// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
|
/*-------------------------------------------
|
Includes
|
-------------------------------------------*/
|
#include "opencv2/core/core.hpp"
|
#include "opencv2/imgcodecs.hpp"
|
#include "opencv2/imgproc.hpp"
|
#include "rknn_api.h"
|
|
#include <stdint.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <sys/time.h>
|
|
#include <fstream>
|
#include <iostream>
|
|
using namespace std;
|
using namespace cv;
|
|
/*-------------------------------------------
|
Functions
|
-------------------------------------------*/
|
|
static void dump_tensor_attr(rknn_tensor_attr* attr)
|
{
|
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
|
"zp=%d, scale=%f\n",
|
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
|
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
|
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
|
}
|
|
static unsigned char* load_model(const char* filename, int* model_size)
|
{
|
FILE* fp = fopen(filename, "rb");
|
if (fp == nullptr) {
|
printf("fopen %s fail!\n", filename);
|
return NULL;
|
}
|
fseek(fp, 0, SEEK_END);
|
int model_len = ftell(fp);
|
unsigned char* model = (unsigned char*)malloc(model_len);
|
fseek(fp, 0, SEEK_SET);
|
if (model_len != fread(model, 1, model_len, fp)) {
|
printf("fread %s fail!\n", filename);
|
free(model);
|
return NULL;
|
}
|
*model_size = model_len;
|
if (fp) {
|
fclose(fp);
|
}
|
return model;
|
}
|
|
static int rknn_GetTop(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
|
{
|
uint32_t i, j;
|
|
#define MAX_TOP_NUM 20
|
if (topNum > MAX_TOP_NUM)
|
return 0;
|
|
memset(pfMaxProb, 0, sizeof(float) * topNum);
|
memset(pMaxClass, 0xff, sizeof(float) * topNum);
|
|
for (j = 0; j < topNum; j++) {
|
for (i = 0; i < outputCount; i++) {
|
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
|
(i == *(pMaxClass + 4))) {
|
continue;
|
}
|
|
if (pfProb[i] > *(pfMaxProb + j)) {
|
*(pfMaxProb + j) = pfProb[i];
|
*(pMaxClass + j) = i;
|
}
|
}
|
}
|
|
return 1;
|
}
|
|
/*-------------------------------------------
|
Main Function
|
-------------------------------------------*/
|
int main(int argc, char** argv)
|
{
|
const int MODEL_IN_WIDTH = 224;
|
const int MODEL_IN_HEIGHT = 224;
|
const int MODEL_IN_CHANNELS = 3;
|
|
rknn_context ctx = 0;
|
int ret;
|
int model_len = 0;
|
unsigned char* model;
|
|
const char* model_path = argv[1];
|
const char* img_path = argv[2];
|
|
if (argc != 3) {
|
printf("Usage: %s <rknn model> <image_path> \n", argv[0]);
|
return -1;
|
}
|
|
// Load image
|
cv::Mat orig_img = imread(img_path, cv::IMREAD_COLOR);
|
if (!orig_img.data) {
|
printf("cv::imread %s fail!\n", img_path);
|
return -1;
|
}
|
|
cv::Mat orig_img_rgb;
|
cv::cvtColor(orig_img, orig_img_rgb, cv::COLOR_BGR2RGB);
|
|
cv::Mat img = orig_img_rgb.clone();
|
if (orig_img.cols != MODEL_IN_WIDTH || orig_img.rows != MODEL_IN_HEIGHT) {
|
printf("resize %d %d to %d %d\n", orig_img.cols, orig_img.rows, MODEL_IN_WIDTH, MODEL_IN_HEIGHT);
|
cv::resize(orig_img, img, cv::Size(MODEL_IN_WIDTH, MODEL_IN_HEIGHT), 0, 0, cv::INTER_LINEAR);
|
}
|
|
// Load RKNN Model
|
model = load_model(model_path, &model_len);
|
ret = rknn_init(&ctx, model, model_len, 0, NULL);
|
if (ret < 0) {
|
printf("rknn_init fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Get Model Input Output Info
|
rknn_input_output_num io_num;
|
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
|
|
printf("input tensors:\n");
|
rknn_tensor_attr input_attrs[io_num.n_input];
|
memset(input_attrs, 0, sizeof(input_attrs));
|
for (int i = 0; i < io_num.n_input; i++) {
|
input_attrs[i].index = i;
|
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
dump_tensor_attr(&(input_attrs[i]));
|
}
|
|
printf("output tensors:\n");
|
rknn_tensor_attr output_attrs[io_num.n_output];
|
memset(output_attrs, 0, sizeof(output_attrs));
|
for (int i = 0; i < io_num.n_output; i++) {
|
output_attrs[i].index = i;
|
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
dump_tensor_attr(&(output_attrs[i]));
|
}
|
|
// Set Input Data
|
rknn_input inputs[1];
|
memset(inputs, 0, sizeof(inputs));
|
inputs[0].index = 0;
|
inputs[0].type = RKNN_TENSOR_UINT8;
|
inputs[0].size = img.cols * img.rows * img.channels() * sizeof(uint8_t);
|
inputs[0].fmt = RKNN_TENSOR_NHWC;
|
inputs[0].buf = img.data;
|
|
ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
|
if (ret < 0) {
|
printf("rknn_input_set fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Run
|
printf("rknn_run\n");
|
ret = rknn_run(ctx, nullptr);
|
if (ret < 0) {
|
printf("rknn_run fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Get Output
|
rknn_output outputs[1];
|
memset(outputs, 0, sizeof(outputs));
|
outputs[0].want_float = 1;
|
ret = rknn_outputs_get(ctx, 1, outputs, NULL);
|
if (ret < 0) {
|
printf("rknn_outputs_get fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Post Process
|
for (int i = 0; i < io_num.n_output; i++) {
|
uint32_t MaxClass[5];
|
float fMaxProb[5];
|
float* buffer = (float*)outputs[i].buf;
|
uint32_t sz = outputs[i].size / 4;
|
|
rknn_GetTop(buffer, fMaxProb, MaxClass, sz, 5);
|
|
printf(" --- Top5 ---\n");
|
for (int i = 0; i < 5; i++) {
|
printf("%3d: %8.6f\n", MaxClass[i], fMaxProb[i]);
|
}
|
}
|
|
// Release rknn_outputs
|
rknn_outputs_release(ctx, 1, outputs);
|
|
// Release
|
if (ctx > 0)
|
{
|
rknn_destroy(ctx);
|
}
|
if (model) {
|
free(model);
|
}
|
return 0;
|
}
|