/* SPDX-License-Identifier: GPL-2.0+ */
|
/*
|
* DMA-able FIFO interface
|
*
|
* Copyright (C) 2012 Peter Hurley <peter@hurleysoftware.com>
|
*/
|
|
#ifndef _DMA_FIFO_H_
|
#define _DMA_FIFO_H_
|
|
/**
|
* The design basis for the DMA FIFO is to provide an output side that
|
* complies with the streaming DMA API design that can be DMA'd from directly
|
* (without additional copying), coupled with an input side that maintains a
|
* logically consistent 'apparent' size (ie, bytes in + bytes avail is static
|
* for the lifetime of the FIFO).
|
*
|
* DMA output transactions originate on a cache line boundary and can be
|
* variably-sized. DMA output transactions can be retired out-of-order but
|
* the FIFO will only advance the output in the original input sequence.
|
* This means the FIFO will eventually stall if a transaction is never retired.
|
*
|
* Chunking the output side into cache line multiples means that some FIFO
|
* memory is unused. For example, if all the avail input has been pended out,
|
* then the in and out markers are re-aligned to the next cache line.
|
* The maximum possible waste is
|
* (cache line alignment - 1) * (max outstanding dma transactions)
|
* This potential waste requires additional hidden capacity within the FIFO
|
* to be able to accept input while the 'apparent' size has not been reached.
|
*
|
* Additional cache lines (ie, guard area) are used to minimize DMA
|
* fragmentation when wrapping at the end of the FIFO. Input is allowed into the
|
* guard area, but the in and out FIFO markers are wrapped when DMA is pended.
|
*/
|
|
#define DMA_FIFO_GUARD 3 /* # of cache lines to reserve for the guard area */
|
|
struct dma_fifo {
|
unsigned int in;
|
unsigned int out; /* updated when dma is pended */
|
unsigned int done; /* updated upon dma completion */
|
struct {
|
unsigned corrupt:1;
|
};
|
int size; /* 'apparent' size of fifo */
|
int guard; /* ofs of guard area */
|
int capacity; /* size + reserved */
|
int avail; /* # of unused bytes in fifo */
|
unsigned int align; /* must be power of 2 */
|
int tx_limit; /* max # of bytes per dma transaction */
|
int open_limit; /* max # of outstanding allowed */
|
int open; /* # of outstanding dma transactions */
|
struct list_head pending; /* fifo markers for outstanding dma */
|
void *data;
|
};
|
|
struct dma_pending {
|
struct list_head link;
|
void *data;
|
unsigned int len;
|
unsigned int next;
|
unsigned int out;
|
};
|
|
static inline void dp_mark_completed(struct dma_pending *dp)
|
{
|
dp->data += 1;
|
}
|
|
static inline bool dp_is_completed(struct dma_pending *dp)
|
{
|
return (unsigned long)dp->data & 1UL;
|
}
|
|
void dma_fifo_init(struct dma_fifo *fifo);
|
int dma_fifo_alloc(struct dma_fifo *fifo, int size, unsigned int align,
|
int tx_limit, int open_limit, gfp_t gfp_mask);
|
void dma_fifo_free(struct dma_fifo *fifo);
|
void dma_fifo_reset(struct dma_fifo *fifo);
|
int dma_fifo_in(struct dma_fifo *fifo, const void *src, int n);
|
int dma_fifo_out_pend(struct dma_fifo *fifo, struct dma_pending *pended);
|
int dma_fifo_out_complete(struct dma_fifo *fifo,
|
struct dma_pending *complete);
|
|
/* returns the # of used bytes in the fifo */
|
static inline int dma_fifo_level(struct dma_fifo *fifo)
|
{
|
return fifo->size - fifo->avail;
|
}
|
|
/* returns the # of bytes ready for output in the fifo */
|
static inline int dma_fifo_out_level(struct dma_fifo *fifo)
|
{
|
return fifo->in - fifo->out;
|
}
|
|
/* returns the # of unused bytes in the fifo */
|
static inline int dma_fifo_avail(struct dma_fifo *fifo)
|
{
|
return fifo->avail;
|
}
|
|
/* returns true if fifo has max # of outstanding dmas */
|
static inline bool dma_fifo_busy(struct dma_fifo *fifo)
|
{
|
return fifo->open == fifo->open_limit;
|
}
|
|
/* changes the max size of dma returned from dma_fifo_out_pend() */
|
static inline int dma_fifo_change_tx_limit(struct dma_fifo *fifo, int tx_limit)
|
{
|
tx_limit = round_down(tx_limit, fifo->align);
|
fifo->tx_limit = max_t(int, tx_limit, fifo->align);
|
return 0;
|
}
|
|
#endif /* _DMA_FIFO_H_ */
|