/******************************************************************************
|
*
|
* Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
|
*
|
* This program is free software; you can redistribute it and/or modify it
|
* under the terms of version 2 of the GNU General Public License as
|
* published by the Free Software Foundation.
|
*
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
* more details.
|
*
|
* You should have received a copy of the GNU General Public License along with
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
*
|
* The full GNU General Public License is included in this distribution in the
|
* file called LICENSE.
|
*
|
* Contact Information:
|
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
*
|
*
|
* Few modifications for Realtek's Wi-Fi drivers by
|
* Andrea Merello <andrea.merello@gmail.com>
|
*
|
* A special thanks goes to Realtek for their support !
|
*
|
******************************************************************************/
|
|
#include <linux/compiler.h>
|
#include <linux/errno.h>
|
#include <linux/if_arp.h>
|
#include <linux/in6.h>
|
#include <linux/in.h>
|
#include <linux/ip.h>
|
#include <linux/kernel.h>
|
#include <linux/module.h>
|
#include <linux/netdevice.h>
|
#include <linux/pci.h>
|
#include <linux/proc_fs.h>
|
#include <linux/skbuff.h>
|
#include <linux/slab.h>
|
#include <linux/tcp.h>
|
#include <linux/types.h>
|
#include <linux/wireless.h>
|
#include <linux/etherdevice.h>
|
#include <linux/uaccess.h>
|
#include <linux/if_vlan.h>
|
|
#include "ieee80211.h"
|
|
|
/*
|
*
|
*
|
* 802.11 Data Frame
|
*
|
*
|
* 802.11 frame_contorl for data frames - 2 bytes
|
* ,-----------------------------------------------------------------------------------------.
|
* bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
|
* |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|
* val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
|
* |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|
* desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep |
|
* | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | |
|
* '-----------------------------------------------------------------------------------------'
|
* /\
|
* |
|
* 802.11 Data Frame |
|
* ,--------- 'ctrl' expands to >-----------'
|
* |
|
* ,--'---,-------------------------------------------------------------.
|
* Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
|
* |------|------|---------|---------|---------|------|---------|------|
|
* Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
|
* | | tion | (BSSID) | | | ence | data | |
|
* `--------------------------------------------------| |------'
|
* Total: 28 non-data bytes `----.----'
|
* |
|
* .- 'Frame data' expands to <---------------------------'
|
* |
|
* V
|
* ,---------------------------------------------------.
|
* Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
|
* |------|------|---------|----------|------|---------|
|
* Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
|
* | DSAP | SSAP | | | | Packet |
|
* | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
|
* `-----------------------------------------| |
|
* Total: 8 non-data bytes `----.----'
|
* |
|
* .- 'IP Packet' expands, if WEP enabled, to <--'
|
* |
|
* V
|
* ,-----------------------.
|
* Bytes | 4 | 0-2296 | 4 |
|
* |-----|-----------|-----|
|
* Desc. | IV | Encrypted | ICV |
|
* | | IP Packet | |
|
* `-----------------------'
|
* Total: 8 non-data bytes
|
*
|
*
|
* 802.3 Ethernet Data Frame
|
*
|
* ,-----------------------------------------.
|
* Bytes | 6 | 6 | 2 | Variable | 4 |
|
* |-------|-------|------|-----------|------|
|
* Desc. | Dest. | Source| Type | IP Packet | fcs |
|
* | MAC | MAC | | | |
|
* `-----------------------------------------'
|
* Total: 18 non-data bytes
|
*
|
* In the event that fragmentation is required, the incoming payload is split into
|
* N parts of size ieee->fts. The first fragment contains the SNAP header and the
|
* remaining packets are just data.
|
*
|
* If encryption is enabled, each fragment payload size is reduced by enough space
|
* to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
|
* So if you have 1500 bytes of payload with ieee->fts set to 500 without
|
* encryption it will take 3 frames. With WEP it will take 4 frames as the
|
* payload of each frame is reduced to 492 bytes.
|
*
|
* SKB visualization
|
*
|
* ,- skb->data
|
* |
|
* | ETHERNET HEADER ,-<-- PAYLOAD
|
* | | 14 bytes from skb->data
|
* | 2 bytes for Type --> ,T. | (sizeof ethhdr)
|
* | | | |
|
* |,-Dest.--. ,--Src.---. | | |
|
* | 6 bytes| | 6 bytes | | | |
|
* v | | | | | |
|
* 0 | v 1 | v | v 2
|
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
|
* ^ | ^ | ^ |
|
* | | | | | |
|
* | | | | `T' <---- 2 bytes for Type
|
* | | | |
|
* | | '---SNAP--' <-------- 6 bytes for SNAP
|
* | |
|
* `-IV--' <-------------------- 4 bytes for IV (WEP)
|
*
|
* SNAP HEADER
|
*
|
*/
|
|
static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
|
static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
|
|
static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
|
{
|
struct ieee80211_snap_hdr *snap;
|
u8 *oui;
|
|
snap = (struct ieee80211_snap_hdr *)data;
|
snap->dsap = 0xaa;
|
snap->ssap = 0xaa;
|
snap->ctrl = 0x03;
|
|
if (h_proto == 0x8137 || h_proto == 0x80f3)
|
oui = P802_1H_OUI;
|
else
|
oui = RFC1042_OUI;
|
snap->oui[0] = oui[0];
|
snap->oui[1] = oui[1];
|
snap->oui[2] = oui[2];
|
|
*(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
|
|
return SNAP_SIZE + sizeof(u16);
|
}
|
|
int ieee80211_encrypt_fragment(
|
struct ieee80211_device *ieee,
|
struct sk_buff *frag,
|
int hdr_len)
|
{
|
struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
|
int res;
|
|
if (!(crypt && crypt->ops))
|
{
|
printk("=========>%s(), crypt is null\n", __func__);
|
return -1;
|
}
|
|
if (ieee->tkip_countermeasures &&
|
crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
|
if (net_ratelimit()) {
|
struct rtl_80211_hdr_3addrqos *header;
|
|
header = (struct rtl_80211_hdr_3addrqos *)frag->data;
|
printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
|
"TX packet to %pM\n",
|
ieee->dev->name, header->addr1);
|
}
|
return -1;
|
}
|
|
/* To encrypt, frame format is:
|
* IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
|
*/
|
|
// PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
|
/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
|
* call both MSDU and MPDU encryption functions from here.
|
*/
|
atomic_inc(&crypt->refcnt);
|
res = 0;
|
if (crypt->ops->encrypt_msdu)
|
res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
|
if (res == 0 && crypt->ops->encrypt_mpdu)
|
res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
|
|
atomic_dec(&crypt->refcnt);
|
if (res < 0) {
|
printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
|
ieee->dev->name, frag->len);
|
ieee->ieee_stats.tx_discards++;
|
return -1;
|
}
|
|
return 0;
|
}
|
|
|
void ieee80211_txb_free(struct ieee80211_txb *txb) {
|
//int i;
|
if (unlikely(!txb))
|
return;
|
kfree(txb);
|
}
|
EXPORT_SYMBOL(ieee80211_txb_free);
|
|
static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
|
gfp_t gfp_mask)
|
{
|
struct ieee80211_txb *txb;
|
int i;
|
txb = kmalloc(
|
sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
|
gfp_mask);
|
if (!txb)
|
return NULL;
|
|
memset(txb, 0, sizeof(struct ieee80211_txb));
|
txb->nr_frags = nr_frags;
|
txb->frag_size = __cpu_to_le16(txb_size);
|
|
for (i = 0; i < nr_frags; i++) {
|
txb->fragments[i] = dev_alloc_skb(txb_size);
|
if (unlikely(!txb->fragments[i])) {
|
i--;
|
break;
|
}
|
memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
|
}
|
if (unlikely(i != nr_frags)) {
|
while (i >= 0)
|
dev_kfree_skb_any(txb->fragments[i--]);
|
kfree(txb);
|
return NULL;
|
}
|
return txb;
|
}
|
|
// Classify the to-be send data packet
|
// Need to acquire the sent queue index.
|
static int
|
ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
|
{
|
struct ethhdr *eth;
|
struct iphdr *ip;
|
eth = (struct ethhdr *)skb->data;
|
if (eth->h_proto != htons(ETH_P_IP))
|
return 0;
|
|
ip = ip_hdr(skb);
|
switch (ip->tos & 0xfc) {
|
case 0x20:
|
return 2;
|
case 0x40:
|
return 1;
|
case 0x60:
|
return 3;
|
case 0x80:
|
return 4;
|
case 0xa0:
|
return 5;
|
case 0xc0:
|
return 6;
|
case 0xe0:
|
return 7;
|
default:
|
return 0;
|
}
|
}
|
|
static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
|
struct sk_buff *skb, struct cb_desc *tcb_desc)
|
{
|
PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
|
struct tx_ts_record *pTxTs = NULL;
|
struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
|
|
if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
|
return;
|
if (!IsQoSDataFrame(skb->data))
|
return;
|
|
if (is_multicast_ether_addr(hdr->addr1))
|
return;
|
//check packet and mode later
|
#ifdef TO_DO_LIST
|
if(pTcb->PacketLength >= 4096)
|
return;
|
// For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
|
if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
|
return;
|
#endif
|
if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
|
{
|
return;
|
}
|
if(pHTInfo->bCurrentAMPDUEnable)
|
{
|
if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
|
{
|
printk("===>can't get TS\n");
|
return;
|
}
|
if (!pTxTs->tx_admitted_ba_record.bValid)
|
{
|
TsStartAddBaProcess(ieee, pTxTs);
|
goto FORCED_AGG_SETTING;
|
}
|
else if (!pTxTs->using_ba)
|
{
|
if (SN_LESS(pTxTs->tx_admitted_ba_record.BaStartSeqCtrl.field.SeqNum, (pTxTs->tx_cur_seq + 1) % 4096))
|
pTxTs->using_ba = true;
|
else
|
goto FORCED_AGG_SETTING;
|
}
|
|
if (ieee->iw_mode == IW_MODE_INFRA)
|
{
|
tcb_desc->bAMPDUEnable = true;
|
tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
|
tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
|
}
|
}
|
FORCED_AGG_SETTING:
|
switch (pHTInfo->ForcedAMPDUMode )
|
{
|
case HT_AGG_AUTO:
|
break;
|
|
case HT_AGG_FORCE_ENABLE:
|
tcb_desc->bAMPDUEnable = true;
|
tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
|
tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
|
break;
|
|
case HT_AGG_FORCE_DISABLE:
|
tcb_desc->bAMPDUEnable = false;
|
tcb_desc->ampdu_density = 0;
|
tcb_desc->ampdu_factor = 0;
|
break;
|
|
}
|
return;
|
}
|
|
static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
|
struct cb_desc *tcb_desc)
|
{
|
tcb_desc->bUseShortPreamble = false;
|
if (tcb_desc->data_rate == 2)
|
{//// 1M can only use Long Preamble. 11B spec
|
return;
|
}
|
else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
|
{
|
tcb_desc->bUseShortPreamble = true;
|
}
|
return;
|
}
|
static void
|
ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
|
{
|
PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
|
|
tcb_desc->bUseShortGI = false;
|
|
if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
|
return;
|
|
if(pHTInfo->bForcedShortGI)
|
{
|
tcb_desc->bUseShortGI = true;
|
return;
|
}
|
|
if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
|
tcb_desc->bUseShortGI = true;
|
else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
|
tcb_desc->bUseShortGI = true;
|
}
|
|
static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
|
struct cb_desc *tcb_desc)
|
{
|
PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
|
|
tcb_desc->bPacketBW = false;
|
|
if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
|
return;
|
|
if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
|
return;
|
|
if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
|
return;
|
//BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
|
if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
|
tcb_desc->bPacketBW = true;
|
return;
|
}
|
|
static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
|
struct cb_desc *tcb_desc,
|
struct sk_buff *skb)
|
{
|
// Common Settings
|
tcb_desc->bRTSSTBC = false;
|
tcb_desc->bRTSUseShortGI = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
|
tcb_desc->bCTSEnable = false; // Most of protection using RTS/CTS
|
tcb_desc->RTSSC = 0; // 20MHz: Don't care; 40MHz: Duplicate.
|
tcb_desc->bRTSBW = false; // RTS frame bandwidth is always 20MHz
|
|
if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
|
return;
|
|
if (is_broadcast_ether_addr(skb->data+16)) //check addr3 as infrastructure add3 is DA.
|
return;
|
|
if (ieee->mode < IEEE_N_24G) //b, g mode
|
{
|
// (1) RTS_Threshold is compared to the MPDU, not MSDU.
|
// (2) If there are more than one frag in this MSDU, only the first frag uses protection frame.
|
// Other fragments are protected by previous fragment.
|
// So we only need to check the length of first fragment.
|
if (skb->len > ieee->rts)
|
{
|
tcb_desc->bRTSEnable = true;
|
tcb_desc->rts_rate = MGN_24M;
|
}
|
else if (ieee->current_network.buseprotection)
|
{
|
// Use CTS-to-SELF in protection mode.
|
tcb_desc->bRTSEnable = true;
|
tcb_desc->bCTSEnable = true;
|
tcb_desc->rts_rate = MGN_24M;
|
}
|
//otherwise return;
|
return;
|
}
|
else
|
{// 11n High throughput case.
|
PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
|
while (true)
|
{
|
//check ERP protection
|
if (ieee->current_network.buseprotection)
|
{// CTS-to-SELF
|
tcb_desc->bRTSEnable = true;
|
tcb_desc->bCTSEnable = true;
|
tcb_desc->rts_rate = MGN_24M;
|
break;
|
}
|
//check HT op mode
|
if(pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT)
|
{
|
u8 HTOpMode = pHTInfo->CurrentOpMode;
|
if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
|
(!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
|
{
|
tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
|
tcb_desc->bRTSEnable = true;
|
break;
|
}
|
}
|
//check rts
|
if (skb->len > ieee->rts)
|
{
|
tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
|
tcb_desc->bRTSEnable = true;
|
break;
|
}
|
//to do list: check MIMO power save condition.
|
//check AMPDU aggregation for TXOP
|
if(tcb_desc->bAMPDUEnable)
|
{
|
tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
|
// According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
|
// throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
|
tcb_desc->bRTSEnable = false;
|
break;
|
}
|
//check IOT action
|
if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
|
{
|
tcb_desc->bCTSEnable = true;
|
tcb_desc->rts_rate = MGN_24M;
|
tcb_desc->bRTSEnable = true;
|
break;
|
}
|
// Totally no protection case!!
|
goto NO_PROTECTION;
|
}
|
}
|
// For test , CTS replace with RTS
|
if (0) {
|
tcb_desc->bCTSEnable = true;
|
tcb_desc->rts_rate = MGN_24M;
|
tcb_desc->bRTSEnable = true;
|
}
|
if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
|
tcb_desc->bUseShortPreamble = true;
|
if (ieee->mode == IW_MODE_MASTER)
|
goto NO_PROTECTION;
|
return;
|
NO_PROTECTION:
|
tcb_desc->bRTSEnable = false;
|
tcb_desc->bCTSEnable = false;
|
tcb_desc->rts_rate = 0;
|
tcb_desc->RTSSC = 0;
|
tcb_desc->bRTSBW = false;
|
}
|
|
|
static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
|
struct cb_desc *tcb_desc)
|
{
|
#ifdef TO_DO_LIST
|
if(!IsDataFrame(pFrame))
|
{
|
pTcb->bTxDisableRateFallBack = true;
|
pTcb->bTxUseDriverAssingedRate = true;
|
pTcb->RATRIndex = 7;
|
return;
|
}
|
|
if(pMgntInfo->ForcedDataRate!= 0)
|
{
|
pTcb->bTxDisableRateFallBack = true;
|
pTcb->bTxUseDriverAssingedRate = true;
|
return;
|
}
|
#endif
|
if(ieee->bTxDisableRateFallBack)
|
tcb_desc->bTxDisableRateFallBack = true;
|
|
if(ieee->bTxUseDriverAssingedRate)
|
tcb_desc->bTxUseDriverAssingedRate = true;
|
if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
|
{
|
if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
|
tcb_desc->RATRIndex = 0;
|
}
|
}
|
|
static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
|
struct sk_buff *skb, u8 *dst)
|
{
|
if (is_multicast_ether_addr(dst))
|
return;
|
if (IsQoSDataFrame(skb->data)) //we deal qos data only
|
{
|
struct tx_ts_record *pTS = NULL;
|
if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true))
|
{
|
return;
|
}
|
pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
|
}
|
}
|
|
int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
|
{
|
struct ieee80211_device *ieee = netdev_priv(dev);
|
struct ieee80211_txb *txb = NULL;
|
struct rtl_80211_hdr_3addrqos *frag_hdr;
|
int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
|
unsigned long flags;
|
struct net_device_stats *stats = &ieee->stats;
|
int ether_type = 0, encrypt;
|
int bytes, fc, qos_ctl = 0, hdr_len;
|
struct sk_buff *skb_frag;
|
struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
|
.duration_id = 0,
|
.seq_ctl = 0,
|
.qos_ctl = 0
|
};
|
u8 dest[ETH_ALEN], src[ETH_ALEN];
|
int qos_actived = ieee->current_network.qos_data.active;
|
|
struct ieee80211_crypt_data *crypt;
|
|
struct cb_desc *tcb_desc;
|
|
spin_lock_irqsave(&ieee->lock, flags);
|
|
/* If there is no driver handler to take the TXB, dont' bother
|
* creating it...
|
*/
|
if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
|
((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
|
printk(KERN_WARNING "%s: No xmit handler.\n",
|
ieee->dev->name);
|
goto success;
|
}
|
|
|
if(likely(ieee->raw_tx == 0)){
|
if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
|
printk(KERN_WARNING "%s: skb too small (%d).\n",
|
ieee->dev->name, skb->len);
|
goto success;
|
}
|
|
memset(skb->cb, 0, sizeof(skb->cb));
|
ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
|
|
crypt = ieee->crypt[ieee->tx_keyidx];
|
|
encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
|
ieee->host_encrypt && crypt && crypt->ops;
|
|
if (!encrypt && ieee->ieee802_1x &&
|
ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
|
stats->tx_dropped++;
|
goto success;
|
}
|
#ifdef CONFIG_IEEE80211_DEBUG
|
if (crypt && !encrypt && ether_type == ETH_P_PAE) {
|
struct eapol *eap = (struct eapol *)(skb->data +
|
sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
|
IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
|
eap_get_type(eap->type));
|
}
|
#endif
|
|
/* Save source and destination addresses */
|
memcpy(&dest, skb->data, ETH_ALEN);
|
memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
|
|
/* Advance the SKB to the start of the payload */
|
skb_pull(skb, sizeof(struct ethhdr));
|
|
/* Determine total amount of storage required for TXB packets */
|
bytes = skb->len + SNAP_SIZE + sizeof(u16);
|
|
if (encrypt)
|
fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
|
else
|
|
fc = IEEE80211_FTYPE_DATA;
|
|
//if(ieee->current_network.QoS_Enable)
|
if(qos_actived)
|
fc |= IEEE80211_STYPE_QOS_DATA;
|
else
|
fc |= IEEE80211_STYPE_DATA;
|
|
if (ieee->iw_mode == IW_MODE_INFRA) {
|
fc |= IEEE80211_FCTL_TODS;
|
/* To DS: Addr1 = BSSID, Addr2 = SA,
|
* Addr3 = DA
|
*/
|
memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
|
memcpy(&header.addr2, &src, ETH_ALEN);
|
memcpy(&header.addr3, &dest, ETH_ALEN);
|
} else if (ieee->iw_mode == IW_MODE_ADHOC) {
|
/* not From/To DS: Addr1 = DA, Addr2 = SA,
|
* Addr3 = BSSID
|
*/
|
memcpy(&header.addr1, dest, ETH_ALEN);
|
memcpy(&header.addr2, src, ETH_ALEN);
|
memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
|
}
|
|
header.frame_ctl = cpu_to_le16(fc);
|
|
/* Determine fragmentation size based on destination (multicast
|
* and broadcast are not fragmented)
|
*/
|
if (is_multicast_ether_addr(header.addr1)) {
|
frag_size = MAX_FRAG_THRESHOLD;
|
qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
|
}
|
else {
|
frag_size = ieee->fts;//default:392
|
qos_ctl = 0;
|
}
|
|
//if (ieee->current_network.QoS_Enable)
|
if(qos_actived)
|
{
|
hdr_len = IEEE80211_3ADDR_LEN + 2;
|
|
skb->priority = ieee80211_classify(skb, &ieee->current_network);
|
qos_ctl |= skb->priority; //set in the ieee80211_classify
|
header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
|
} else {
|
hdr_len = IEEE80211_3ADDR_LEN;
|
}
|
/* Determine amount of payload per fragment. Regardless of if
|
* this stack is providing the full 802.11 header, one will
|
* eventually be affixed to this fragment -- so we must account for
|
* it when determining the amount of payload space.
|
*/
|
bytes_per_frag = frag_size - hdr_len;
|
if (ieee->config &
|
(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
|
bytes_per_frag -= IEEE80211_FCS_LEN;
|
|
/* Each fragment may need to have room for encryption pre/postfix */
|
if (encrypt)
|
bytes_per_frag -= crypt->ops->extra_prefix_len +
|
crypt->ops->extra_postfix_len;
|
|
/* Number of fragments is the total bytes_per_frag /
|
* payload_per_fragment
|
*/
|
nr_frags = bytes / bytes_per_frag;
|
bytes_last_frag = bytes % bytes_per_frag;
|
if (bytes_last_frag)
|
nr_frags++;
|
else
|
bytes_last_frag = bytes_per_frag;
|
|
/* When we allocate the TXB we allocate enough space for the reserve
|
* and full fragment bytes (bytes_per_frag doesn't include prefix,
|
* postfix, header, FCS, etc.)
|
*/
|
txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
|
if (unlikely(!txb)) {
|
printk(KERN_WARNING "%s: Could not allocate TXB\n",
|
ieee->dev->name);
|
goto failed;
|
}
|
txb->encrypted = encrypt;
|
txb->payload_size = __cpu_to_le16(bytes);
|
|
//if (ieee->current_network.QoS_Enable)
|
if(qos_actived)
|
{
|
txb->queue_index = UP2AC(skb->priority);
|
} else {
|
txb->queue_index = WME_AC_BK;
|
}
|
|
|
|
for (i = 0; i < nr_frags; i++) {
|
skb_frag = txb->fragments[i];
|
tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
|
if(qos_actived){
|
skb_frag->priority = skb->priority;//UP2AC(skb->priority);
|
tcb_desc->queue_index = UP2AC(skb->priority);
|
} else {
|
skb_frag->priority = WME_AC_BK;
|
tcb_desc->queue_index = WME_AC_BK;
|
}
|
skb_reserve(skb_frag, ieee->tx_headroom);
|
|
if (encrypt){
|
if (ieee->hwsec_active)
|
tcb_desc->bHwSec = 1;
|
else
|
tcb_desc->bHwSec = 0;
|
skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
|
}
|
else
|
{
|
tcb_desc->bHwSec = 0;
|
}
|
frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
|
|
/* If this is not the last fragment, then add the MOREFRAGS
|
* bit to the frame control
|
*/
|
if (i != nr_frags - 1) {
|
frag_hdr->frame_ctl = cpu_to_le16(
|
fc | IEEE80211_FCTL_MOREFRAGS);
|
bytes = bytes_per_frag;
|
|
} else {
|
/* The last fragment takes the remaining length */
|
bytes = bytes_last_frag;
|
}
|
//if(ieee->current_network.QoS_Enable)
|
if(qos_actived)
|
{
|
// add 1 only indicate to corresponding seq number control 2006/7/12
|
frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
|
} else {
|
frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
|
}
|
|
/* Put a SNAP header on the first fragment */
|
if (i == 0) {
|
ieee80211_put_snap(
|
skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
|
ether_type);
|
bytes -= SNAP_SIZE + sizeof(u16);
|
}
|
|
skb_put_data(skb_frag, skb->data, bytes);
|
|
/* Advance the SKB... */
|
skb_pull(skb, bytes);
|
|
/* Encryption routine will move the header forward in order
|
* to insert the IV between the header and the payload
|
*/
|
if (encrypt)
|
ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
|
if (ieee->config &
|
(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
|
skb_put(skb_frag, 4);
|
}
|
|
if(qos_actived)
|
{
|
if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
|
ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
|
else
|
ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
|
} else {
|
if (ieee->seq_ctrl[0] == 0xFFF)
|
ieee->seq_ctrl[0] = 0;
|
else
|
ieee->seq_ctrl[0]++;
|
}
|
}else{
|
if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
|
printk(KERN_WARNING "%s: skb too small (%d).\n",
|
ieee->dev->name, skb->len);
|
goto success;
|
}
|
|
txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
|
if(!txb){
|
printk(KERN_WARNING "%s: Could not allocate TXB\n",
|
ieee->dev->name);
|
goto failed;
|
}
|
|
txb->encrypted = 0;
|
txb->payload_size = __cpu_to_le16(skb->len);
|
skb_put_data(txb->fragments[0], skb->data, skb->len);
|
}
|
|
success:
|
//WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
|
if (txb)
|
{
|
struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
|
tcb_desc->bTxEnableFwCalcDur = 1;
|
if (is_multicast_ether_addr(header.addr1))
|
tcb_desc->bMulticast = 1;
|
if (is_broadcast_ether_addr(header.addr1))
|
tcb_desc->bBroadcast = 1;
|
ieee80211_txrate_selectmode(ieee, tcb_desc);
|
if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
|
tcb_desc->data_rate = ieee->basic_rate;
|
else
|
tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
|
ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
|
ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
|
ieee80211_query_HTCapShortGI(ieee, tcb_desc);
|
ieee80211_query_BandwidthMode(ieee, tcb_desc);
|
ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
|
ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
|
}
|
spin_unlock_irqrestore(&ieee->lock, flags);
|
dev_kfree_skb_any(skb);
|
if (txb) {
|
if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
|
ieee80211_softmac_xmit(txb, ieee);
|
}else{
|
if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
|
stats->tx_packets++;
|
stats->tx_bytes += __le16_to_cpu(txb->payload_size);
|
return 0;
|
}
|
ieee80211_txb_free(txb);
|
}
|
}
|
|
return 0;
|
|
failed:
|
spin_unlock_irqrestore(&ieee->lock, flags);
|
netif_stop_queue(dev);
|
stats->tx_errors++;
|
return 1;
|
|
}
|