// SPDX-License-Identifier: GPL-2.0
|
/*
|
* Copyright (C) 2019 Pengutronix, Michael Tretter <kernel@pengutronix.de>
|
*
|
* Convert NAL units between raw byte sequence payloads (RBSP) and C structs
|
*
|
* The conversion is defined in "ITU-T Rec. H.264 (04/2017) Advanced video
|
* coding for generic audiovisual services". Decoder drivers may use the
|
* parser to parse RBSP from encoded streams and configure the hardware, if
|
* the hardware is not able to parse RBSP itself. Encoder drivers may use the
|
* generator to generate the RBSP for SPS/PPS nal units and add them to the
|
* encoded stream if the hardware does not generate the units.
|
*/
|
|
#include <linux/kernel.h>
|
#include <linux/types.h>
|
#include <linux/string.h>
|
#include <linux/v4l2-controls.h>
|
|
#include <linux/device.h>
|
#include <linux/export.h>
|
#include <linux/log2.h>
|
|
#include "nal-h264.h"
|
|
/*
|
* See Rec. ITU-T H.264 (04/2017) Table 7-1 – NAL unit type codes, syntax
|
* element categories, and NAL unit type classes
|
*/
|
enum nal_unit_type {
|
SEQUENCE_PARAMETER_SET = 7,
|
PICTURE_PARAMETER_SET = 8,
|
FILLER_DATA = 12,
|
};
|
|
struct rbsp;
|
|
struct nal_h264_ops {
|
int (*rbsp_bit)(struct rbsp *rbsp, int *val);
|
int (*rbsp_bits)(struct rbsp *rbsp, int n, unsigned int *val);
|
int (*rbsp_uev)(struct rbsp *rbsp, unsigned int *val);
|
int (*rbsp_sev)(struct rbsp *rbsp, int *val);
|
};
|
|
/**
|
* struct rbsp - State object for handling a raw byte sequence payload
|
* @data: pointer to the data of the rbsp
|
* @size: maximum size of the data of the rbsp
|
* @pos: current bit position inside the rbsp
|
* @num_consecutive_zeros: number of zeros before @pos
|
* @ops: per datatype functions for interacting with the rbsp
|
* @error: an error occurred while handling the rbsp
|
*
|
* This struct is passed around the various parsing functions and tracks the
|
* current position within the raw byte sequence payload.
|
*
|
* The @ops field allows to separate the operation, i.e., reading/writing a
|
* value from/to that rbsp, from the structure of the NAL unit. This allows to
|
* have a single function for iterating the NAL unit, while @ops has function
|
* pointers for handling each type in the rbsp.
|
*/
|
struct rbsp {
|
u8 *data;
|
size_t size;
|
unsigned int pos;
|
unsigned int num_consecutive_zeros;
|
struct nal_h264_ops *ops;
|
int error;
|
};
|
|
static void rbsp_init(struct rbsp *rbsp, void *addr, size_t size,
|
struct nal_h264_ops *ops)
|
{
|
if (!rbsp)
|
return;
|
|
rbsp->data = addr;
|
rbsp->size = size;
|
rbsp->pos = 0;
|
rbsp->ops = ops;
|
rbsp->error = 0;
|
}
|
|
/**
|
* nal_h264_profile_from_v4l2() - Get profile_idc for v4l2 h264 profile
|
* @profile: the profile as &enum v4l2_mpeg_video_h264_profile
|
*
|
* Convert the &enum v4l2_mpeg_video_h264_profile to profile_idc as specified
|
* in Rec. ITU-T H.264 (04/2017) A.2.
|
*
|
* Return: the profile_idc for the passed level
|
*/
|
int nal_h264_profile_from_v4l2(enum v4l2_mpeg_video_h264_profile profile)
|
{
|
switch (profile) {
|
case V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE:
|
return 66;
|
case V4L2_MPEG_VIDEO_H264_PROFILE_MAIN:
|
return 77;
|
case V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED:
|
return 88;
|
case V4L2_MPEG_VIDEO_H264_PROFILE_HIGH:
|
return 100;
|
default:
|
return -EINVAL;
|
}
|
}
|
|
/**
|
* nal_h264_level_from_v4l2() - Get level_idc for v4l2 h264 level
|
* @level: the level as &enum v4l2_mpeg_video_h264_level
|
*
|
* Convert the &enum v4l2_mpeg_video_h264_level to level_idc as specified in
|
* Rec. ITU-T H.264 (04/2017) A.3.2.
|
*
|
* Return: the level_idc for the passed level
|
*/
|
int nal_h264_level_from_v4l2(enum v4l2_mpeg_video_h264_level level)
|
{
|
switch (level) {
|
case V4L2_MPEG_VIDEO_H264_LEVEL_1_0:
|
return 10;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_1B:
|
return 9;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_1_1:
|
return 11;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_1_2:
|
return 12;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_1_3:
|
return 13;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_2_0:
|
return 20;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_2_1:
|
return 21;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_2_2:
|
return 22;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_3_0:
|
return 30;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_3_1:
|
return 31;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_3_2:
|
return 32;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_4_0:
|
return 40;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_4_1:
|
return 41;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_4_2:
|
return 42;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_5_0:
|
return 50;
|
case V4L2_MPEG_VIDEO_H264_LEVEL_5_1:
|
return 51;
|
default:
|
return -EINVAL;
|
}
|
}
|
|
static int rbsp_read_bits(struct rbsp *rbsp, int n, unsigned int *value);
|
static int rbsp_write_bits(struct rbsp *rbsp, int n, unsigned int value);
|
|
/*
|
* When reading or writing, the emulation_prevention_three_byte is detected
|
* only when the 2 one bits need to be inserted. Therefore, we are not
|
* actually adding the 0x3 byte, but the 2 one bits and the six 0 bits of the
|
* next byte.
|
*/
|
#define EMULATION_PREVENTION_THREE_BYTE (0x3 << 6)
|
|
static int add_emulation_prevention_three_byte(struct rbsp *rbsp)
|
{
|
rbsp->num_consecutive_zeros = 0;
|
rbsp_write_bits(rbsp, 8, EMULATION_PREVENTION_THREE_BYTE);
|
|
return 0;
|
}
|
|
static int discard_emulation_prevention_three_byte(struct rbsp *rbsp)
|
{
|
unsigned int tmp = 0;
|
|
rbsp->num_consecutive_zeros = 0;
|
rbsp_read_bits(rbsp, 8, &tmp);
|
if (tmp != EMULATION_PREVENTION_THREE_BYTE)
|
return -EINVAL;
|
|
return 0;
|
}
|
|
static inline int rbsp_read_bit(struct rbsp *rbsp)
|
{
|
int shift;
|
int ofs;
|
int bit;
|
int err;
|
|
if (rbsp->num_consecutive_zeros == 22) {
|
err = discard_emulation_prevention_three_byte(rbsp);
|
if (err)
|
return err;
|
}
|
|
shift = 7 - (rbsp->pos % 8);
|
ofs = rbsp->pos / 8;
|
if (ofs >= rbsp->size)
|
return -EINVAL;
|
|
bit = (rbsp->data[ofs] >> shift) & 1;
|
|
rbsp->pos++;
|
|
if (bit == 1 ||
|
(rbsp->num_consecutive_zeros < 7 && (rbsp->pos % 8 == 0)))
|
rbsp->num_consecutive_zeros = 0;
|
else
|
rbsp->num_consecutive_zeros++;
|
|
return bit;
|
}
|
|
static inline int rbsp_write_bit(struct rbsp *rbsp, bool value)
|
{
|
int shift;
|
int ofs;
|
|
if (rbsp->num_consecutive_zeros == 22)
|
add_emulation_prevention_three_byte(rbsp);
|
|
shift = 7 - (rbsp->pos % 8);
|
ofs = rbsp->pos / 8;
|
if (ofs >= rbsp->size)
|
return -EINVAL;
|
|
rbsp->data[ofs] &= ~(1 << shift);
|
rbsp->data[ofs] |= value << shift;
|
|
rbsp->pos++;
|
|
if (value ||
|
(rbsp->num_consecutive_zeros < 7 && (rbsp->pos % 8 == 0))) {
|
rbsp->num_consecutive_zeros = 0;
|
} else {
|
rbsp->num_consecutive_zeros++;
|
}
|
|
return 0;
|
}
|
|
static inline int rbsp_read_bits(struct rbsp *rbsp, int n, unsigned int *value)
|
{
|
int i;
|
int bit;
|
unsigned int tmp = 0;
|
|
if (n > 8 * sizeof(*value))
|
return -EINVAL;
|
|
for (i = n; i > 0; i--) {
|
bit = rbsp_read_bit(rbsp);
|
if (bit < 0)
|
return bit;
|
tmp |= bit << (i - 1);
|
}
|
|
if (value)
|
*value = tmp;
|
|
return 0;
|
}
|
|
static int rbsp_write_bits(struct rbsp *rbsp, int n, unsigned int value)
|
{
|
int ret;
|
|
if (n > 8 * sizeof(value))
|
return -EINVAL;
|
|
while (n--) {
|
ret = rbsp_write_bit(rbsp, (value >> n) & 1);
|
if (ret)
|
return ret;
|
}
|
|
return 0;
|
}
|
|
static int rbsp_read_uev(struct rbsp *rbsp, unsigned int *value)
|
{
|
int leading_zero_bits = 0;
|
unsigned int tmp = 0;
|
int ret;
|
|
while ((ret = rbsp_read_bit(rbsp)) == 0)
|
leading_zero_bits++;
|
if (ret < 0)
|
return ret;
|
|
if (leading_zero_bits > 0) {
|
ret = rbsp_read_bits(rbsp, leading_zero_bits, &tmp);
|
if (ret)
|
return ret;
|
}
|
|
if (value)
|
*value = (1 << leading_zero_bits) - 1 + tmp;
|
|
return 0;
|
}
|
|
static int rbsp_write_uev(struct rbsp *rbsp, unsigned int *value)
|
{
|
int ret;
|
int leading_zero_bits;
|
|
if (!value)
|
return -EINVAL;
|
|
leading_zero_bits = ilog2(*value + 1);
|
|
ret = rbsp_write_bits(rbsp, leading_zero_bits, 0);
|
if (ret)
|
return ret;
|
|
return rbsp_write_bits(rbsp, leading_zero_bits + 1, *value + 1);
|
}
|
|
static int rbsp_read_sev(struct rbsp *rbsp, int *value)
|
{
|
int ret;
|
unsigned int tmp;
|
|
ret = rbsp_read_uev(rbsp, &tmp);
|
if (ret)
|
return ret;
|
|
if (value) {
|
if (tmp & 1)
|
*value = (tmp + 1) / 2;
|
else
|
*value = -(tmp / 2);
|
}
|
|
return 0;
|
}
|
|
static int rbsp_write_sev(struct rbsp *rbsp, int *value)
|
{
|
unsigned int tmp;
|
|
if (!value)
|
return -EINVAL;
|
|
if (*value > 0)
|
tmp = (2 * (*value)) | 1;
|
else
|
tmp = -2 * (*value);
|
|
return rbsp_write_uev(rbsp, &tmp);
|
}
|
|
static int __rbsp_write_bit(struct rbsp *rbsp, int *value)
|
{
|
return rbsp_write_bit(rbsp, *value);
|
}
|
|
static int __rbsp_write_bits(struct rbsp *rbsp, int n, unsigned int *value)
|
{
|
return rbsp_write_bits(rbsp, n, *value);
|
}
|
|
static struct nal_h264_ops write = {
|
.rbsp_bit = __rbsp_write_bit,
|
.rbsp_bits = __rbsp_write_bits,
|
.rbsp_uev = rbsp_write_uev,
|
.rbsp_sev = rbsp_write_sev,
|
};
|
|
static int __rbsp_read_bit(struct rbsp *rbsp, int *value)
|
{
|
int tmp = rbsp_read_bit(rbsp);
|
|
if (tmp < 0)
|
return tmp;
|
*value = tmp;
|
|
return 0;
|
}
|
|
static struct nal_h264_ops read = {
|
.rbsp_bit = __rbsp_read_bit,
|
.rbsp_bits = rbsp_read_bits,
|
.rbsp_uev = rbsp_read_uev,
|
.rbsp_sev = rbsp_read_sev,
|
};
|
|
static inline void rbsp_bit(struct rbsp *rbsp, int *value)
|
{
|
if (rbsp->error)
|
return;
|
rbsp->error = rbsp->ops->rbsp_bit(rbsp, value);
|
}
|
|
static inline void rbsp_bits(struct rbsp *rbsp, int n, int *value)
|
{
|
if (rbsp->error)
|
return;
|
rbsp->error = rbsp->ops->rbsp_bits(rbsp, n, value);
|
}
|
|
static inline void rbsp_uev(struct rbsp *rbsp, unsigned int *value)
|
{
|
if (rbsp->error)
|
return;
|
rbsp->error = rbsp->ops->rbsp_uev(rbsp, value);
|
}
|
|
static inline void rbsp_sev(struct rbsp *rbsp, int *value)
|
{
|
if (rbsp->error)
|
return;
|
rbsp->error = rbsp->ops->rbsp_sev(rbsp, value);
|
}
|
|
static void nal_h264_rbsp_trailing_bits(struct rbsp *rbsp)
|
{
|
unsigned int rbsp_stop_one_bit = 1;
|
unsigned int rbsp_alignment_zero_bit = 0;
|
|
rbsp_bit(rbsp, &rbsp_stop_one_bit);
|
rbsp_bits(rbsp, round_up(rbsp->pos, 8) - rbsp->pos,
|
&rbsp_alignment_zero_bit);
|
}
|
|
static void nal_h264_write_start_code_prefix(struct rbsp *rbsp)
|
{
|
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
|
int i = 4;
|
|
if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
p[0] = 0x00;
|
p[1] = 0x00;
|
p[2] = 0x00;
|
p[3] = 0x01;
|
|
rbsp->pos += i * 8;
|
}
|
|
static void nal_h264_read_start_code_prefix(struct rbsp *rbsp)
|
{
|
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
|
int i = 4;
|
|
if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
if (p[0] != 0x00 || p[1] != 0x00 || p[2] != 0x00 || p[3] != 0x01) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
rbsp->pos += i * 8;
|
}
|
|
static void nal_h264_write_filler_data(struct rbsp *rbsp)
|
{
|
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
|
int i;
|
|
/* Keep 1 byte extra for terminating the NAL unit */
|
i = rbsp->size - DIV_ROUND_UP(rbsp->pos, 8) - 1;
|
memset(p, 0xff, i);
|
rbsp->pos += i * 8;
|
}
|
|
static void nal_h264_read_filler_data(struct rbsp *rbsp)
|
{
|
u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8);
|
|
while (*p == 0xff) {
|
if (DIV_ROUND_UP(rbsp->pos, 8) > rbsp->size) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
p++;
|
rbsp->pos += 8;
|
}
|
}
|
|
static void nal_h264_rbsp_hrd_parameters(struct rbsp *rbsp,
|
struct nal_h264_hrd_parameters *hrd)
|
{
|
unsigned int i;
|
|
if (!hrd) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
rbsp_uev(rbsp, &hrd->cpb_cnt_minus1);
|
rbsp_bits(rbsp, 4, &hrd->bit_rate_scale);
|
rbsp_bits(rbsp, 4, &hrd->cpb_size_scale);
|
|
for (i = 0; i <= hrd->cpb_cnt_minus1; i++) {
|
rbsp_uev(rbsp, &hrd->bit_rate_value_minus1[i]);
|
rbsp_uev(rbsp, &hrd->cpb_size_value_minus1[i]);
|
rbsp_bit(rbsp, &hrd->cbr_flag[i]);
|
}
|
|
rbsp_bits(rbsp, 5, &hrd->initial_cpb_removal_delay_length_minus1);
|
rbsp_bits(rbsp, 5, &hrd->cpb_removal_delay_length_minus1);
|
rbsp_bits(rbsp, 5, &hrd->dpb_output_delay_length_minus1);
|
rbsp_bits(rbsp, 5, &hrd->time_offset_length);
|
}
|
|
static void nal_h264_rbsp_vui_parameters(struct rbsp *rbsp,
|
struct nal_h264_vui_parameters *vui)
|
{
|
if (!vui) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
rbsp_bit(rbsp, &vui->aspect_ratio_info_present_flag);
|
if (vui->aspect_ratio_info_present_flag) {
|
rbsp_bits(rbsp, 8, &vui->aspect_ratio_idc);
|
if (vui->aspect_ratio_idc == 255) {
|
rbsp_bits(rbsp, 16, &vui->sar_width);
|
rbsp_bits(rbsp, 16, &vui->sar_height);
|
}
|
}
|
|
rbsp_bit(rbsp, &vui->overscan_info_present_flag);
|
if (vui->overscan_info_present_flag)
|
rbsp_bit(rbsp, &vui->overscan_appropriate_flag);
|
|
rbsp_bit(rbsp, &vui->video_signal_type_present_flag);
|
if (vui->video_signal_type_present_flag) {
|
rbsp_bits(rbsp, 3, &vui->video_format);
|
rbsp_bit(rbsp, &vui->video_full_range_flag);
|
|
rbsp_bit(rbsp, &vui->colour_description_present_flag);
|
if (vui->colour_description_present_flag) {
|
rbsp_bits(rbsp, 8, &vui->colour_primaries);
|
rbsp_bits(rbsp, 8, &vui->transfer_characteristics);
|
rbsp_bits(rbsp, 8, &vui->matrix_coefficients);
|
}
|
}
|
|
rbsp_bit(rbsp, &vui->chroma_loc_info_present_flag);
|
if (vui->chroma_loc_info_present_flag) {
|
rbsp_uev(rbsp, &vui->chroma_sample_loc_type_top_field);
|
rbsp_uev(rbsp, &vui->chroma_sample_loc_type_bottom_field);
|
}
|
|
rbsp_bit(rbsp, &vui->timing_info_present_flag);
|
if (vui->timing_info_present_flag) {
|
rbsp_bits(rbsp, 32, &vui->num_units_in_tick);
|
rbsp_bits(rbsp, 32, &vui->time_scale);
|
rbsp_bit(rbsp, &vui->fixed_frame_rate_flag);
|
}
|
|
rbsp_bit(rbsp, &vui->nal_hrd_parameters_present_flag);
|
if (vui->nal_hrd_parameters_present_flag)
|
nal_h264_rbsp_hrd_parameters(rbsp, &vui->nal_hrd_parameters);
|
|
rbsp_bit(rbsp, &vui->vcl_hrd_parameters_present_flag);
|
if (vui->vcl_hrd_parameters_present_flag)
|
nal_h264_rbsp_hrd_parameters(rbsp, &vui->vcl_hrd_parameters);
|
|
if (vui->nal_hrd_parameters_present_flag ||
|
vui->vcl_hrd_parameters_present_flag)
|
rbsp_bit(rbsp, &vui->low_delay_hrd_flag);
|
|
rbsp_bit(rbsp, &vui->pic_struct_present_flag);
|
|
rbsp_bit(rbsp, &vui->bitstream_restriction_flag);
|
if (vui->bitstream_restriction_flag) {
|
rbsp_bit(rbsp, &vui->motion_vectors_over_pic_boundaries_flag);
|
rbsp_uev(rbsp, &vui->max_bytes_per_pic_denom);
|
rbsp_uev(rbsp, &vui->max_bits_per_mb_denom);
|
rbsp_uev(rbsp, &vui->log2_max_mv_length_horizontal);
|
rbsp_uev(rbsp, &vui->log21_max_mv_length_vertical);
|
rbsp_uev(rbsp, &vui->max_num_reorder_frames);
|
rbsp_uev(rbsp, &vui->max_dec_frame_buffering);
|
}
|
}
|
|
static void nal_h264_rbsp_sps(struct rbsp *rbsp, struct nal_h264_sps *sps)
|
{
|
unsigned int i;
|
|
if (!sps) {
|
rbsp->error = -EINVAL;
|
return;
|
}
|
|
rbsp_bits(rbsp, 8, &sps->profile_idc);
|
rbsp_bit(rbsp, &sps->constraint_set0_flag);
|
rbsp_bit(rbsp, &sps->constraint_set1_flag);
|
rbsp_bit(rbsp, &sps->constraint_set2_flag);
|
rbsp_bit(rbsp, &sps->constraint_set3_flag);
|
rbsp_bit(rbsp, &sps->constraint_set4_flag);
|
rbsp_bit(rbsp, &sps->constraint_set5_flag);
|
rbsp_bits(rbsp, 2, &sps->reserved_zero_2bits);
|
rbsp_bits(rbsp, 8, &sps->level_idc);
|
|
rbsp_uev(rbsp, &sps->seq_parameter_set_id);
|
|
if (sps->profile_idc == 100 || sps->profile_idc == 110 ||
|
sps->profile_idc == 122 || sps->profile_idc == 244 ||
|
sps->profile_idc == 44 || sps->profile_idc == 83 ||
|
sps->profile_idc == 86 || sps->profile_idc == 118 ||
|
sps->profile_idc == 128 || sps->profile_idc == 138 ||
|
sps->profile_idc == 139 || sps->profile_idc == 134 ||
|
sps->profile_idc == 135) {
|
rbsp_uev(rbsp, &sps->chroma_format_idc);
|
|
if (sps->chroma_format_idc == 3)
|
rbsp_bit(rbsp, &sps->separate_colour_plane_flag);
|
rbsp_uev(rbsp, &sps->bit_depth_luma_minus8);
|
rbsp_uev(rbsp, &sps->bit_depth_chroma_minus8);
|
rbsp_bit(rbsp, &sps->qpprime_y_zero_transform_bypass_flag);
|
rbsp_bit(rbsp, &sps->seq_scaling_matrix_present_flag);
|
if (sps->seq_scaling_matrix_present_flag)
|
rbsp->error = -EINVAL;
|
}
|
|
rbsp_uev(rbsp, &sps->log2_max_frame_num_minus4);
|
|
rbsp_uev(rbsp, &sps->pic_order_cnt_type);
|
switch (sps->pic_order_cnt_type) {
|
case 0:
|
rbsp_uev(rbsp, &sps->log2_max_pic_order_cnt_lsb_minus4);
|
break;
|
case 1:
|
rbsp_bit(rbsp, &sps->delta_pic_order_always_zero_flag);
|
rbsp_sev(rbsp, &sps->offset_for_non_ref_pic);
|
rbsp_sev(rbsp, &sps->offset_for_top_to_bottom_field);
|
|
rbsp_uev(rbsp, &sps->num_ref_frames_in_pic_order_cnt_cycle);
|
for (i = 0; i < sps->num_ref_frames_in_pic_order_cnt_cycle; i++)
|
rbsp_sev(rbsp, &sps->offset_for_ref_frame[i]);
|
break;
|
default:
|
rbsp->error = -EINVAL;
|
break;
|
}
|
|
rbsp_uev(rbsp, &sps->max_num_ref_frames);
|
rbsp_bit(rbsp, &sps->gaps_in_frame_num_value_allowed_flag);
|
rbsp_uev(rbsp, &sps->pic_width_in_mbs_minus1);
|
rbsp_uev(rbsp, &sps->pic_height_in_map_units_minus1);
|
|
rbsp_bit(rbsp, &sps->frame_mbs_only_flag);
|
if (!sps->frame_mbs_only_flag)
|
rbsp_bit(rbsp, &sps->mb_adaptive_frame_field_flag);
|
|
rbsp_bit(rbsp, &sps->direct_8x8_inference_flag);
|
|
rbsp_bit(rbsp, &sps->frame_cropping_flag);
|
if (sps->frame_cropping_flag) {
|
rbsp_uev(rbsp, &sps->crop_left);
|
rbsp_uev(rbsp, &sps->crop_right);
|
rbsp_uev(rbsp, &sps->crop_top);
|
rbsp_uev(rbsp, &sps->crop_bottom);
|
}
|
|
rbsp_bit(rbsp, &sps->vui_parameters_present_flag);
|
if (sps->vui_parameters_present_flag)
|
nal_h264_rbsp_vui_parameters(rbsp, &sps->vui);
|
}
|
|
static void nal_h264_rbsp_pps(struct rbsp *rbsp, struct nal_h264_pps *pps)
|
{
|
int i;
|
|
rbsp_uev(rbsp, &pps->pic_parameter_set_id);
|
rbsp_uev(rbsp, &pps->seq_parameter_set_id);
|
rbsp_bit(rbsp, &pps->entropy_coding_mode_flag);
|
rbsp_bit(rbsp, &pps->bottom_field_pic_order_in_frame_present_flag);
|
rbsp_uev(rbsp, &pps->num_slice_groups_minus1);
|
if (pps->num_slice_groups_minus1 > 0) {
|
rbsp_uev(rbsp, &pps->slice_group_map_type);
|
switch (pps->slice_group_map_type) {
|
case 0:
|
for (i = 0; i < pps->num_slice_groups_minus1; i++)
|
rbsp_uev(rbsp, &pps->run_length_minus1[i]);
|
break;
|
case 2:
|
for (i = 0; i < pps->num_slice_groups_minus1; i++) {
|
rbsp_uev(rbsp, &pps->top_left[i]);
|
rbsp_uev(rbsp, &pps->bottom_right[i]);
|
}
|
break;
|
case 3: case 4: case 5:
|
rbsp_bit(rbsp, &pps->slice_group_change_direction_flag);
|
rbsp_uev(rbsp, &pps->slice_group_change_rate_minus1);
|
break;
|
case 6:
|
rbsp_uev(rbsp, &pps->pic_size_in_map_units_minus1);
|
for (i = 0; i < pps->pic_size_in_map_units_minus1; i++)
|
rbsp_bits(rbsp,
|
order_base_2(pps->num_slice_groups_minus1 + 1),
|
&pps->slice_group_id[i]);
|
break;
|
default:
|
break;
|
}
|
}
|
rbsp_uev(rbsp, &pps->num_ref_idx_l0_default_active_minus1);
|
rbsp_uev(rbsp, &pps->num_ref_idx_l1_default_active_minus1);
|
rbsp_bit(rbsp, &pps->weighted_pred_flag);
|
rbsp_bits(rbsp, 2, &pps->weighted_bipred_idc);
|
rbsp_sev(rbsp, &pps->pic_init_qp_minus26);
|
rbsp_sev(rbsp, &pps->pic_init_qs_minus26);
|
rbsp_sev(rbsp, &pps->chroma_qp_index_offset);
|
rbsp_bit(rbsp, &pps->deblocking_filter_control_present_flag);
|
rbsp_bit(rbsp, &pps->constrained_intra_pred_flag);
|
rbsp_bit(rbsp, &pps->redundant_pic_cnt_present_flag);
|
if (/* more_rbsp_data() */ false) {
|
rbsp_bit(rbsp, &pps->transform_8x8_mode_flag);
|
rbsp_bit(rbsp, &pps->pic_scaling_matrix_present_flag);
|
if (pps->pic_scaling_matrix_present_flag)
|
rbsp->error = -EINVAL;
|
rbsp_sev(rbsp, &pps->second_chroma_qp_index_offset);
|
}
|
}
|
|
/**
|
* nal_h264_write_sps() - Write SPS NAL unit into RBSP format
|
* @dev: device pointer
|
* @dest: the buffer that is filled with RBSP data
|
* @n: maximum size of @dest in bytes
|
* @sps: &struct nal_h264_sps to convert to RBSP
|
*
|
* Convert @sps to RBSP data and write it into @dest.
|
*
|
* The size of the SPS NAL unit is not known in advance and this function will
|
* fail, if @dest does not hold sufficient space for the SPS NAL unit.
|
*
|
* Return: number of bytes written to @dest or negative error code
|
*/
|
ssize_t nal_h264_write_sps(const struct device *dev,
|
void *dest, size_t n, struct nal_h264_sps *sps)
|
{
|
struct rbsp rbsp;
|
unsigned int forbidden_zero_bit = 0;
|
unsigned int nal_ref_idc = 0;
|
unsigned int nal_unit_type = SEQUENCE_PARAMETER_SET;
|
|
if (!dest)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, dest, n, &write);
|
|
nal_h264_write_start_code_prefix(&rbsp);
|
|
rbsp_bit(&rbsp, &forbidden_zero_bit);
|
rbsp_bits(&rbsp, 2, &nal_ref_idc);
|
rbsp_bits(&rbsp, 5, &nal_unit_type);
|
|
nal_h264_rbsp_sps(&rbsp, sps);
|
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
if (rbsp.error)
|
return rbsp.error;
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_write_sps);
|
|
/**
|
* nal_h264_read_sps() - Read SPS NAL unit from RBSP format
|
* @dev: device pointer
|
* @sps: the &struct nal_h264_sps to fill from the RBSP data
|
* @src: the buffer that contains the RBSP data
|
* @n: size of @src in bytes
|
*
|
* Read RBSP data from @src and use it to fill @sps.
|
*
|
* Return: number of bytes read from @src or negative error code
|
*/
|
ssize_t nal_h264_read_sps(const struct device *dev,
|
struct nal_h264_sps *sps, void *src, size_t n)
|
{
|
struct rbsp rbsp;
|
unsigned int forbidden_zero_bit;
|
unsigned int nal_ref_idc;
|
unsigned int nal_unit_type;
|
|
if (!src)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, src, n, &read);
|
|
nal_h264_read_start_code_prefix(&rbsp);
|
|
rbsp_bit(&rbsp, &forbidden_zero_bit);
|
rbsp_bits(&rbsp, 2, &nal_ref_idc);
|
rbsp_bits(&rbsp, 5, &nal_unit_type);
|
|
if (rbsp.error ||
|
forbidden_zero_bit != 0 ||
|
nal_ref_idc != 0 ||
|
nal_unit_type != SEQUENCE_PARAMETER_SET)
|
return -EINVAL;
|
|
nal_h264_rbsp_sps(&rbsp, sps);
|
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
if (rbsp.error)
|
return rbsp.error;
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_read_sps);
|
|
/**
|
* nal_h264_write_pps() - Write PPS NAL unit into RBSP format
|
* @dev: device pointer
|
* @dest: the buffer that is filled with RBSP data
|
* @n: maximum size of @dest in bytes
|
* @pps: &struct nal_h264_pps to convert to RBSP
|
*
|
* Convert @pps to RBSP data and write it into @dest.
|
*
|
* The size of the PPS NAL unit is not known in advance and this function will
|
* fail, if @dest does not hold sufficient space for the PPS NAL unit.
|
*
|
* Return: number of bytes written to @dest or negative error code
|
*/
|
ssize_t nal_h264_write_pps(const struct device *dev,
|
void *dest, size_t n, struct nal_h264_pps *pps)
|
{
|
struct rbsp rbsp;
|
unsigned int forbidden_zero_bit = 0;
|
unsigned int nal_ref_idc = 0;
|
unsigned int nal_unit_type = PICTURE_PARAMETER_SET;
|
|
if (!dest)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, dest, n, &write);
|
|
nal_h264_write_start_code_prefix(&rbsp);
|
|
/* NAL unit header */
|
rbsp_bit(&rbsp, &forbidden_zero_bit);
|
rbsp_bits(&rbsp, 2, &nal_ref_idc);
|
rbsp_bits(&rbsp, 5, &nal_unit_type);
|
|
nal_h264_rbsp_pps(&rbsp, pps);
|
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
if (rbsp.error)
|
return rbsp.error;
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_write_pps);
|
|
/**
|
* nal_h264_read_pps() - Read PPS NAL unit from RBSP format
|
* @dev: device pointer
|
* @pps: the &struct nal_h264_pps to fill from the RBSP data
|
* @src: the buffer that contains the RBSP data
|
* @n: size of @src in bytes
|
*
|
* Read RBSP data from @src and use it to fill @pps.
|
*
|
* Return: number of bytes read from @src or negative error code
|
*/
|
ssize_t nal_h264_read_pps(const struct device *dev,
|
struct nal_h264_pps *pps, void *src, size_t n)
|
{
|
struct rbsp rbsp;
|
|
if (!src)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, src, n, &read);
|
|
nal_h264_read_start_code_prefix(&rbsp);
|
|
/* NAL unit header */
|
rbsp.pos += 8;
|
|
nal_h264_rbsp_pps(&rbsp, pps);
|
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
if (rbsp.error)
|
return rbsp.error;
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_read_pps);
|
|
/**
|
* nal_h264_write_filler() - Write filler data RBSP
|
* @dev: device pointer
|
* @dest: buffer to fill with filler data
|
* @n: size of the buffer to fill with filler data
|
*
|
* Write a filler data RBSP to @dest with a size of @n bytes and return the
|
* number of written filler data bytes.
|
*
|
* Use this function to generate dummy data in an RBSP data stream that can be
|
* safely ignored by h264 decoders.
|
*
|
* The RBSP format of the filler data is specified in Rec. ITU-T H.264
|
* (04/2017) 7.3.2.7 Filler data RBSP syntax.
|
*
|
* Return: number of filler data bytes (including marker) or negative error
|
*/
|
ssize_t nal_h264_write_filler(const struct device *dev, void *dest, size_t n)
|
{
|
struct rbsp rbsp;
|
unsigned int forbidden_zero_bit = 0;
|
unsigned int nal_ref_idc = 0;
|
unsigned int nal_unit_type = FILLER_DATA;
|
|
if (!dest)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, dest, n, &write);
|
|
nal_h264_write_start_code_prefix(&rbsp);
|
|
rbsp_bit(&rbsp, &forbidden_zero_bit);
|
rbsp_bits(&rbsp, 2, &nal_ref_idc);
|
rbsp_bits(&rbsp, 5, &nal_unit_type);
|
|
nal_h264_write_filler_data(&rbsp);
|
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_write_filler);
|
|
/**
|
* nal_h264_read_filler() - Read filler data RBSP
|
* @dev: device pointer
|
* @src: buffer with RBSP data that is read
|
* @n: maximum size of src that shall be read
|
*
|
* Read a filler data RBSP from @src up to a maximum size of @n bytes and
|
* return the size of the filler data in bytes including the marker.
|
*
|
* This function is used to parse filler data and skip the respective bytes in
|
* the RBSP data.
|
*
|
* The RBSP format of the filler data is specified in Rec. ITU-T H.264
|
* (04/2017) 7.3.2.7 Filler data RBSP syntax.
|
*
|
* Return: number of filler data bytes (including marker) or negative error
|
*/
|
ssize_t nal_h264_read_filler(const struct device *dev, void *src, size_t n)
|
{
|
struct rbsp rbsp;
|
unsigned int forbidden_zero_bit;
|
unsigned int nal_ref_idc;
|
unsigned int nal_unit_type;
|
|
if (!src)
|
return -EINVAL;
|
|
rbsp_init(&rbsp, src, n, &read);
|
|
nal_h264_read_start_code_prefix(&rbsp);
|
|
rbsp_bit(&rbsp, &forbidden_zero_bit);
|
rbsp_bits(&rbsp, 2, &nal_ref_idc);
|
rbsp_bits(&rbsp, 5, &nal_unit_type);
|
|
if (rbsp.error)
|
return rbsp.error;
|
if (forbidden_zero_bit != 0 ||
|
nal_ref_idc != 0 ||
|
nal_unit_type != FILLER_DATA)
|
return -EINVAL;
|
|
nal_h264_read_filler_data(&rbsp);
|
nal_h264_rbsp_trailing_bits(&rbsp);
|
|
if (rbsp.error)
|
return rbsp.error;
|
|
return DIV_ROUND_UP(rbsp.pos, 8);
|
}
|
EXPORT_SYMBOL_GPL(nal_h264_read_filler);
|