr) : mPtr(ptr) {
|
}
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
UniquePtr(const decltype(nullptr)&) : mPtr(nullptr) {}
|
|
UniquePtr(UniquePtr && other): mPtr(other.mPtr) {
|
other.mPtr = nullptr;
|
}
|
|
template <typename U>
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
UniquePtr(UniquePtr<U>&& other) : mPtr(other.mPtr) {
|
other.mPtr = nullptr;
|
}
|
UniquePtr& operator=(UniquePtr && other) {
|
if (&other != this) {
|
reset();
|
mPtr = other.release();
|
}
|
return *this;
|
}
|
|
~UniquePtr() {
|
reset();
|
}
|
|
// Accessors.
|
T& operator*() const { return *mPtr; }
|
T* operator->() const { return mPtr; }
|
T* get() const { return mPtr; }
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
operator bool() const { return mPtr != nullptr; }
|
|
// Returns the raw pointer and hands over ownership to the caller.
|
// The pointer will not be deleted by UniquePtr.
|
T* release() __attribute__((warn_unused_result)) {
|
T* result = mPtr;
|
mPtr = nullptr;
|
return result;
|
}
|
|
// Takes ownership of the given raw pointer.
|
// If this smart pointer previously owned a different raw pointer, that
|
// raw pointer will be freed.
|
void reset(T* ptr = nullptr) {
|
if (ptr != mPtr) {
|
D()(mPtr);
|
mPtr = ptr;
|
}
|
}
|
|
private:
|
// The raw pointer.
|
T* mPtr;
|
|
// Comparing unique pointers is probably a mistake, since they're unique.
|
template <typename T2> bool operator==(const UniquePtr<T2>& p) const;
|
template <typename T2> bool operator!=(const UniquePtr<T2>& p) const;
|
|
UniquePtr(const UniquePtr&) = delete;
|
UniquePtr & operator=(const UniquePtr&) = delete;
|
};
|
|
// Partial specialization for array types. Like std::unique_ptr, this removes
|
// operator* and operator-> but adds operator[].
|
template <typename T, typename D>
|
class UniquePtr<T[], D> {
|
public:
|
UniquePtr() : mPtr(nullptr) {}
|
explicit UniquePtr(T* ptr) : mPtr(ptr) {
|
}
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
UniquePtr(const decltype(nullptr)&) : mPtr(nullptr) {}
|
|
UniquePtr(UniquePtr && other): mPtr(other.mPtr) {
|
other.mPtr = nullptr;
|
}
|
UniquePtr& operator=(UniquePtr && other) {
|
if (&other != this) {
|
reset();
|
mPtr = other.release();
|
}
|
return *this;
|
}
|
|
~UniquePtr() {
|
reset();
|
}
|
|
T& operator[](size_t i) const {
|
return mPtr[i];
|
}
|
T* get() const { return mPtr; }
|
|
T* release() __attribute__((warn_unused_result)) {
|
T* result = mPtr;
|
mPtr = nullptr;
|
return result;
|
}
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
operator bool() const { return mPtr != nullptr; }
|
|
void reset(T* ptr = nullptr) {
|
if (ptr != mPtr) {
|
D()(mPtr);
|
mPtr = ptr;
|
}
|
}
|
|
private:
|
T* mPtr;
|
|
UniquePtr(const UniquePtr&) = delete;
|
UniquePtr & operator=(const UniquePtr&) = delete;
|
};
|
|
|
|
#if UNIQUE_PTR_TESTS
|
|
// Run these tests with:
|
// g++ -g -DUNIQUE_PTR_TESTS -x c++ UniquePtr.h && ./a.out
|
|
#include <stdio.h>
|
using namespace keymaster;
|
|
static void assert(bool b) {
|
if (!b) {
|
fprintf(stderr, "FAIL\n");
|
abort();
|
}
|
fprintf(stderr, "OK\n");
|
}
|
static int cCount = 0;
|
struct C {
|
C() { ++cCount; }
|
~C() { --cCount; }
|
};
|
static bool freed = false;
|
struct Freer {
|
void operator()(int* p) {
|
assert(*p == 123);
|
free(p);
|
freed = true;
|
}
|
};
|
|
int main(int argc, char* argv[]) {
|
//
|
// UniquePtr<T> tests...
|
//
|
|
// Can we free a single object?
|
{
|
UniquePtr<C> c(new C);
|
assert(cCount == 1);
|
}
|
assert(cCount == 0);
|
// Does release work?
|
C* rawC;
|
{
|
UniquePtr<C> c(new C);
|
assert(cCount == 1);
|
rawC = c.release();
|
}
|
assert(cCount == 1);
|
delete rawC;
|
// Does reset work?
|
{
|
UniquePtr<C> c(new C);
|
assert(cCount == 1);
|
c.reset(new C);
|
assert(cCount == 1);
|
}
|
assert(cCount == 0);
|
|
//
|
// UniquePtr<T[]> tests...
|
//
|
|
// Can we free an array?
|
{
|
UniquePtr<C[]> cs(new C[4]);
|
assert(cCount == 4);
|
}
|
assert(cCount == 0);
|
// Does release work?
|
{
|
UniquePtr<C[]> c(new C[4]);
|
assert(cCount == 4);
|
rawC = c.release();
|
}
|
assert(cCount == 4);
|
delete[] rawC;
|
// Does reset work?
|
{
|
UniquePtr<C[]> c(new C[4]);
|
assert(cCount == 4);
|
c.reset(new C[2]);
|
assert(cCount == 2);
|
}
|
assert(cCount == 0);
|
|
//
|
// Custom deleter tests...
|
//
|
assert(!freed);
|
{
|
UniquePtr<int, Freer> i(reinterpret_cast<int*>(malloc(sizeof(int))));
|
*i = 123;
|
}
|
assert(freed);
|
return 0;
|
}
|
#endif
|