/*
|
* Copyright 2021 Rockchip Electronics Co. LTD
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
#define MODULE_TAG "av1d_cbs"
|
|
#include <string.h>
|
|
#include "mpp_mem.h"
|
#include "mpp_debug.h"
|
#include "mpp_bitread.h"
|
|
#include "av1d_parser.h"
|
|
#ifndef UINT32_MAX
|
#define UINT32_MAX 0xFFFFFFFF
|
#endif
|
|
#ifndef INT_MAX
|
#define INT_MAX 2147483647 /* maximum (signed) int value */
|
#endif
|
|
#define BUFFER_PADDING_SIZE 64
|
#define MAX_UINT_BITS(length) ((UINT64_C(1) << (length)) - 1)
|
#define MAX_INT_BITS(length) ((INT64_C(1) << ((length) - 1)) - 1)
|
#define MIN_INT_BITS(length) (-(INT64_C(1) << ((length) - 1)))
|
/**
|
* Clip a signed integer into the -(2^p),(2^p-1) range.
|
* @param a value to clip
|
* @param p bit position to clip at
|
* @return clipped value
|
*/
|
static RK_U32 mpp_clip_uintp2(RK_S32 a, RK_S32 p)
|
{
|
if (a & ~((1 << p) - 1)) return -a >> 31 & ((1 << p) - 1);
|
else return a;
|
}
|
|
static RK_S32 mpp_av1_read_uvlc(BitReadCtx_t *gbc, const char *name, RK_U32 *write_to,
|
RK_U32 range_min, RK_U32 range_max)
|
{
|
RK_U32 value;
|
|
mpp_read_ue(gbc, &value);
|
|
if (value < range_min || value > range_max) {
|
mpp_err_f("%s out of range: "
|
"%d, but must be in [%d,%d].\n",
|
name, value, range_min, range_max);
|
return MPP_NOK;
|
}
|
*write_to = value;
|
return MPP_OK;
|
}
|
|
|
static RK_S32 mpp_av1_read_leb128(BitReadCtx_t *gbc, RK_U64 *write_to)
|
{
|
RK_U64 value;
|
RK_S32 err = 0, i;
|
|
value = 0;
|
for (i = 0; i < 8; i++) {
|
RK_U32 byte;
|
|
READ_BITS(gbc, 8, &byte);
|
|
if (err < 0)
|
return err;
|
|
value |= (RK_U64)(byte & 0x7f) << (i * 7);
|
if (!(byte & 0x80))
|
break;
|
}
|
|
if (value > UINT32_MAX)
|
return MPP_NOK;
|
|
|
*write_to = value;
|
return MPP_OK;
|
|
__bitread_error:
|
return MPP_NOK;
|
|
}
|
|
static RK_S32 mpp_av1_read_ns(BitReadCtx_t *gbc, const char *name,
|
RK_U32 n, RK_U32 *write_to)
|
{
|
RK_U32 m, v, extra_bit, value;
|
RK_S32 w;
|
|
w = mpp_log2(n) + 1;
|
m = (1 << w) - n;
|
|
if (mpp_get_bits_left(gbc) < w) {
|
mpp_err_f("Invalid non-symmetric value at "
|
"%s: bitstream ended.\n", name);
|
return MPP_NOK;
|
}
|
if (w - 1 > 0)
|
READ_BITS(gbc, w - 1, &v);
|
else
|
v = 0;
|
|
if (v < m) {
|
value = v;
|
} else {
|
READ_ONEBIT(gbc, &extra_bit);
|
value = (v << 1) - m + extra_bit;
|
}
|
|
*write_to = value;
|
return MPP_OK;
|
|
__bitread_error:
|
return MPP_NOK;
|
|
}
|
|
static RK_S32 mpp_av1_read_increment(BitReadCtx_t *gbc, RK_U32 range_min,
|
RK_U32 range_max, const char *name,
|
RK_U32 *write_to)
|
{
|
RK_U32 value;
|
RK_S32 i;
|
RK_S8 bits[33];
|
|
mpp_assert(range_min <= range_max && range_max - range_min < sizeof(bits) - 1);
|
|
for (i = 0, value = range_min; value < range_max;) {
|
RK_U8 tmp = 0;
|
if (mpp_get_bits_left(gbc) < 1) {
|
mpp_err_f("Invalid increment value at "
|
"%s: bitstream ended.\n", name);
|
return MPP_NOK;
|
}
|
READ_ONEBIT(gbc, &tmp);
|
if (tmp) {
|
bits[i++] = '1';
|
++value;
|
} else {
|
bits[i++] = '0';
|
break;
|
}
|
}
|
*write_to = value;
|
return MPP_OK;
|
|
__bitread_error:
|
return MPP_NOK;
|
}
|
|
RK_S32 mpp_av1_read_unsigned(BitReadCtx_t *gbc,
|
RK_S32 width, const char *name,
|
RK_U32 *write_to, RK_U32 range_min,
|
RK_U32 range_max)
|
{
|
RK_U32 value;
|
|
mpp_assert(width > 0 && width <= 32);
|
|
if (mpp_get_bits_left(gbc) < width) {
|
mpp_err_f("Invalid value at "
|
"%s: bitstream ended.\n", name);
|
return MPP_NOK;
|
}
|
|
READ_BITS(gbc, width, &value);
|
|
if (value < range_min || value > range_max) {
|
mpp_err_f("%s out of range: "
|
"%d, but must be in [%d,%d].\n",
|
name, value, range_min, range_max);
|
return MPP_NOK;
|
}
|
|
*write_to = value;
|
return 0;
|
|
__bitread_error:
|
return MPP_NOK;
|
|
}
|
|
static RK_S32 sign_extend(RK_S32 val, RK_U8 bits)
|
{
|
RK_U8 shift = 8 * sizeof(RK_S32) - bits;
|
union { RK_U8 u; RK_S32 s; } v = { (RK_U8) val << shift };
|
return v.s >> shift;
|
}
|
|
RK_S32 mpp_av1_read_signed(BitReadCtx_t *gbc,
|
RK_S32 width, const char *name,
|
RK_S32 *write_to, RK_S32 range_min,
|
RK_S32 range_max)
|
{
|
RK_S32 value;
|
|
mpp_assert(width > 0 && width <= 32);
|
|
if (mpp_get_bits_left(gbc) < width) {
|
mpp_err_f("Invalid value at "
|
"%s: bitstream ended.\n", name);
|
return MPP_NOK;
|
}
|
|
READ_BITS(gbc, width, &value);
|
value = sign_extend(value, width);
|
if (value < range_min || value > range_max) {
|
mpp_err_f("%s out of range: "
|
"%d, but must be in [%d,%d].\n",
|
name, value, range_min, range_max);
|
return MPP_NOK;
|
}
|
|
*write_to = value;
|
return 0;
|
|
__bitread_error:
|
return MPP_NOK;
|
|
}
|
|
static RK_S32 mpp_av1_read_subexp(BitReadCtx_t *gbc,
|
RK_U32 range_max, RK_U32 *write_to)
|
{
|
RK_U32 value;
|
RK_S32 err;
|
RK_U32 max_len, len, range_offset, range_bits;
|
|
max_len = mpp_log2(range_max - 1) - 3;
|
|
err = mpp_av1_read_increment(gbc, 0, max_len, "subexp_more_bits", &len);
|
if (err < 0)
|
return err;
|
|
if (len) {
|
range_bits = 2 + len;
|
range_offset = 1 << range_bits;
|
} else {
|
range_bits = 3;
|
range_offset = 0;
|
}
|
|
if (len < max_len) {
|
err = mpp_av1_read_unsigned(gbc, range_bits,
|
"subexp_bits", &value,
|
0, MAX_UINT_BITS(range_bits));
|
if (err < 0)
|
return err;
|
|
} else {
|
err = mpp_av1_read_ns(gbc, "subexp_final_bits", range_max - range_offset,
|
&value);
|
if (err < 0)
|
return err;
|
}
|
value += range_offset;
|
|
*write_to = value;
|
return err;
|
}
|
|
|
static RK_S32 mpp_av1_tile_log2(RK_S32 blksize, RK_S32 target)
|
{
|
RK_S32 k;
|
for (k = 0; (blksize << k) < target; k++);
|
return k;
|
}
|
|
static RK_S32 mpp_av1_get_relative_dist(const AV1RawSequenceHeader *seq,
|
RK_U32 a, RK_U32 b)
|
{
|
RK_U32 diff, m;
|
if (!seq->enable_order_hint)
|
return 0;
|
diff = a - b;
|
m = 1 << seq->order_hint_bits_minus_1;
|
diff = (diff & (m - 1)) - (diff & m);
|
return diff;
|
}
|
|
static size_t mpp_av1_get_payload_bytes_left(BitReadCtx_t *gbc)
|
{
|
size_t size = 0;
|
RK_U8 value = 0;
|
RK_S32 i = 0;
|
|
for (i = 0; mpp_get_bits_left(gbc) >= 8; i++) {
|
READ_BITS(gbc, 8, &value);
|
if (value)
|
size = i;
|
}
|
return size;
|
|
__bitread_error:
|
return MPP_NOK;
|
|
}
|
|
#define CHECK(call) do { \
|
err = (call); \
|
if (err < 0) \
|
return err; \
|
} while (0)
|
|
|
#define SUBSCRIPTS(subs, ...) (subs > 0 ? ((RK_S32[subs + 1]){ subs, __VA_ARGS__ }) : NULL)
|
#define fb(width, name) \
|
xf(width, name, current->name, 0, MAX_UINT_BITS(width), 0, )
|
#define fc(width, name, range_min, range_max) \
|
xf(width, name, current->name, range_min, range_max, 0, )
|
#define flag(name) fb(1, name)
|
#define su(width, name) \
|
xsu(width, name, current->name, 0, )
|
|
#define fbs(width, name, subs, ...) \
|
xf(width, name, current->name, 0, MAX_UINT_BITS(width), subs, __VA_ARGS__)
|
#define fcs(width, name, range_min, range_max, subs, ...) \
|
xf(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
|
#define flags(name, subs, ...) \
|
xf(1, name, current->name, 0, 1, subs, __VA_ARGS__)
|
#define sus(width, name, subs, ...) \
|
xsu(width, name, current->name, subs, __VA_ARGS__)
|
|
#define xf(width, name, var, range_min, range_max, subs, ...) do { \
|
RK_U32 value; \
|
CHECK(mpp_av1_read_unsigned(gb, width, #name, \
|
&value, range_min, range_max)); \
|
var = value; \
|
} while (0)
|
|
#define xsu(width, name, var, subs, ...) do { \
|
RK_S32 value; \
|
CHECK(mpp_av1_read_signed(gb, width, #name, \
|
&value, \
|
MIN_INT_BITS(width), \
|
MAX_INT_BITS(width))); \
|
var = value; \
|
} while (0)
|
|
#define uvlc(name, range_min, range_max) do { \
|
RK_U32 value; \
|
CHECK(mpp_av1_read_uvlc(gb, #name, \
|
&value, range_min, range_max)); \
|
current->name = value; \
|
} while (0)
|
|
#define ns(max_value, name) do { \
|
RK_U32 value; \
|
CHECK(mpp_av1_read_ns(gb, #name, max_value, \
|
&value)); \
|
current->name = value; \
|
} while (0)
|
|
#define increment(name, min, max) do { \
|
RK_U32 value; \
|
CHECK(mpp_av1_read_increment(gb, min, max, #name, &value)); \
|
current->name = value; \
|
} while (0)
|
|
#define subexp(name, max) do { \
|
RK_U32 value = 0; \
|
CHECK(mpp_av1_read_subexp(gb, max, \
|
&value)); \
|
current->name = value; \
|
} while (0)
|
|
#define delta_q(name) do { \
|
RK_U8 delta_coded; \
|
RK_S8 delta_q; \
|
xf(1, name.delta_coded, delta_coded, 0, 1, 0, ); \
|
if (delta_coded) \
|
xsu(1 + 6, name.delta_q, delta_q, 0, ); \
|
else \
|
delta_q = 0; \
|
current->name = delta_q; \
|
} while (0)
|
|
#define leb128(name) do { \
|
RK_U64 value; \
|
CHECK(mpp_av1_read_leb128(gb, &value)); \
|
current->name = value; \
|
} while (0)
|
|
#define infer(name, value) do { \
|
current->name = value; \
|
} while (0)
|
|
#define byte_alignment(gb) (mpp_get_bits_count(gb) % 8)
|
|
static RK_S32 mpp_av1_read_obu_header(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawOBUHeader *current)
|
{
|
RK_S32 err;
|
|
fc(1, obu_forbidden_bit, 0, 0);
|
|
fc(4, obu_type, 0, AV1_OBU_PADDING);
|
flag(obu_extension_flag);
|
flag(obu_has_size_field);
|
|
fc(1, obu_reserved_1bit, 0, 0);
|
|
if (current->obu_extension_flag) {
|
fb(3, temporal_id);
|
fb(2, spatial_id);
|
fc(3, extension_header_reserved_3bits, 0, 0);
|
} else {
|
infer(temporal_id, 0);
|
infer(spatial_id, 0);
|
}
|
|
ctx->temporal_id = current->temporal_id;
|
ctx->spatial_id = current->spatial_id;
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_trailing_bits(AV1Context *ctx, BitReadCtx_t *gb, RK_S32 nb_bits)
|
{
|
(void)ctx;
|
mpp_assert(nb_bits > 0);
|
|
// fixed(1, trailing_one_bit, 1);
|
mpp_skip_bits(gb, 1);
|
|
--nb_bits;
|
|
while (nb_bits > 0) {
|
// fixed(1, trailing_zero_bit, 0);
|
mpp_skip_bits(gb, 1);
|
--nb_bits;
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_byte_alignment(AV1Context *ctx, BitReadCtx_t *gb)
|
{
|
|
(void)ctx;
|
|
while (byte_alignment(gb) != 0)
|
mpp_skip_bits(gb, 1);
|
//fixed(1, zero_bit, 0);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_color_config(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawColorConfig *current, RK_S32 seq_profile)
|
{
|
RK_S32 err;
|
|
flag(high_bitdepth);
|
|
if (seq_profile == PROFILE_AV1_PROFESSIONAL &&
|
current->high_bitdepth) {
|
flag(twelve_bit);
|
ctx->bit_depth = current->twelve_bit ? 12 : 10;
|
} else {
|
ctx->bit_depth = current->high_bitdepth ? 10 : 8;
|
}
|
|
if (seq_profile == PROFILE_AV1_HIGH)
|
infer(mono_chrome, 0);
|
else
|
flag(mono_chrome);
|
ctx->num_planes = current->mono_chrome ? 1 : 3;
|
|
flag(color_description_present_flag);
|
if (current->color_description_present_flag) {
|
fb(8, color_primaries);
|
fb(8, transfer_characteristics);
|
fb(8, matrix_coefficients);
|
} else {
|
infer(color_primaries, MPP_FRAME_PRI_UNSPECIFIED);
|
infer(transfer_characteristics, MPP_FRAME_TRC_UNSPECIFIED);
|
infer(matrix_coefficients, MPP_FRAME_SPC_UNSPECIFIED);
|
}
|
|
if (current->mono_chrome) {
|
flag(color_range);
|
|
infer(subsampling_x, 1);
|
infer(subsampling_y, 1);
|
infer(chroma_sample_position, AV1_CSP_UNKNOWN);
|
infer(separate_uv_delta_q, 0);
|
|
} else if (current->color_primaries == MPP_FRAME_PRI_BT709 &&
|
current->transfer_characteristics == MPP_FRAME_TRC_IEC61966_2_1 &&
|
current->matrix_coefficients == MPP_FRAME_SPC_RGB) {
|
infer(color_range, 1);
|
infer(subsampling_x, 0);
|
infer(subsampling_y, 0);
|
flag(separate_uv_delta_q);
|
|
} else {
|
flag(color_range);
|
|
if (seq_profile == PROFILE_AV1_MAIN) {
|
infer(subsampling_x, 1);
|
infer(subsampling_y, 1);
|
} else if (seq_profile == PROFILE_AV1_HIGH) {
|
infer(subsampling_x, 0);
|
infer(subsampling_y, 0);
|
} else {
|
if (ctx->bit_depth == 12) {
|
fb(1, subsampling_x);
|
if (current->subsampling_x)
|
fb(1, subsampling_y);
|
else
|
infer(subsampling_y, 0);
|
} else {
|
infer(subsampling_x, 1);
|
infer(subsampling_y, 0);
|
}
|
}
|
if (current->subsampling_x && current->subsampling_y) {
|
fc(2, chroma_sample_position, AV1_CSP_UNKNOWN,
|
AV1_CSP_COLOCATED);
|
}
|
|
flag(separate_uv_delta_q);
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_timing_info(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawTimingInfo *current)
|
{
|
(void)ctx;
|
RK_S32 err;
|
|
fc(32, num_units_in_display_tick, 1, MAX_UINT_BITS(32));
|
fc(32, time_scale, 1, MAX_UINT_BITS(32));
|
|
flag(equal_picture_interval);
|
if (current->equal_picture_interval)
|
uvlc(num_ticks_per_picture_minus_1, 0, MAX_UINT_BITS(32) - 1);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_decoder_model_info(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawDecoderModelInfo *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
fb(5, buffer_delay_length_minus_1);
|
fb(32, num_units_in_decoding_tick);
|
fb(5, buffer_removal_time_length_minus_1);
|
fb(5, frame_presentation_time_length_minus_1);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_sequence_header_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawSequenceHeader *current)
|
{
|
RK_S32 i, err;
|
|
fc(3, seq_profile, PROFILE_AV1_MAIN,
|
PROFILE_AV1_PROFESSIONAL);
|
flag(still_picture);
|
flag(reduced_still_picture_header);
|
|
if (current->reduced_still_picture_header) {
|
infer(timing_info_present_flag, 0);
|
infer(decoder_model_info_present_flag, 0);
|
infer(initial_display_delay_present_flag, 0);
|
infer(operating_points_cnt_minus_1, 0);
|
infer(operating_point_idc[0], 0);
|
|
fb(5, seq_level_idx[0]);
|
|
infer(seq_tier[0], 0);
|
infer(decoder_model_present_for_this_op[0], 0);
|
infer(initial_display_delay_present_for_this_op[0], 0);
|
|
} else {
|
flag(timing_info_present_flag);
|
if (current->timing_info_present_flag) {
|
CHECK(mpp_av1_timing_info(ctx, gb, ¤t->timing_info));
|
|
flag(decoder_model_info_present_flag);
|
if (current->decoder_model_info_present_flag) {
|
CHECK(mpp_av1_decoder_model_info
|
(ctx, gb, ¤t->decoder_model_info));
|
}
|
} else {
|
infer(decoder_model_info_present_flag, 0);
|
}
|
|
flag(initial_display_delay_present_flag);
|
|
fb(5, operating_points_cnt_minus_1);
|
for (i = 0; i <= current->operating_points_cnt_minus_1; i++) {
|
fbs(12, operating_point_idc[i], 1, i);
|
fbs(5, seq_level_idx[i], 1, i);
|
|
if (current->seq_level_idx[i] > 7)
|
flags(seq_tier[i], 1, i);
|
else
|
infer(seq_tier[i], 0);
|
|
if (current->decoder_model_info_present_flag) {
|
flags(decoder_model_present_for_this_op[i], 1, i);
|
if (current->decoder_model_present_for_this_op[i]) {
|
RK_S32 n = current->decoder_model_info.buffer_delay_length_minus_1 + 1;
|
fbs(n, decoder_buffer_delay[i], 1, i);
|
fbs(n, encoder_buffer_delay[i], 1, i);
|
flags(low_delay_mode_flag[i], 1, i);
|
}
|
} else {
|
infer(decoder_model_present_for_this_op[i], 0);
|
}
|
|
if (current->initial_display_delay_present_flag) {
|
flags(initial_display_delay_present_for_this_op[i], 1, i);
|
if (current->initial_display_delay_present_for_this_op[i])
|
fbs(4, initial_display_delay_minus_1[i], 1, i);
|
}
|
}
|
}
|
|
fb(4, frame_width_bits_minus_1);
|
fb(4, frame_height_bits_minus_1);
|
|
fb(current->frame_width_bits_minus_1 + 1, max_frame_width_minus_1);
|
fb(current->frame_height_bits_minus_1 + 1, max_frame_height_minus_1);
|
|
if (current->reduced_still_picture_header)
|
infer(frame_id_numbers_present_flag, 0);
|
else
|
flag(frame_id_numbers_present_flag);
|
if (current->frame_id_numbers_present_flag) {
|
fb(4, delta_frame_id_length_minus_2);
|
fb(3, additional_frame_id_length_minus_1);
|
}
|
|
flag(use_128x128_superblock);
|
flag(enable_filter_intra);
|
flag(enable_intra_edge_filter);
|
|
if (current->reduced_still_picture_header) {
|
infer(enable_interintra_compound, 0);
|
infer(enable_masked_compound, 0);
|
infer(enable_warped_motion, 0);
|
infer(enable_dual_filter, 0);
|
infer(enable_order_hint, 0);
|
infer(enable_jnt_comp, 0);
|
infer(enable_ref_frame_mvs, 0);
|
|
infer(seq_force_screen_content_tools,
|
AV1_SELECT_SCREEN_CONTENT_TOOLS);
|
infer(seq_force_integer_mv,
|
AV1_SELECT_INTEGER_MV);
|
} else {
|
flag(enable_interintra_compound);
|
flag(enable_masked_compound);
|
flag(enable_warped_motion);
|
flag(enable_dual_filter);
|
|
flag(enable_order_hint);
|
if (current->enable_order_hint) {
|
flag(enable_jnt_comp);
|
flag(enable_ref_frame_mvs);
|
} else {
|
infer(enable_jnt_comp, 0);
|
infer(enable_ref_frame_mvs, 0);
|
}
|
|
flag(seq_choose_screen_content_tools);
|
if (current->seq_choose_screen_content_tools)
|
infer(seq_force_screen_content_tools,
|
AV1_SELECT_SCREEN_CONTENT_TOOLS);
|
else
|
fb(1, seq_force_screen_content_tools);
|
if (current->seq_force_screen_content_tools > 0) {
|
flag(seq_choose_integer_mv);
|
if (current->seq_choose_integer_mv)
|
infer(seq_force_integer_mv,
|
AV1_SELECT_INTEGER_MV);
|
else
|
fb(1, seq_force_integer_mv);
|
} else {
|
infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV);
|
}
|
|
if (current->enable_order_hint)
|
fb(3, order_hint_bits_minus_1);
|
}
|
|
flag(enable_superres);
|
flag(enable_cdef);
|
flag(enable_restoration);
|
|
CHECK(mpp_av1_color_config(ctx, gb, ¤t->color_config,
|
current->seq_profile));
|
|
flag(film_grain_params_present);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_temporal_delimiter_obu(AV1Context *ctx, BitReadCtx_t *gb)
|
{
|
(void)gb;
|
ctx->seen_frame_header = 0;
|
|
return 0;
|
}
|
static RK_S32 mpp_av1_set_frame_refs(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
(void)gb;
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
static const RK_U8 ref_frame_list[AV1_NUM_REF_FRAMES - 2] = {
|
AV1_REF_FRAME_LAST2, AV1_REF_FRAME_LAST3, AV1_REF_FRAME_BWDREF,
|
AV1_REF_FRAME_ALTREF2, AV1_REF_FRAME_ALTREF
|
};
|
RK_S8 ref_frame_idx[AV1_REFS_PER_FRAME], used_frame[AV1_NUM_REF_FRAMES];
|
RK_S8 shifted_order_hints[AV1_NUM_REF_FRAMES];
|
RK_S32 cur_frame_hint, latest_order_hint, earliest_order_hint, ref;
|
RK_S32 i, j;
|
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++)
|
ref_frame_idx[i] = -1;
|
ref_frame_idx[AV1_REF_FRAME_LAST - AV1_REF_FRAME_LAST] = current->last_frame_idx;
|
ref_frame_idx[AV1_REF_FRAME_GOLDEN - AV1_REF_FRAME_LAST] = current->golden_frame_idx;
|
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
|
used_frame[i] = 0;
|
used_frame[current->last_frame_idx] = 1;
|
used_frame[current->golden_frame_idx] = 1;
|
|
cur_frame_hint = 1 << (seq->order_hint_bits_minus_1);
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
|
shifted_order_hints[i] = cur_frame_hint +
|
mpp_av1_get_relative_dist(seq, ctx->ref_s[i].order_hint,
|
ctx->order_hint);
|
|
latest_order_hint = shifted_order_hints[current->last_frame_idx];
|
earliest_order_hint = shifted_order_hints[current->golden_frame_idx];
|
|
ref = -1;
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
RK_S32 hint = shifted_order_hints[i];
|
if (!used_frame[i] && hint >= cur_frame_hint &&
|
(ref < 0 || hint >= latest_order_hint)) {
|
ref = i;
|
latest_order_hint = hint;
|
}
|
}
|
if (ref >= 0) {
|
ref_frame_idx[AV1_REF_FRAME_ALTREF - AV1_REF_FRAME_LAST] = ref;
|
used_frame[ref] = 1;
|
}
|
|
ref = -1;
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
RK_S32 hint = shifted_order_hints[i];
|
if (!used_frame[i] && hint >= cur_frame_hint &&
|
(ref < 0 || hint < earliest_order_hint)) {
|
ref = i;
|
earliest_order_hint = hint;
|
}
|
}
|
if (ref >= 0) {
|
ref_frame_idx[AV1_REF_FRAME_BWDREF - AV1_REF_FRAME_LAST] = ref;
|
used_frame[ref] = 1;
|
}
|
|
ref = -1;
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
RK_S32 hint = shifted_order_hints[i];
|
if (!used_frame[i] && hint >= cur_frame_hint &&
|
(ref < 0 || hint < earliest_order_hint)) {
|
ref = i;
|
earliest_order_hint = hint;
|
}
|
}
|
if (ref >= 0) {
|
ref_frame_idx[AV1_REF_FRAME_ALTREF2 - AV1_REF_FRAME_LAST] = ref;
|
used_frame[ref] = 1;
|
}
|
|
for (i = 0; i < AV1_REFS_PER_FRAME - 2; i++) {
|
RK_S32 ref_frame = ref_frame_list[i];
|
if (ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] < 0 ) {
|
ref = -1;
|
for (j = 0; j < AV1_NUM_REF_FRAMES; j++) {
|
RK_S32 hint = shifted_order_hints[j];
|
if (!used_frame[j] && hint < cur_frame_hint &&
|
(ref < 0 || hint >= latest_order_hint)) {
|
ref = j;
|
latest_order_hint = hint;
|
}
|
}
|
if (ref >= 0) {
|
ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] = ref;
|
used_frame[ref] = 1;
|
}
|
}
|
}
|
|
ref = -1;
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
RK_S32 hint = shifted_order_hints[i];
|
if (ref < 0 || hint < earliest_order_hint) {
|
ref = i;
|
earliest_order_hint = hint;
|
}
|
}
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
|
if (ref_frame_idx[i] < 0)
|
ref_frame_idx[i] = ref;
|
infer(ref_frame_idx[i], ref_frame_idx[i]);
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_superres_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 denom, err;
|
|
if (seq->enable_superres)
|
flag(use_superres);
|
else
|
infer(use_superres, 0);
|
|
if (current->use_superres) {
|
fb(3, coded_denom);
|
denom = current->coded_denom + AV1_SUPERRES_DENOM_MIN;
|
} else {
|
denom = AV1_SUPERRES_NUM;
|
}
|
|
ctx->upscaled_width = ctx->frame_width;
|
ctx->frame_width = (ctx->upscaled_width * AV1_SUPERRES_NUM +
|
denom / 2) / denom;
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_frame_size(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 err;
|
|
if (current->frame_size_override_flag) {
|
fb(seq->frame_width_bits_minus_1 + 1, frame_width_minus_1);
|
fb(seq->frame_height_bits_minus_1 + 1, frame_height_minus_1);
|
} else {
|
infer(frame_width_minus_1, seq->max_frame_width_minus_1);
|
infer(frame_height_minus_1, seq->max_frame_height_minus_1);
|
}
|
|
ctx->frame_width = current->frame_width_minus_1 + 1;
|
ctx->frame_height = current->frame_height_minus_1 + 1;
|
|
CHECK(mpp_av1_superres_params(ctx, gb, current));
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_render_size(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
|
flag(render_and_frame_size_different);
|
|
if (current->render_and_frame_size_different) {
|
fb(16, render_width_minus_1);
|
fb(16, render_height_minus_1);
|
} else {
|
infer(render_width_minus_1, current->frame_width_minus_1);
|
infer(render_height_minus_1, current->frame_height_minus_1);
|
}
|
|
ctx->render_width = current->render_width_minus_1 + 1;
|
ctx->render_height = current->render_height_minus_1 + 1;
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_frame_size_with_refs(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 i, err;
|
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
|
flags(found_ref[i], 1, i);
|
if (current->found_ref[i]) {
|
AV1ReferenceFrameState *ref =
|
&ctx->ref_s[current->ref_frame_idx[i]];
|
|
if (!ref->valid) {
|
mpp_err_f("Missing reference frame needed for frame size "
|
"(ref = %d, ref_frame_idx = %d).\n",
|
i, current->ref_frame_idx[i]);
|
return MPP_ERR_PROTOL;
|
}
|
|
infer(frame_width_minus_1, ref->upscaled_width - 1);
|
infer(frame_height_minus_1, ref->frame_height - 1);
|
infer(render_width_minus_1, ref->render_width - 1);
|
infer(render_height_minus_1, ref->render_height - 1);
|
|
ctx->upscaled_width = ref->upscaled_width;
|
ctx->frame_width = ctx->upscaled_width;
|
ctx->frame_height = ref->frame_height;
|
ctx->render_width = ref->render_width;
|
ctx->render_height = ref->render_height;
|
break;
|
}
|
}
|
|
if (i >= AV1_REFS_PER_FRAME) {
|
CHECK(mpp_av1_frame_size(ctx, gb, current));
|
CHECK(mpp_av1_render_size(ctx, gb, current));
|
} else {
|
CHECK(mpp_av1_superres_params(ctx, gb, current));
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_interpolation_filter(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
flag(is_filter_switchable);
|
if (current->is_filter_switchable)
|
infer(interpolation_filter,
|
AV1_INTERPOLATION_FILTER_SWITCHABLE);
|
else
|
fb(2, interpolation_filter);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_tile_info(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 mi_cols, mi_rows, sb_cols, sb_rows, sb_shift, sb_size;
|
RK_S32 max_tile_width_sb, max_tile_height_sb, max_tile_area_sb;
|
RK_S32 min_log2_tile_cols, max_log2_tile_cols, max_log2_tile_rows;
|
RK_S32 min_log2_tiles, min_log2_tile_rows;
|
RK_S32 i, err;
|
|
mi_cols = 2 * ((ctx->frame_width + 7) >> 3);
|
mi_rows = 2 * ((ctx->frame_height + 7) >> 3);
|
|
sb_cols = seq->use_128x128_superblock ? ((mi_cols + 31) >> 5)
|
: ((mi_cols + 15) >> 4);
|
sb_rows = seq->use_128x128_superblock ? ((mi_rows + 31) >> 5)
|
: ((mi_rows + 15) >> 4);
|
|
sb_shift = seq->use_128x128_superblock ? 5 : 4;
|
sb_size = sb_shift + 2;
|
|
max_tile_width_sb = AV1_MAX_TILE_WIDTH >> sb_size;
|
max_tile_area_sb = AV1_MAX_TILE_AREA >> (2 * sb_size);
|
|
min_log2_tile_cols = mpp_av1_tile_log2(max_tile_width_sb, sb_cols);
|
max_log2_tile_cols = mpp_av1_tile_log2(1, MPP_MIN(sb_cols, AV1_MAX_TILE_COLS));
|
max_log2_tile_rows = mpp_av1_tile_log2(1, MPP_MIN(sb_rows, AV1_MAX_TILE_ROWS));
|
min_log2_tiles = MPP_MAX(min_log2_tile_cols,
|
mpp_av1_tile_log2(max_tile_area_sb, sb_rows * sb_cols));
|
|
flag(uniform_tile_spacing_flag);
|
|
if (current->uniform_tile_spacing_flag) {
|
RK_S32 tile_width_sb, tile_height_sb;
|
|
increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols);
|
|
tile_width_sb = (sb_cols + (1 << current->tile_cols_log2) - 1) >>
|
current->tile_cols_log2;
|
current->tile_cols = (sb_cols + tile_width_sb - 1) / tile_width_sb;
|
|
min_log2_tile_rows = MPP_MAX(min_log2_tiles - current->tile_cols_log2, 0);
|
|
increment(tile_rows_log2, min_log2_tile_rows, max_log2_tile_rows);
|
|
tile_height_sb = (sb_rows + (1 << current->tile_rows_log2) - 1) >>
|
current->tile_rows_log2;
|
current->tile_rows = (sb_rows + tile_height_sb - 1) / tile_height_sb;
|
|
for (i = 0; i < current->tile_cols - 1; i++)
|
infer(width_in_sbs_minus_1[i], tile_width_sb - 1);
|
infer(width_in_sbs_minus_1[i],
|
sb_cols - (current->tile_cols - 1) * tile_width_sb - 1);
|
for (i = 0; i < current->tile_rows - 1; i++)
|
infer(height_in_sbs_minus_1[i], tile_height_sb - 1);
|
infer(height_in_sbs_minus_1[i],
|
sb_rows - (current->tile_rows - 1) * tile_height_sb - 1);
|
|
} else {
|
RK_S32 widest_tile_sb, start_sb, size_sb, max_width, max_height;
|
|
widest_tile_sb = 0;
|
|
start_sb = 0;
|
for (i = 0; start_sb < sb_cols && i < AV1_MAX_TILE_COLS; i++) {
|
max_width = MPP_MIN(sb_cols - start_sb, max_tile_width_sb);
|
ns(max_width, width_in_sbs_minus_1[i]);
|
//ns(max_width, width_in_sbs_minus_1[i]);
|
size_sb = current->width_in_sbs_minus_1[i] + 1;
|
widest_tile_sb = MPP_MAX(size_sb, widest_tile_sb);
|
start_sb += size_sb;
|
}
|
current->tile_cols_log2 = mpp_av1_tile_log2(1, i);
|
current->tile_cols = i;
|
|
if (min_log2_tiles > 0)
|
max_tile_area_sb = (sb_rows * sb_cols) >> (min_log2_tiles + 1);
|
else
|
max_tile_area_sb = sb_rows * sb_cols;
|
max_tile_height_sb = MPP_MAX(max_tile_area_sb / widest_tile_sb, 1);
|
|
start_sb = 0;
|
for (i = 0; start_sb < sb_rows && i < AV1_MAX_TILE_ROWS; i++) {
|
max_height = MPP_MIN(sb_rows - start_sb, max_tile_height_sb);
|
ns(max_height, height_in_sbs_minus_1[i]);
|
size_sb = current->height_in_sbs_minus_1[i] + 1;
|
start_sb += size_sb;
|
}
|
current->tile_rows_log2 = mpp_av1_tile_log2(1, i);
|
current->tile_rows = i;
|
}
|
|
if (current->tile_cols_log2 > 0 ||
|
current->tile_rows_log2 > 0) {
|
fb(current->tile_cols_log2 + current->tile_rows_log2,
|
context_update_tile_id);
|
fb(2, tile_size_bytes_minus1);
|
} else {
|
infer(context_update_tile_id, 0);
|
current->tile_size_bytes_minus1 = 3;
|
}
|
|
ctx->tile_cols = current->tile_cols;
|
ctx->tile_rows = current->tile_rows;
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_quantization_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 err;
|
|
fb(8, base_q_idx);
|
|
delta_q(delta_q_y_dc);
|
|
if (ctx->num_planes > 1) {
|
if (seq->color_config.separate_uv_delta_q)
|
flag(diff_uv_delta);
|
else
|
infer(diff_uv_delta, 0);
|
|
delta_q(delta_q_u_dc);
|
delta_q(delta_q_u_ac);
|
|
if (current->diff_uv_delta) {
|
delta_q(delta_q_v_dc);
|
delta_q(delta_q_v_ac);
|
} else {
|
infer(delta_q_v_dc, current->delta_q_u_dc);
|
infer(delta_q_v_ac, current->delta_q_u_ac);
|
}
|
} else {
|
infer(delta_q_u_dc, 0);
|
infer(delta_q_u_ac, 0);
|
infer(delta_q_v_dc, 0);
|
infer(delta_q_v_ac, 0);
|
}
|
|
flag(using_qmatrix);
|
if (current->using_qmatrix) {
|
fb(4, qm_y);
|
fb(4, qm_u);
|
if (seq->color_config.separate_uv_delta_q)
|
fb(4, qm_v);
|
else
|
infer(qm_v, current->qm_u);
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_segmentation_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
static const RK_U8 bits[AV1_SEG_LVL_MAX] = { 8, 6, 6, 6, 6, 3, 0, 0 };
|
static const RK_U8 sign[AV1_SEG_LVL_MAX] = { 1, 1, 1, 1, 1, 0, 0, 0 };
|
static const RK_U8 default_feature_enabled[AV1_SEG_LVL_MAX] = { 0 };
|
static const RK_S16 default_feature_value[AV1_SEG_LVL_MAX] = { 0 };
|
RK_S32 i, j, err;
|
|
flag(segmentation_enabled);
|
|
if (current->segmentation_enabled) {
|
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
|
infer(segmentation_update_map, 1);
|
infer(segmentation_temporal_update, 0);
|
infer(segmentation_update_data, 1);
|
} else {
|
flag(segmentation_update_map);
|
if (current->segmentation_update_map)
|
flag(segmentation_temporal_update);
|
else
|
infer(segmentation_temporal_update, 0);
|
flag(segmentation_update_data);
|
}
|
|
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
|
const RK_U8 *ref_feature_enabled;
|
const RK_S16 *ref_feature_value;
|
|
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
|
ref_feature_enabled = default_feature_enabled;
|
ref_feature_value = default_feature_value;
|
} else {
|
ref_feature_enabled =
|
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].feature_enabled[i];
|
ref_feature_value =
|
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].feature_value[i];
|
}
|
|
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
|
if (current->segmentation_update_data) {
|
flags(feature_enabled[i][j], 2, i, j);
|
|
if (current->feature_enabled[i][j] && bits[j] > 0) {
|
if (sign[j])
|
sus(1 + bits[j], feature_value[i][j], 2, i, j);
|
else
|
fbs(bits[j], feature_value[i][j], 2, i, j);
|
} else {
|
infer(feature_value[i][j], 0);
|
}
|
} else {
|
infer(feature_enabled[i][j], ref_feature_enabled[j]);
|
infer(feature_value[i][j], ref_feature_value[j]);
|
}
|
}
|
}
|
} else {
|
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
|
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
|
infer(feature_enabled[i][j], 0);
|
infer(feature_value[i][j], 0);
|
}
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_delta_q_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
if (current->base_q_idx > 0)
|
flag(delta_q_present);
|
else
|
infer(delta_q_present, 0);
|
|
if (current->delta_q_present)
|
fb(2, delta_q_res);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_delta_lf_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
if (current->delta_q_present) {
|
if (!current->allow_intrabc)
|
flag(delta_lf_present);
|
else
|
infer(delta_lf_present, 0);
|
if (current->delta_lf_present) {
|
fb(2, delta_lf_res);
|
flag(delta_lf_multi);
|
} else {
|
infer(delta_lf_res, 0);
|
infer(delta_lf_multi, 0);
|
}
|
} else {
|
infer(delta_lf_present, 0);
|
infer(delta_lf_res, 0);
|
infer(delta_lf_multi, 0);
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_loop_filter_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
static const RK_S8 default_loop_filter_ref_deltas[AV1_TOTAL_REFS_PER_FRAME] =
|
{ 1, 0, 0, 0, -1, 0, -1, -1 };
|
static const RK_S8 default_loop_filter_mode_deltas[2] = { 0, 0 };
|
RK_S32 i, err;
|
|
if (ctx->coded_lossless || current->allow_intrabc) {
|
infer(loop_filter_level[0], 0);
|
infer(loop_filter_level[1], 0);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_INTRA], 1);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST], 0);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST2], 0);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST3], 0);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_BWDREF], 0);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_GOLDEN], -1);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF], -1);
|
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF2], -1);
|
for (i = 0; i < 2; i++)
|
infer(loop_filter_mode_deltas[i], 0);
|
return 0;
|
}
|
|
fb(6, loop_filter_level[0]);
|
fb(6, loop_filter_level[1]);
|
|
if (ctx->num_planes > 1) {
|
if (current->loop_filter_level[0] ||
|
current->loop_filter_level[1]) {
|
fb(6, loop_filter_level[2]);
|
fb(6, loop_filter_level[3]);
|
}
|
}
|
|
fb(3, loop_filter_sharpness);
|
|
flag(loop_filter_delta_enabled);
|
if (current->loop_filter_delta_enabled) {
|
const RK_S8 *ref_loop_filter_ref_deltas, *ref_loop_filter_mode_deltas;
|
|
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
|
ref_loop_filter_ref_deltas = default_loop_filter_ref_deltas;
|
ref_loop_filter_mode_deltas = default_loop_filter_mode_deltas;
|
} else {
|
ref_loop_filter_ref_deltas =
|
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_ref_deltas;
|
ref_loop_filter_mode_deltas =
|
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_mode_deltas;
|
}
|
|
flag(loop_filter_delta_update);
|
for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++) {
|
if (current->loop_filter_delta_update)
|
flags(update_ref_delta[i], 1, i);
|
else
|
infer(update_ref_delta[i], 0);
|
if (current->update_ref_delta[i])
|
sus(1 + 6, loop_filter_ref_deltas[i], 1, i);
|
else
|
infer(loop_filter_ref_deltas[i], ref_loop_filter_ref_deltas[i]);
|
}
|
for (i = 0; i < 2; i++) {
|
if (current->loop_filter_delta_update)
|
flags(update_mode_delta[i], 1, i);
|
else
|
infer(update_mode_delta[i], 0);
|
if (current->update_mode_delta[i])
|
sus(1 + 6, loop_filter_mode_deltas[i], 1, i);
|
else
|
infer(loop_filter_mode_deltas[i], ref_loop_filter_mode_deltas[i]);
|
}
|
} else {
|
for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++)
|
infer(loop_filter_ref_deltas[i], default_loop_filter_ref_deltas[i]);
|
for (i = 0; i < 2; i++)
|
infer(loop_filter_mode_deltas[i], default_loop_filter_mode_deltas[i]);
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_cdef_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 i, err;
|
if (ctx->coded_lossless || current->allow_intrabc ||
|
!seq->enable_cdef) {
|
infer(cdef_damping_minus_3, 0);
|
infer(cdef_bits, 0);
|
infer(cdef_y_pri_strength[0], 0);
|
infer(cdef_y_sec_strength[0], 0);
|
infer(cdef_uv_pri_strength[0], 0);
|
infer(cdef_uv_sec_strength[0], 0);
|
|
return 0;
|
}
|
|
fb(2, cdef_damping_minus_3);
|
fb(2, cdef_bits);
|
|
for (i = 0; i < (1 << current->cdef_bits); i++) {
|
fbs(4, cdef_y_pri_strength[i], 1, i);
|
fbs(2, cdef_y_sec_strength[i], 1, i);
|
|
if (ctx->num_planes > 1) {
|
fbs(4, cdef_uv_pri_strength[i], 1, i);
|
fbs(2, cdef_uv_sec_strength[i], 1, i);
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_lr_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 uses_lr, uses_chroma_lr;
|
RK_S32 i, err;
|
|
if (ctx->all_lossless || current->allow_intrabc ||
|
!seq->enable_restoration) {
|
return 0;
|
}
|
|
uses_lr = uses_chroma_lr = 0;
|
for (i = 0; i < ctx->num_planes; i++) {
|
fbs(2, lr_type[i], 1, i);
|
|
if (current->lr_type[i] != AV1_RESTORE_NONE) {
|
uses_lr = 1;
|
if (i > 0)
|
uses_chroma_lr = 1;
|
}
|
}
|
|
if (uses_lr) {
|
if (seq->use_128x128_superblock)
|
increment(lr_unit_shift, 1, 2);
|
else
|
increment(lr_unit_shift, 0, 2);
|
|
if (seq->color_config.subsampling_x &&
|
seq->color_config.subsampling_y && uses_chroma_lr) {
|
fb(1, lr_uv_shift);
|
} else {
|
infer(lr_uv_shift, 0);
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_read_tx_mode(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
|
if (ctx->coded_lossless)
|
infer(tx_mode, 0);
|
else
|
increment(tx_mode, 1, 2);
|
if (current->tx_mode == 1) {
|
current->tx_mode = 3;
|
} else {
|
current->tx_mode = 4;
|
}
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_frame_reference_mode(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
if (current->frame_type == AV1_FRAME_INTRA_ONLY ||
|
current->frame_type == AV1_FRAME_KEY)
|
infer(reference_select, 0);
|
else
|
flag(reference_select);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_skip_mode_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 skip_mode_allowed;
|
RK_S32 err;
|
|
if (current->frame_type == AV1_FRAME_KEY ||
|
current->frame_type == AV1_FRAME_INTRA_ONLY ||
|
!current->reference_select || !seq->enable_order_hint) {
|
skip_mode_allowed = 0;
|
} else {
|
RK_S32 forward_idx, backward_idx;
|
RK_S32 forward_hint, backward_hint;
|
RK_S32 ref_hint, dist, i;
|
|
forward_idx = -1;
|
backward_idx = -1;
|
forward_hint = -1;
|
backward_hint = -1;
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
|
ref_hint = ctx->ref_s[current->ref_frame_idx[i]].order_hint;
|
dist = mpp_av1_get_relative_dist(seq, ref_hint,
|
ctx->order_hint);
|
if (dist < 0) {
|
if (forward_idx < 0 ||
|
mpp_av1_get_relative_dist(seq, ref_hint,
|
forward_hint) > 0) {
|
forward_idx = i;
|
forward_hint = ref_hint;
|
}
|
} else if (dist > 0) {
|
if (backward_idx < 0 ||
|
mpp_av1_get_relative_dist(seq, ref_hint,
|
backward_hint) < 0) {
|
backward_idx = i;
|
backward_hint = ref_hint;
|
}
|
}
|
}
|
|
if (forward_idx < 0) {
|
skip_mode_allowed = 0;
|
} else if (backward_idx >= 0) {
|
skip_mode_allowed = 1;
|
ctx->skip_ref0 = MPP_MIN(forward_idx, backward_idx) + 1;
|
ctx->skip_ref1 = MPP_MAX(forward_idx, backward_idx) + 1;
|
// Frames for skip mode are forward_idx and backward_idx.
|
} else {
|
RK_S32 second_forward_idx;
|
RK_S32 second_forward_hint;
|
second_forward_idx = -1;
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
|
ref_hint = ctx->ref_s[current->ref_frame_idx[i]].order_hint;
|
if (mpp_av1_get_relative_dist(seq, ref_hint,
|
forward_hint) < 0) {
|
if (second_forward_idx < 0 ||
|
mpp_av1_get_relative_dist(seq, ref_hint,
|
second_forward_hint) > 0) {
|
second_forward_idx = i;
|
second_forward_hint = ref_hint;
|
}
|
}
|
}
|
|
if (second_forward_idx < 0) {
|
skip_mode_allowed = 0;
|
} else {
|
ctx->skip_ref0 = MPP_MIN(forward_idx, second_forward_idx) + 1;
|
ctx->skip_ref1 = MPP_MAX(forward_idx, second_forward_idx) + 1;
|
skip_mode_allowed = 1;
|
// Frames for skip mode are forward_idx and second_forward_idx.
|
}
|
}
|
}
|
|
if (skip_mode_allowed)
|
flag(skip_mode_present);
|
else
|
infer(skip_mode_present, 0);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_global_motion_param(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current,
|
RK_S32 type, RK_S32 ref, RK_S32 idx)
|
{
|
RK_U32 abs_bits, prec_bits, num_syms;
|
RK_S32 err;
|
(void)ctx;
|
if (idx < 2) {
|
if (type == AV1_WARP_MODEL_TRANSLATION) {
|
abs_bits = AV1_GM_ABS_TRANS_ONLY_BITS - !current->allow_high_precision_mv;
|
prec_bits = AV1_GM_TRANS_ONLY_PREC_BITS - !current->allow_high_precision_mv;
|
} else {
|
abs_bits = AV1_GM_ABS_TRANS_BITS;
|
prec_bits = AV1_GM_TRANS_PREC_BITS;
|
}
|
} else {
|
abs_bits = AV1_GM_ABS_ALPHA_BITS;
|
prec_bits = AV1_GM_ALPHA_PREC_BITS;
|
}
|
|
num_syms = 2 * (1 << abs_bits) + 1;
|
subexp(gm_params[ref][idx], num_syms);// 2, ref, idx);
|
|
// Actual gm_params value is not reconstructed here.
|
(void)prec_bits;
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_global_motion_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
RK_S32 ref, type;
|
RK_S32 err;
|
|
if (current->frame_type == AV1_FRAME_KEY ||
|
current->frame_type == AV1_FRAME_INTRA_ONLY)
|
return 0;
|
|
for (ref = AV1_REF_FRAME_LAST; ref <= AV1_REF_FRAME_ALTREF; ref++) {
|
flags(is_global[ref], 1, ref);
|
if (current->is_global[ref]) {
|
flags(is_rot_zoom[ref], 1, ref);
|
if (current->is_rot_zoom[ref]) {
|
type = AV1_WARP_MODEL_ROTZOOM;
|
} else {
|
flags(is_translation[ref], 1, ref);
|
type = current->is_translation[ref] ? AV1_WARP_MODEL_TRANSLATION
|
: AV1_WARP_MODEL_AFFINE;
|
}
|
} else {
|
type = AV1_WARP_MODEL_IDENTITY;
|
}
|
|
if (type >= AV1_WARP_MODEL_ROTZOOM) {
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 2));
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 3));
|
if (type == AV1_WARP_MODEL_AFFINE) {
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 4));
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 5));
|
} else {
|
current->gm_params[ref][4] = -current->gm_params[ref][3];
|
current->gm_params[ref][5] = current->gm_params[ref][2];
|
}
|
}
|
if (type >= AV1_WARP_MODEL_TRANSLATION) {
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 0));
|
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 1));
|
}
|
}
|
/* // update alpha..
|
if (params->wmtype <= AFFINE) {
|
int good_shear_params = get_shear_params(params);
|
if (!good_shear_params) return 0;
|
}
|
*/
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_film_grain_params(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFilmGrainParams *current,
|
AV1RawFrameHeader *frame_header)
|
{
|
const AV1RawSequenceHeader *seq = ctx->sequence_header;
|
RK_S32 num_pos_luma, num_pos_chroma;
|
RK_S32 i, err;
|
|
if (!seq->film_grain_params_present ||
|
(!frame_header->show_frame && !frame_header->showable_frame))
|
return 0;
|
|
flag(apply_grain);
|
|
if (!current->apply_grain)
|
return 0;
|
|
fb(16, grain_seed);
|
|
if (frame_header->frame_type == AV1_FRAME_INTER)
|
flag(update_grain);
|
else
|
infer(update_grain, 1);
|
|
if (!current->update_grain) {
|
fb(3, film_grain_params_ref_idx);
|
return 0;
|
}
|
|
fc(4, num_y_points, 0, 14);
|
for (i = 0; i < current->num_y_points; i++) {
|
fcs(8, point_y_value[i],
|
i ? current->point_y_value[i - 1] + 1 : 0,
|
MAX_UINT_BITS(8) - (current->num_y_points - i - 1),
|
1, i);
|
fbs(8, point_y_scaling[i], 1, i);
|
}
|
|
if (seq->color_config.mono_chrome)
|
infer(chroma_scaling_from_luma, 0);
|
else
|
flag(chroma_scaling_from_luma);
|
|
if (seq->color_config.mono_chrome ||
|
current->chroma_scaling_from_luma ||
|
(seq->color_config.subsampling_x == 1 &&
|
seq->color_config.subsampling_y == 1 &&
|
current->num_y_points == 0)) {
|
infer(num_cb_points, 0);
|
infer(num_cr_points, 0);
|
} else {
|
fc(4, num_cb_points, 0, 10);
|
for (i = 0; i < current->num_cb_points; i++) {
|
fcs(8, point_cb_value[i],
|
i ? current->point_cb_value[i - 1] + 1 : 0,
|
MAX_UINT_BITS(8) - (current->num_cb_points - i - 1),
|
1, i);
|
fbs(8, point_cb_scaling[i], 1, i);
|
}
|
fc(4, num_cr_points, 0, 10);
|
for (i = 0; i < current->num_cr_points; i++) {
|
fcs(8, point_cr_value[i],
|
i ? current->point_cr_value[i - 1] + 1 : 0,
|
MAX_UINT_BITS(8) - (current->num_cr_points - i - 1),
|
1, i);
|
fbs(8, point_cr_scaling[i], 1, i);
|
}
|
}
|
|
fb(2, grain_scaling_minus_8);
|
fb(2, ar_coeff_lag);
|
num_pos_luma = 2 * current->ar_coeff_lag * (current->ar_coeff_lag + 1);
|
if (current->num_y_points) {
|
num_pos_chroma = num_pos_luma + 1;
|
for (i = 0; i < num_pos_luma; i++)
|
fbs(8, ar_coeffs_y_plus_128[i], 1, i);
|
} else {
|
num_pos_chroma = num_pos_luma;
|
}
|
if (current->chroma_scaling_from_luma || current->num_cb_points) {
|
for (i = 0; i < num_pos_chroma; i++)
|
fbs(8, ar_coeffs_cb_plus_128[i], 1, i);
|
}
|
if (current->chroma_scaling_from_luma || current->num_cr_points) {
|
for (i = 0; i < num_pos_chroma; i++)
|
fbs(8, ar_coeffs_cr_plus_128[i], 1, i);
|
}
|
fb(2, ar_coeff_shift_minus_6);
|
fb(2, grain_scale_shift);
|
if (current->num_cb_points) {
|
fb(8, cb_mult);
|
fb(8, cb_luma_mult);
|
fb(9, cb_offset);
|
}
|
if (current->num_cr_points) {
|
fb(8, cr_mult);
|
fb(8, cr_luma_mult);
|
fb(9, cr_offset);
|
}
|
|
flag(overlap_flag);
|
flag(clip_to_restricted_range);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_uncompressed_header(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current)
|
{
|
const AV1RawSequenceHeader *seq;
|
RK_S32 id_len, diff_len, all_frames, frame_is_intra, order_hint_bits;
|
RK_S32 i, err;
|
|
RK_S32 start_pos = mpp_get_bits_count(gb);
|
|
if (!ctx->sequence_header) {
|
mpp_err_f("No sequence header available: "
|
"unable to decode frame header.\n");
|
return MPP_ERR_UNKNOW;
|
}
|
seq = ctx->sequence_header;
|
|
id_len = seq->additional_frame_id_length_minus_1 +
|
seq->delta_frame_id_length_minus_2 + 3;
|
all_frames = (1 << AV1_NUM_REF_FRAMES) - 1;
|
|
if (seq->reduced_still_picture_header) {
|
infer(show_existing_frame, 0);
|
infer(frame_type, AV1_FRAME_KEY);
|
infer(show_frame, 1);
|
infer(showable_frame, 0);
|
frame_is_intra = 1;
|
|
} else {
|
flag(show_existing_frame);
|
|
if (current->show_existing_frame) {
|
AV1ReferenceFrameState *ref;
|
|
fb(3, frame_to_show_map_idx);
|
ref = &ctx->ref_s[current->frame_to_show_map_idx];
|
|
if (!ref->valid) {
|
mpp_err_f("Missing reference frame needed for "
|
"show_existing_frame (frame_to_show_map_idx = %d).\n",
|
current->frame_to_show_map_idx);
|
return MPP_ERR_UNKNOW;
|
}
|
|
if (seq->decoder_model_info_present_flag &&
|
!seq->timing_info.equal_picture_interval) {
|
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
|
frame_presentation_time);
|
}
|
|
if (seq->frame_id_numbers_present_flag)
|
fb(id_len, display_frame_id);
|
|
infer(frame_type, ref->frame_type);
|
if (current->frame_type == AV1_FRAME_KEY) {
|
infer(refresh_frame_flags, all_frames);
|
|
// Section 7.21
|
infer(current_frame_id, ref->frame_id);
|
ctx->upscaled_width = ref->upscaled_width;
|
ctx->frame_width = ref->frame_width;
|
ctx->frame_height = ref->frame_height;
|
ctx->render_width = ref->render_width;
|
ctx->render_height = ref->render_height;
|
ctx->bit_depth = ref->bit_depth;
|
ctx->order_hint = ref->order_hint;
|
} else
|
infer(refresh_frame_flags, 0);
|
|
infer(frame_width_minus_1, ref->upscaled_width - 1);
|
infer(frame_height_minus_1, ref->frame_height - 1);
|
infer(render_width_minus_1, ref->render_width - 1);
|
infer(render_height_minus_1, ref->render_height - 1);
|
|
// Section 7.20
|
goto update_refs;
|
}
|
|
fb(2, frame_type);
|
frame_is_intra = (current->frame_type == AV1_FRAME_INTRA_ONLY ||
|
current->frame_type == AV1_FRAME_KEY);
|
|
ctx->frame_is_intra = frame_is_intra;
|
if (current->frame_type == AV1_FRAME_KEY) {
|
RK_U32 refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
|
|
Av1GetCDFs(ctx, current->frame_to_show_map_idx);
|
Av1StoreCDFs(ctx, refresh_frame_flags);
|
}
|
|
flag(show_frame);
|
if (current->show_frame &&
|
seq->decoder_model_info_present_flag &&
|
!seq->timing_info.equal_picture_interval) {
|
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
|
frame_presentation_time);
|
}
|
if (current->show_frame)
|
infer(showable_frame, current->frame_type != AV1_FRAME_KEY);
|
else
|
flag(showable_frame);
|
|
if (current->frame_type == AV1_FRAME_SWITCH ||
|
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
|
infer(error_resilient_mode, 1);
|
else
|
flag(error_resilient_mode);
|
}
|
|
if (current->frame_type == AV1_FRAME_KEY && current->show_frame) {
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
ctx->ref_s[i].valid = 0;
|
ctx->ref_s[i].order_hint = 0;
|
}
|
}
|
|
flag(disable_cdf_update);
|
|
if (seq->seq_force_screen_content_tools ==
|
AV1_SELECT_SCREEN_CONTENT_TOOLS) {
|
flag(allow_screen_content_tools);
|
} else {
|
infer(allow_screen_content_tools,
|
seq->seq_force_screen_content_tools);
|
}
|
if (current->allow_screen_content_tools) {
|
if (seq->seq_force_integer_mv == AV1_SELECT_INTEGER_MV)
|
flag(force_integer_mv);
|
else
|
infer(force_integer_mv, seq->seq_force_integer_mv);
|
} else {
|
infer(force_integer_mv, 0);
|
}
|
|
if (seq->frame_id_numbers_present_flag) {
|
fb(id_len, current_frame_id);
|
|
diff_len = seq->delta_frame_id_length_minus_2 + 2;
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
if (current->current_frame_id > (RK_S32)(1 << diff_len)) {
|
if (ctx->ref_s[i].frame_id > current->current_frame_id ||
|
ctx->ref_s[i].frame_id < (current->current_frame_id -
|
(RK_S32)(1 << diff_len)))
|
ctx->ref_s[i].valid = 0;
|
} else {
|
if (ctx->ref_s[i].frame_id > current->current_frame_id &&
|
ctx->ref_s[i].frame_id < ((RK_S32)(1 << id_len) +
|
current->current_frame_id -
|
(RK_S32)(1 << diff_len)))
|
ctx->ref_s[i].valid = 0;
|
}
|
}
|
} else {
|
infer(current_frame_id, 0);
|
}
|
|
if (current->frame_type == AV1_FRAME_SWITCH)
|
infer(frame_size_override_flag, 1);
|
else if (seq->reduced_still_picture_header)
|
infer(frame_size_override_flag, 0);
|
else
|
flag(frame_size_override_flag);
|
|
order_hint_bits =
|
seq->enable_order_hint ? seq->order_hint_bits_minus_1 + 1 : 0;
|
if (order_hint_bits > 0)
|
fb(order_hint_bits, order_hint);
|
else
|
infer(order_hint, 0);
|
ctx->order_hint = current->order_hint;
|
|
if (frame_is_intra || current->error_resilient_mode)
|
infer(primary_ref_frame, AV1_PRIMARY_REF_NONE);
|
else
|
fb(3, primary_ref_frame);
|
|
if (seq->decoder_model_info_present_flag) {
|
flag(buffer_removal_time_present_flag);
|
if (current->buffer_removal_time_present_flag) {
|
for (i = 0; i <= seq->operating_points_cnt_minus_1; i++) {
|
if (seq->decoder_model_present_for_this_op[i]) {
|
RK_S32 op_pt_idc = seq->operating_point_idc[i];
|
RK_S32 in_temporal_layer = (op_pt_idc >> ctx->temporal_id ) & 1;
|
RK_S32 in_spatial_layer = (op_pt_idc >> (ctx->spatial_id + 8)) & 1;
|
if (seq->operating_point_idc[i] == 0 ||
|
(in_temporal_layer && in_spatial_layer)) {
|
fbs(seq->decoder_model_info.buffer_removal_time_length_minus_1 + 1,
|
buffer_removal_time[i], 1, i);
|
}
|
}
|
}
|
}
|
}
|
|
if (current->frame_type == AV1_FRAME_SWITCH ||
|
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
|
infer(refresh_frame_flags, all_frames);
|
else
|
fb(8, refresh_frame_flags);
|
|
ctx->refresh_frame_flags = current->refresh_frame_flags;
|
if (!frame_is_intra || current->refresh_frame_flags != all_frames) {
|
if (seq->enable_order_hint) {
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
if (current->error_resilient_mode)
|
fbs(order_hint_bits, ref_order_hint[i], 1, i);
|
else
|
infer(ref_order_hint[i], ctx->ref_s[i].order_hint);
|
if (current->ref_order_hint[i] != ctx->ref_s[i].order_hint)
|
ctx->ref_s[i].valid = 0;
|
}
|
}
|
}
|
|
if (current->frame_type == AV1_FRAME_KEY ||
|
current->frame_type == AV1_FRAME_INTRA_ONLY) {
|
CHECK(mpp_av1_frame_size(ctx, gb, current));
|
CHECK(mpp_av1_render_size(ctx, gb, current));
|
|
if (current->allow_screen_content_tools &&
|
ctx->upscaled_width == ctx->frame_width)
|
flag(allow_intrabc);
|
else
|
infer(allow_intrabc, 0);
|
|
} else {
|
if (!seq->enable_order_hint) {
|
infer(frame_refs_short_signaling, 0);
|
} else {
|
flag(frame_refs_short_signaling);
|
if (current->frame_refs_short_signaling) {
|
fb(3, last_frame_idx);
|
fb(3, golden_frame_idx);
|
CHECK(mpp_av1_set_frame_refs(ctx, gb, current));
|
}
|
}
|
|
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
|
if (!current->frame_refs_short_signaling)
|
fbs(3, ref_frame_idx[i], 1, i);
|
if (seq->frame_id_numbers_present_flag) {
|
fbs(seq->delta_frame_id_length_minus_2 + 2,
|
delta_frame_id_minus1[i], 1, i);
|
}
|
}
|
|
if (current->frame_size_override_flag &&
|
!current->error_resilient_mode) {
|
CHECK(mpp_av1_frame_size_with_refs(ctx, gb, current));
|
} else {
|
CHECK(mpp_av1_frame_size(ctx, gb, current));
|
CHECK(mpp_av1_render_size(ctx, gb, current));
|
}
|
|
if (current->force_integer_mv)
|
infer(allow_high_precision_mv, 0);
|
else
|
flag(allow_high_precision_mv);
|
|
CHECK(mpp_av1_interpolation_filter(ctx, gb, current));
|
|
flag(is_motion_mode_switchable);
|
|
if (current->error_resilient_mode ||
|
!seq->enable_ref_frame_mvs)
|
infer(use_ref_frame_mvs, 0);
|
else
|
flag(use_ref_frame_mvs);
|
|
infer(allow_intrabc, 0);
|
}
|
|
if (!frame_is_intra) {
|
// Derive reference frame sign biases.
|
}
|
|
if (seq->reduced_still_picture_header || current->disable_cdf_update)
|
infer(disable_frame_end_update_cdf, 1);
|
else
|
flag(disable_frame_end_update_cdf);
|
|
ctx->disable_frame_end_update_cdf = current->disable_frame_end_update_cdf;
|
|
if (current->use_ref_frame_mvs) {
|
// Perform motion field estimation process.
|
}
|
av1d_dbg(AV1D_DBG_HEADER, "ptile_info in %d", mpp_get_bits_count(gb));
|
CHECK(mpp_av1_tile_info(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "ptile_info out %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_quantization_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "quantization out %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_segmentation_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "segmentation out %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_delta_q_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "delta_q out %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_delta_lf_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "lf out %d", mpp_get_bits_count(gb));
|
|
// Init coeff CDFs / load previous segments.
|
if (current->error_resilient_mode || frame_is_intra || current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
|
// Init non-coeff CDFs.
|
// Setup past independence.
|
ctx->cdfs = &ctx->default_cdfs;
|
ctx->cdfs_ndvc = &ctx->default_cdfs_ndvc;
|
Av1DefaultCoeffProbs(current->base_q_idx, ctx->cdfs);
|
} else {
|
// Load CDF tables from previous frame.
|
// Load params from previous frame.
|
RK_U32 idx = current->ref_frame_idx[current->primary_ref_frame];
|
|
Av1GetCDFs(ctx, idx);
|
}
|
av1d_dbg(AV1D_DBG_HEADER, "show_existing_frame_index %d primary_ref_frame %d %d (%d) refresh_frame_flags %d base_q_idx %d\n",
|
current->frame_to_show_map_idx,
|
current->ref_frame_idx[current->primary_ref_frame],
|
ctx->ref[current->ref_frame_idx[current->primary_ref_frame]].slot_index,
|
current->primary_ref_frame,
|
current->refresh_frame_flags,
|
current->base_q_idx);
|
Av1StoreCDFs(ctx, current->refresh_frame_flags);
|
|
ctx->coded_lossless = 1;
|
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
|
RK_S32 qindex;
|
if (current->feature_enabled[i][AV1_SEG_LVL_ALT_Q]) {
|
qindex = (current->base_q_idx +
|
current->feature_value[i][AV1_SEG_LVL_ALT_Q]);
|
} else {
|
qindex = current->base_q_idx;
|
}
|
qindex = mpp_clip_uintp2(qindex, 8);
|
|
if (qindex || current->delta_q_y_dc ||
|
current->delta_q_u_ac || current->delta_q_u_dc ||
|
current->delta_q_v_ac || current->delta_q_v_dc) {
|
ctx->coded_lossless = 0;
|
}
|
}
|
ctx->all_lossless = ctx->coded_lossless &&
|
ctx->frame_width == ctx->upscaled_width;
|
av1d_dbg(AV1D_DBG_HEADER, "filter in %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_loop_filter_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "cdef in %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_cdef_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "lr in %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_lr_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "read_tx in %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_read_tx_mode(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "reference in%d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_frame_reference_mode(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "kip_mode in %d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_skip_mode_params(ctx, gb, current));
|
|
if (frame_is_intra || current->error_resilient_mode ||
|
!seq->enable_warped_motion)
|
infer(allow_warped_motion, 0);
|
else
|
flag(allow_warped_motion);
|
|
flag(reduced_tx_set);
|
av1d_dbg(AV1D_DBG_HEADER, "motion in%d", mpp_get_bits_count(gb));
|
|
CHECK(mpp_av1_global_motion_params(ctx, gb, current));
|
av1d_dbg(AV1D_DBG_HEADER, "grain in %d", mpp_get_bits_count(gb));
|
CHECK(mpp_av1_film_grain_params(ctx, gb, ¤t->film_grain, current));
|
av1d_dbg(AV1D_DBG_HEADER, "film_grain out %d", mpp_get_bits_count(gb));
|
ctx->frame_tag_size = ((mpp_get_bits_count(gb) - start_pos) + 7) / 8;
|
|
|
av1d_dbg(AV1D_DBG_REF, "Frame %d: size %dx%d "
|
"upscaled %d render %dx%d subsample %dx%d "
|
"bitdepth %d tiles %dx%d.\n", ctx->order_hint,
|
ctx->frame_width, ctx->frame_height, ctx->upscaled_width,
|
ctx->render_width, ctx->render_height,
|
seq->color_config.subsampling_x + 1,
|
seq->color_config.subsampling_y + 1, ctx->bit_depth,
|
ctx->tile_rows, ctx->tile_cols);
|
|
update_refs:
|
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
|
if (current->refresh_frame_flags & (1 << i)) {
|
ctx->ref_s[i] = (AV1ReferenceFrameState) {
|
.valid = 1,
|
.frame_id = current->current_frame_id,
|
.upscaled_width = ctx->upscaled_width,
|
.frame_width = ctx->frame_width,
|
.frame_height = ctx->frame_height,
|
.render_width = ctx->render_width,
|
.render_height = ctx->render_height,
|
.frame_type = current->frame_type,
|
.subsampling_x = seq->color_config.subsampling_x,
|
.subsampling_y = seq->color_config.subsampling_y,
|
.bit_depth = ctx->bit_depth,
|
.order_hint = ctx->order_hint,
|
};
|
memcpy(ctx->ref_s[i].loop_filter_ref_deltas, current->loop_filter_ref_deltas,
|
sizeof(current->loop_filter_ref_deltas));
|
memcpy(ctx->ref_s[i].loop_filter_mode_deltas, current->loop_filter_mode_deltas,
|
sizeof(current->loop_filter_mode_deltas));
|
memcpy(ctx->ref_s[i].feature_enabled, current->feature_enabled,
|
sizeof(current->feature_enabled));
|
memcpy(ctx->ref_s[i].feature_value, current->feature_value,
|
sizeof(current->feature_value));
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_frame_header_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrameHeader *current, RK_S32 redundant,
|
void *rw_buffer_ref)
|
{
|
RK_S32 start_pos, fh_bits, fh_bytes, err;
|
RK_U8 *fh_start;
|
(void)rw_buffer_ref;
|
if (ctx->seen_frame_header) {
|
if (!redundant) {
|
mpp_err_f("Invalid repeated "
|
"frame header OBU.\n");
|
return MPP_ERR_UNKNOW;
|
} else {
|
BitReadCtx_t fh;
|
size_t i, b;
|
RK_U32 val;
|
|
// mpp_assert(ctx->frame_header_ref && ctx->frame_header);
|
|
mpp_set_bitread_ctx(&fh, ctx->frame_header,
|
ctx->frame_header_size);
|
|
for (i = 0; i < ctx->frame_header_size; i += 8) {
|
b = MPP_MIN(ctx->frame_header_size - i, 8);
|
mpp_read_bits(&fh, b, (RK_S32*)&val);
|
xf(b, frame_header_copy[i],
|
val, val, val, 1, i / 8);
|
}
|
}
|
} else {
|
|
start_pos = mpp_get_bits_count(gb);
|
|
CHECK(mpp_av1_uncompressed_header(ctx, gb, current));
|
|
ctx->tile_num = 0;
|
|
if (current->show_existing_frame) {
|
ctx->seen_frame_header = 0;
|
} else {
|
ctx->seen_frame_header = 1;
|
|
fh_bits = mpp_get_bits_count(gb) - start_pos;
|
fh_start = (RK_U8*)gb->buf + start_pos / 8;
|
|
fh_bytes = (fh_bits + 7) / 8;
|
|
ctx->frame_header_size = fh_bits;
|
MPP_FREE(ctx->frame_header);
|
|
ctx->frame_header =
|
mpp_malloc(RK_U8, fh_bytes + BUFFER_PADDING_SIZE);
|
if (!ctx->frame_header)
|
return MPP_ERR_NOMEM;
|
memcpy(ctx->frame_header, fh_start, fh_bytes);
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_tile_group_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawTileGroup *current)
|
{
|
RK_S32 num_tiles, tile_bits;
|
RK_S32 err;
|
RK_S32 cur_pos = mpp_get_bits_count(gb);
|
|
num_tiles = ctx->tile_cols * ctx->tile_rows;
|
if (num_tiles > 1)
|
flag(tile_start_and_end_present_flag);
|
else
|
infer(tile_start_and_end_present_flag, 0);
|
|
if (num_tiles == 1 || !current->tile_start_and_end_present_flag) {
|
infer(tg_start, 0);
|
infer(tg_end, num_tiles - 1);
|
} else {
|
tile_bits = mpp_av1_tile_log2(1, ctx->tile_cols) +
|
mpp_av1_tile_log2(1, ctx->tile_rows);
|
fc(tile_bits, tg_start, ctx->tile_num, num_tiles - 1);
|
fc(tile_bits, tg_end, current->tg_start, num_tiles - 1);
|
}
|
|
ctx->tile_num = current->tg_end + 1;
|
|
CHECK(mpp_av1_byte_alignment(ctx, gb));
|
|
// Reset header for next frame.
|
if (current->tg_end == num_tiles - 1)
|
ctx->seen_frame_header = 0;
|
|
ctx->frame_tag_size += MPP_ALIGN(mpp_get_bits_count(gb) - cur_pos, 8) / 8;
|
|
// Tile data follows.
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_frame_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawFrame *current,
|
void *rw_buffer_ref)
|
{
|
RK_S32 err;
|
|
CHECK(mpp_av1_frame_header_obu(ctx, gb, ¤t->header,
|
0, rw_buffer_ref));
|
|
CHECK(mpp_av1_byte_alignment(ctx, gb));
|
|
CHECK(mpp_av1_tile_group_obu(ctx, gb, ¤t->tile_group));
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_tile_list_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawTileList *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
fb(8, output_frame_width_in_tiles_minus_1);
|
fb(8, output_frame_height_in_tiles_minus_1);
|
|
fb(16, tile_count_minus_1);
|
|
// Tile data follows.
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_hdr_cll(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataHDRCLL *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
fb(16, max_cll);
|
fb(16, max_fall);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_hdr_mdcv(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataHDRMDCV *current)
|
{
|
RK_S32 err, i;
|
(void)ctx;
|
for (i = 0; i < 3; i++) {
|
fbs(16, primary_chromaticity_x[i], 1, i);
|
fbs(16, primary_chromaticity_y[i], 1, i);
|
}
|
|
fb(16, white_point_chromaticity_x);
|
fb(16, white_point_chromaticity_y);
|
|
fc(32, luminance_max, 1, MAX_UINT_BITS(32));
|
// luminance_min must be lower than luminance_max. Convert luminance_max from
|
// 24.8 fixed point to 18.14 fixed point in order to compare them.
|
fc(32, luminance_min, 0, MPP_MIN(((RK_U64)current->luminance_max << 6) - 1,
|
MAX_UINT_BITS(32)));
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_scalability_structure(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataScalability *current)
|
{
|
const AV1RawSequenceHeader *seq;
|
RK_S32 err, i, j;
|
|
if (!ctx->sequence_header) {
|
mpp_err_f("No sequence header available: "
|
"unable to parse scalability metadata.\n");
|
return MPP_ERR_UNKNOW;
|
}
|
seq = ctx->sequence_header;
|
|
fb(2, spatial_layers_cnt_minus_1);
|
flag(spatial_layer_dimensions_present_flag);
|
flag(spatial_layer_description_present_flag);
|
flag(temporal_group_description_present_flag);
|
fc(3, scalability_structure_reserved_3bits, 0, 0);
|
if (current->spatial_layer_dimensions_present_flag) {
|
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++) {
|
fcs(16, spatial_layer_max_width[i],
|
0, seq->max_frame_width_minus_1 + 1, 1, i);
|
fcs(16, spatial_layer_max_height[i],
|
0, seq->max_frame_height_minus_1 + 1, 1, i);
|
}
|
}
|
if (current->spatial_layer_description_present_flag) {
|
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++)
|
fbs(8, spatial_layer_ref_id[i], 1, i);
|
}
|
if (current->temporal_group_description_present_flag) {
|
fb(8, temporal_group_size);
|
for (i = 0; i < current->temporal_group_size; i++) {
|
fbs(3, temporal_group_temporal_id[i], 1, i);
|
flags(temporal_group_temporal_switching_up_point_flag[i], 1, i);
|
flags(temporal_group_spatial_switching_up_point_flag[i], 1, i);
|
fbs(3, temporal_group_ref_cnt[i], 1, i);
|
for (j = 0; j < current->temporal_group_ref_cnt[i]; j++) {
|
fbs(8, temporal_group_ref_pic_diff[i][j], 2, i, j);
|
}
|
}
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_scalability(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataScalability *current)
|
{
|
RK_S32 err;
|
|
fb(8, scalability_mode_idc);
|
|
if (current->scalability_mode_idc == AV1_SCALABILITY_SS)
|
CHECK(mpp_av1_scalability_structure(ctx, gb, current));
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_itut_t35(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataITUTT35 *current)
|
{
|
RK_S32 err;
|
size_t i;
|
(void)ctx;
|
|
fb(8, itu_t_t35_country_code);
|
if (current->itu_t_t35_country_code == 0xff)
|
fb(8, itu_t_t35_country_code_extension_byte);
|
|
current->payload_size = mpp_av1_get_payload_bytes_left(gb);
|
|
current->payload = mpp_malloc(RK_U8, current->payload_size);
|
if (!current->payload)
|
return MPP_ERR_NOMEM;
|
|
for (i = 0; i < current->payload_size; i++)
|
xf(8, itu_t_t35_payload_bytes[i], current->payload[i],
|
0x00, 0xff, 1, i);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_timecode(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadataTimecode *current)
|
{
|
RK_S32 err;
|
(void)ctx;
|
|
fb(5, counting_type);
|
flag(full_timestamp_flag);
|
flag(discontinuity_flag);
|
flag(cnt_dropped_flag);
|
fb(9, n_frames);
|
|
if (current->full_timestamp_flag) {
|
fc(6, seconds_value, 0, 59);
|
fc(6, minutes_value, 0, 59);
|
fc(5, hours_value, 0, 23);
|
} else {
|
flag(seconds_flag);
|
if (current->seconds_flag) {
|
fc(6, seconds_value, 0, 59);
|
flag(minutes_flag);
|
if (current->minutes_flag) {
|
fc(6, minutes_value, 0, 59);
|
flag(hours_flag);
|
if (current->hours_flag)
|
fc(5, hours_value, 0, 23);
|
}
|
}
|
}
|
|
fb(5, time_offset_length);
|
if (current->time_offset_length > 0)
|
fb(current->time_offset_length, time_offset_value);
|
else
|
infer(time_offset_length, 0);
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_metadata_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawMetadata *current)
|
{
|
RK_S32 err;
|
|
leb128(metadata_type);
|
|
switch (current->metadata_type) {
|
case AV1_METADATA_TYPE_HDR_CLL:
|
CHECK(mpp_av1_metadata_hdr_cll(ctx, gb, ¤t->metadata.hdr_cll));
|
break;
|
case AV1_METADATA_TYPE_HDR_MDCV:
|
CHECK(mpp_av1_metadata_hdr_mdcv(ctx, gb, ¤t->metadata.hdr_mdcv));
|
break;
|
case AV1_METADATA_TYPE_SCALABILITY:
|
CHECK(mpp_av1_metadata_scalability(ctx, gb, ¤t->metadata.scalability));
|
break;
|
case AV1_METADATA_TYPE_ITUT_T35:
|
CHECK(mpp_av1_metadata_itut_t35(ctx, gb, ¤t->metadata.itut_t35));
|
break;
|
case AV1_METADATA_TYPE_TIMECODE:
|
CHECK(mpp_av1_metadata_timecode(ctx, gb, ¤t->metadata.timecode));
|
break;
|
default:
|
// Unknown metadata type.
|
return MPP_ERR_UNKNOW;
|
}
|
|
return 0;
|
}
|
|
static RK_S32 mpp_av1_padding_obu(AV1Context *ctx, BitReadCtx_t *gb,
|
AV1RawPadding *current)
|
{
|
RK_S32 err;
|
RK_U32 i;
|
(void)ctx;
|
current->payload_size = mpp_av1_get_payload_bytes_left(gb);
|
|
current->payload = mpp_malloc(RK_U8, current->payload_size);
|
if (!current->payload )
|
return MPP_ERR_NOMEM;
|
|
for (i = 0; i < current->payload_size; i++)
|
xf(8, obu_padding_byte[i], current->payload[i], 0x00, 0xff, 1, i);
|
|
return 0;
|
}
|
|
|
|
static MPP_RET mpp_insert_unit(Av1UnitFragment *frag, RK_S32 position)
|
{
|
Av1ObuUnit *units;
|
|
if (frag->nb_units < frag->nb_units_allocated) {
|
units = frag->units;
|
|
if (position < frag->nb_units)
|
memmove(units + position + 1, units + position,
|
(frag->nb_units - position) * sizeof(*units));
|
} else {
|
units = mpp_malloc(Av1ObuUnit, frag->nb_units * 2 + 1);
|
if (!units)
|
return MPP_ERR_NOMEM;
|
|
frag->nb_units_allocated = 2 * frag->nb_units_allocated + 1;
|
|
if (position > 0)
|
memcpy(units, frag->units, position * sizeof(*units));
|
|
if (position < frag->nb_units)
|
memcpy(units + position + 1, frag->units + position,
|
(frag->nb_units - position) * sizeof(*units));
|
}
|
|
memset(units + position, 0, sizeof(*units));
|
|
if (units != frag->units) {
|
mpp_free(frag->units);
|
frag->units = units;
|
}
|
|
++frag->nb_units;
|
|
return MPP_OK;
|
}
|
|
static MPP_RET mpp_insert_unit_data(Av1UnitFragment *frag,
|
RK_S32 position,
|
Av1UnitType type,
|
RK_U8 *data, size_t data_size)
|
{
|
Av1ObuUnit *unit;
|
MPP_RET ret;
|
|
if (position == -1)
|
position = frag->nb_units;
|
|
mpp_assert(position >= 0 && position <= frag->nb_units);
|
ret = mpp_insert_unit(frag, position);
|
if (ret < 0) {
|
return ret;
|
}
|
|
unit = &frag->units[position];
|
unit->type = type;
|
unit->data = data;
|
unit->data_size = data_size;
|
|
return MPP_OK;
|
}
|
|
RK_S32 mpp_av1_split_fragment(AV1Context *ctx, Av1UnitFragment *frag, RK_S32 header_flag)
|
{
|
BitReadCtx_t gbc;
|
RK_U8 *data;
|
size_t size;
|
RK_U64 obu_length;
|
RK_S32 pos, err;
|
|
data = frag->data;
|
size = frag->data_size;
|
|
if (INT_MAX / 8 < size) {
|
mpp_err( "Invalid fragment: "
|
"too large (%d bytes).\n", size);
|
err = MPP_NOK;
|
goto fail;
|
}
|
|
if (header_flag && size && data[0] & 0x80) {
|
// first bit is nonzero, the extradata does not consist purely of
|
// OBUs. Expect MP4/Matroska AV1CodecConfigurationRecord
|
RK_S32 config_record_version = data[0] & 0x7f;
|
|
if (config_record_version != 1) {
|
mpp_err(
|
"Unknown version %d of AV1CodecConfigurationRecord "
|
"found!\n",
|
config_record_version);
|
err = MPP_NOK;
|
goto fail;
|
}
|
|
if (size <= 4) {
|
if (size < 4) {
|
av1d_dbg(AV1D_DBG_STRMIN,
|
"Undersized AV1CodecConfigurationRecord v%d found!\n",
|
config_record_version);
|
err = MPP_NOK;
|
goto fail;
|
}
|
|
goto success;
|
}
|
|
// In AV1CodecConfigurationRecord v1, actual OBUs start after
|
// four bytes. Thus set the offset as required for properly
|
// parsing them.
|
data += 4;
|
size -= 4;
|
}
|
|
while (size > 0) {
|
AV1RawOBUHeader header;
|
RK_U64 obu_size = 0;
|
|
mpp_set_bitread_ctx(&gbc, data, size);
|
|
err = mpp_av1_read_obu_header(ctx, &gbc, &header);
|
if (err < 0)
|
goto fail;
|
|
if (header.obu_has_size_field) {
|
if (mpp_get_bits_left(&gbc) < 8) {
|
mpp_err( "Invalid OBU: fragment "
|
"too short (%d bytes).\n", size);
|
err = MPP_NOK;
|
goto fail;
|
}
|
err = mpp_av1_read_leb128(&gbc, &obu_size);
|
if (err < 0)
|
goto fail;
|
} else
|
obu_size = size - 1 - header.obu_extension_flag;
|
|
pos = mpp_get_bits_count(&gbc);
|
|
mpp_assert(pos % 8 == 0 && pos / 8 <= (RK_S32)size);
|
|
obu_length = pos / 8 + obu_size;
|
|
if (size < obu_length) {
|
mpp_err( "Invalid OBU length: "
|
"%lld, but only %d bytes remaining in fragment.\n",
|
obu_length, size);
|
err = MPP_NOK;
|
goto fail;
|
}
|
err = mpp_insert_unit_data(frag, -1, header.obu_type,
|
data, obu_length);
|
if (err < 0)
|
goto fail;
|
|
data += obu_length;
|
size -= obu_length;
|
}
|
|
success:
|
err = 0;
|
fail:
|
return err;
|
}
|
|
static RK_S32 mpp_av1_ref_tile_data(Av1ObuUnit *unit,
|
BitReadCtx_t *gbc,
|
AV1RawTileData *td)
|
{
|
RK_S32 pos;
|
|
pos = mpp_get_bits_count(gbc);
|
if (pos >= (RK_S32)(8 * unit->data_size)) {
|
mpp_err( "Bitstream ended before "
|
"any data in tile group (%d bits read).\n", pos);
|
return MPP_NOK;
|
}
|
// Must be byte-aligned at this point.
|
mpp_assert(pos % 8 == 0);
|
|
|
|
td->data = unit->data + pos / 8;
|
td->data_size = unit->data_size - pos / 8;
|
|
return 0;
|
}
|
|
static MPP_RET mpp_av1_alloc_unit_content(Av1ObuUnit *unit)
|
{
|
(void)unit;
|
MPP_FREE(unit->content);
|
unit->content = mpp_calloc(AV1RawOBU, 1);
|
if (!unit->content) {
|
return MPP_ERR_NOMEM; // drop_obu()
|
}
|
return MPP_OK;
|
}
|
|
MPP_RET mpp_av1_read_unit(AV1Context *ctx, Av1ObuUnit *unit)
|
{
|
AV1RawOBU *obu;
|
BitReadCtx_t gbc;
|
RK_S32 err = 0, start_pos, end_pos, hdr_start_pos;
|
|
err = mpp_av1_alloc_unit_content(unit);
|
|
if (err < 0)
|
return err;
|
|
obu = unit->content;
|
|
mpp_set_bitread_ctx(&gbc, unit->data, unit->data_size);
|
|
hdr_start_pos = mpp_get_bits_count(&gbc);
|
|
err = mpp_av1_read_obu_header(ctx, &gbc, &obu->header);
|
if (err < 0)
|
return err;
|
mpp_assert(obu->header.obu_type == unit->type);
|
|
if (obu->header.obu_has_size_field) {
|
RK_U64 obu_size = 0;
|
err = mpp_av1_read_leb128(&gbc, &obu_size);
|
if (err < 0)
|
return err;
|
obu->obu_size = obu_size;
|
} else {
|
if (unit->data_size < (RK_U32)(1 + obu->header.obu_extension_flag)) {
|
mpp_err( "Invalid OBU length: "
|
"unit too short (%d).\n", unit->data_size);
|
return MPP_NOK;
|
}
|
obu->obu_size = unit->data_size - 1 - obu->header.obu_extension_flag;
|
}
|
|
start_pos = mpp_get_bits_count(&gbc);
|
ctx->obu_len += ((start_pos - hdr_start_pos) >> 3);
|
if (obu->header.obu_extension_flag) {
|
if (obu->header.obu_type != AV1_OBU_SEQUENCE_HEADER &&
|
obu->header.obu_type != AV1_OBU_TEMPORAL_DELIMITER &&
|
ctx->operating_point_idc) {
|
RK_S32 in_temporal_layer =
|
(ctx->operating_point_idc >> ctx->temporal_id ) & 1;
|
RK_S32 in_spatial_layer =
|
(ctx->operating_point_idc >> (ctx->spatial_id + 8)) & 1;
|
if (!in_temporal_layer || !in_spatial_layer) {
|
return MPP_ERR_PROTOL; // drop_obu()
|
}
|
}
|
}
|
|
switch (obu->header.obu_type) {
|
case AV1_OBU_SEQUENCE_HEADER: {
|
err = mpp_av1_sequence_header_obu(ctx, &gbc,
|
&obu->obu.sequence_header);
|
if (err < 0)
|
return err;
|
|
if (ctx->operating_point >= 0) {
|
AV1RawSequenceHeader *sequence_header = &obu->obu.sequence_header;
|
|
if (ctx->operating_point > sequence_header->operating_points_cnt_minus_1) {
|
mpp_err("Invalid Operating Point %d requested. "
|
"Must not be higher than %u.\n",
|
ctx->operating_point, sequence_header->operating_points_cnt_minus_1);
|
return MPP_ERR_PROTOL;
|
}
|
ctx->operating_point_idc = sequence_header->operating_point_idc[ctx->operating_point];
|
}
|
|
ctx->sequence_header = NULL;
|
ctx->sequence_header = &obu->obu.sequence_header;
|
} break;
|
case AV1_OBU_TEMPORAL_DELIMITER: {
|
err = mpp_av1_temporal_delimiter_obu(ctx, &gbc);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_FRAME_HEADER:
|
case AV1_OBU_REDUNDANT_FRAME_HEADER: {
|
err = mpp_av1_frame_header_obu(ctx, &gbc,
|
&obu->obu.frame_header,
|
obu->header.obu_type ==
|
AV1_OBU_REDUNDANT_FRAME_HEADER,
|
NULL);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_TILE_GROUP: {
|
err = mpp_av1_tile_group_obu(ctx, &gbc, &obu->obu.tile_group);
|
if (err < 0)
|
return err;
|
|
err = mpp_av1_ref_tile_data(unit, &gbc,
|
&obu->obu.tile_group.tile_data);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_FRAME: {
|
err = mpp_av1_frame_obu(ctx, &gbc, &obu->obu.frame,
|
NULL);
|
if (err < 0)
|
return err;
|
|
err = mpp_av1_ref_tile_data(unit, &gbc,
|
&obu->obu.frame.tile_group.tile_data);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_TILE_LIST: {
|
err = mpp_av1_tile_list_obu(ctx, &gbc, &obu->obu.tile_list);
|
if (err < 0)
|
return err;
|
|
err = mpp_av1_ref_tile_data(unit, &gbc,
|
&obu->obu.tile_list.tile_data);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_METADATA: {
|
err = mpp_av1_metadata_obu(ctx, &gbc, &obu->obu.metadata);
|
if (err < 0)
|
return err;
|
} break;
|
case AV1_OBU_PADDING: {
|
err = mpp_av1_padding_obu(ctx, &gbc, &obu->obu.padding);
|
if (err < 0)
|
return err;
|
} break;
|
default:
|
return MPP_ERR_VALUE;
|
}
|
|
end_pos = mpp_get_bits_count(&gbc);
|
mpp_assert(end_pos <= (RK_S32)(unit->data_size * 8));
|
|
if (obu->obu_size > 0 &&
|
obu->header.obu_type != AV1_OBU_TILE_GROUP &&
|
obu->header.obu_type != AV1_OBU_TILE_LIST &&
|
obu->header.obu_type != AV1_OBU_FRAME) {
|
RK_S32 nb_bits = obu->obu_size * 8 + start_pos - end_pos;
|
|
if (nb_bits <= 0)
|
return MPP_NOK;
|
|
err = mpp_av1_trailing_bits(ctx, &gbc, nb_bits);
|
if (err < 0)
|
return err;
|
}
|
|
return 0;
|
}
|
|
RK_S32 mpp_av1_read_fragment_content(AV1Context *ctx, Av1UnitFragment *frag)
|
{
|
int err, i, j;
|
ctx->obu_len = 0;
|
AV1RawOBU *obu;
|
for (i = 0; i < frag->nb_units; i++) {
|
Av1ObuUnit *unit = &frag->units[i];
|
if (ctx->unit_types) {
|
for (j = 0; j < ctx->nb_unit_types; j++) {
|
if (ctx->unit_types[j] == unit->type)
|
break;
|
}
|
if (j >= ctx->nb_unit_types)
|
continue;
|
}
|
MPP_FREE(unit->content);
|
mpp_assert(unit->data);
|
err = mpp_av1_read_unit(ctx, unit);
|
|
if (err == MPP_ERR_VALUE) {
|
mpp_err_f("Decomposition unimplemented for unit %d "
|
"(type %d).\n", i, unit->type);
|
} else if (err == MPP_ERR_PROTOL) {
|
mpp_err_f("Skipping decomposition of"
|
"unit %d (type %d).\n", i, unit->type);
|
MPP_FREE(unit->content);
|
unit->content = NULL;
|
} else if (err < 0) {
|
mpp_err_f("Failed to read unit %d (type %d).\n", i, unit->type);
|
return err;
|
}
|
obu = unit->content;
|
av1d_dbg(AV1D_DBG_HEADER, "obu->header.obu_type %d, obu->obu_size = %d ctx->frame_tag_size %d",
|
obu->header.obu_type, obu->obu_size, ctx->frame_tag_size);
|
if ((obu->header.obu_type != AV1_OBU_FRAME) &&
|
(obu->header.obu_type != AV1_OBU_TILE_GROUP)) {
|
ctx->obu_len += obu->obu_size;
|
}
|
}
|
ctx->frame_tag_size += ctx->obu_len;
|
return 0;
|
}
|
|
int mpp_av1_set_context_with_sequence(Av1CodecContext *ctx,
|
const AV1RawSequenceHeader *seq)
|
{
|
int width = seq->max_frame_width_minus_1 + 1;
|
int height = seq->max_frame_height_minus_1 + 1;
|
|
ctx->profile = seq->seq_profile;
|
ctx->level = seq->seq_level_idx[0];
|
|
ctx->color_range =
|
seq->color_config.color_range ? MPP_FRAME_RANGE_JPEG : MPP_FRAME_RANGE_MPEG;
|
ctx->color_primaries = seq->color_config.color_primaries;
|
ctx->colorspace = seq->color_config.color_primaries;
|
ctx->color_trc = seq->color_config.transfer_characteristics;
|
|
switch (seq->color_config.chroma_sample_position) {
|
case AV1_CSP_VERTICAL:
|
ctx->chroma_sample_location = MPP_CHROMA_LOC_LEFT;
|
break;
|
case AV1_CSP_COLOCATED:
|
ctx->chroma_sample_location = MPP_CHROMA_LOC_TOPLEFT;
|
break;
|
}
|
|
if (ctx->width != width || ctx->height != height) {
|
ctx->width = width;
|
ctx->height = height;
|
}
|
return 0;
|
}
|
|
void mpp_av1_fragment_reset(Av1UnitFragment *frag)
|
{
|
int i;
|
|
for (i = 0; i < frag->nb_units; i++) {
|
Av1ObuUnit *unit = &frag->units[i];
|
MPP_FREE(unit->content);
|
unit->data = NULL;
|
unit->data_size = 0;
|
}
|
frag->nb_units = 0;
|
frag->data = NULL;
|
frag->data_size = 0;
|
}
|
|
RK_S32 mpp_av1_assemble_fragment(AV1Context *ctx, Av1UnitFragment *frag)
|
{
|
size_t size, pos;
|
RK_S32 i;
|
(void)ctx;
|
size = 0;
|
for (i = 0; i < frag->nb_units; i++)
|
size += frag->units[i].data_size;
|
|
frag->data = mpp_malloc(RK_U8, size + BUFFER_PADDING_SIZE);
|
if (!frag->data)
|
return MPP_ERR_NOMEM;
|
|
memset(frag->data + size, 0, BUFFER_PADDING_SIZE);
|
|
pos = 0;
|
for (i = 0; i < frag->nb_units; i++) {
|
memcpy(frag->data + pos, frag->units[i].data,
|
frag->units[i].data_size);
|
pos += frag->units[i].data_size;
|
}
|
mpp_assert(pos == size);
|
frag->data_size = size;
|
|
return 0;
|
}
|
|
void mpp_av1_flush(AV1Context *ctx)
|
{
|
// ctx->sequencframe_headere_header = NULL;
|
// ctx-> = NULL;
|
|
memset(ctx->ref_s, 0, sizeof(ctx->ref_s));
|
ctx->operating_point_idc = 0;
|
ctx->seen_frame_header = 0;
|
ctx->tile_num = 0;
|
}
|
|
void mpp_av1_close(AV1Context *ctx)
|
{
|
MPP_FREE(ctx->frame_header);
|
MPP_FREE(ctx->sequence_header);
|
MPP_FREE(ctx->raw_frame_header);
|
}
|
|
void mpp_av1_free_metadata(void *unit, RK_U8 *content)
|
{
|
AV1RawOBU *obu = (AV1RawOBU*)content;
|
(void)unit;
|
mpp_assert(obu->header.obu_type == AV1_OBU_METADATA);
|
MPP_FREE(content);
|
}
|