|
import cv2
|
import numpy as np
|
|
from rknn.api import RKNN
|
import os
|
|
if __name__ == '__main__':
|
|
platform = 'rk3566'
|
exp = 'yolov5s'
|
Width = 640
|
Height = 640
|
MODEL_PATH = './onnx_models/yolov5s_rm_transpose.onnx'
|
NEED_BUILD_MODEL = True
|
# NEED_BUILD_MODEL = False
|
im_file = './dog_bike_car_640x640.jpg'
|
|
# Create RKNN object
|
rknn = RKNN()
|
|
OUT_DIR = "rknn_models"
|
RKNN_MODEL_PATH = './{}/{}_rm_transpose.rknn'.format(OUT_DIR,exp+'-'+str(Width)+'-'+str(Height))
|
if NEED_BUILD_MODEL:
|
DATASET = './dataset.txt'
|
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform="rk3588")
|
# Load model
|
print('--> Loading model')
|
ret = rknn.load_onnx(MODEL_PATH)
|
if ret != 0:
|
print('load model failed!')
|
exit(ret)
|
print('done')
|
|
# Build model
|
print('--> Building model')
|
ret = rknn.build(do_quantization=True, dataset=DATASET)
|
if ret != 0:
|
print('build model failed.')
|
exit(ret)
|
print('done')
|
|
# Export rknn model
|
if not os.path.exists(OUT_DIR):
|
os.mkdir(OUT_DIR)
|
print('--> Export RKNN model: {}'.format(RKNN_MODEL_PATH))
|
ret = rknn.export_rknn(RKNN_MODEL_PATH)
|
if ret != 0:
|
print('Export rknn model failed.')
|
exit(ret)
|
print('done')
|
else:
|
ret = rknn.load_rknn(RKNN_MODEL_PATH)
|
|
rknn.release()
|