/*
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
*
|
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
|
*
|
* This software is available to you under a choice of one of two
|
* licenses. You may choose to be licensed under the terms of the GNU
|
* General Public License (GPL) Version 2, available from the file
|
* COPYING in the main directory of this source tree, or the
|
* OpenIB.org BSD license below:
|
*
|
* Redistribution and use in source and binary forms, with or
|
* without modification, are permitted provided that the following
|
* conditions are met:
|
*
|
* - Redistributions of source code must retain the above
|
* copyright notice, this list of conditions and the following
|
* disclaimer.
|
*
|
* - Redistributions in binary form must reproduce the above
|
* copyright notice, this list of conditions and the following
|
* disclaimer in the documentation and/or other materials
|
* provided with the distribution.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
* SOFTWARE.
|
*/
|
#include <net/ipv6.h>
|
|
#include "cxgb4.h"
|
#include "t4_regs.h"
|
#include "t4_tcb.h"
|
#include "t4_values.h"
|
#include "clip_tbl.h"
|
#include "l2t.h"
|
#include "smt.h"
|
#include "t4fw_api.h"
|
#include "cxgb4_filter.h"
|
|
static inline bool is_field_set(u32 val, u32 mask)
|
{
|
return val || mask;
|
}
|
|
static inline bool unsupported(u32 conf, u32 conf_mask, u32 val, u32 mask)
|
{
|
return !(conf & conf_mask) && is_field_set(val, mask);
|
}
|
|
static int set_tcb_field(struct adapter *adap, struct filter_entry *f,
|
unsigned int ftid, u16 word, u64 mask, u64 val,
|
int no_reply)
|
{
|
struct cpl_set_tcb_field *req;
|
struct sk_buff *skb;
|
|
skb = alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_ATOMIC);
|
if (!skb)
|
return -ENOMEM;
|
|
req = (struct cpl_set_tcb_field *)__skb_put_zero(skb, sizeof(*req));
|
INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, ftid);
|
req->reply_ctrl = htons(REPLY_CHAN_V(0) |
|
QUEUENO_V(adap->sge.fw_evtq.abs_id) |
|
NO_REPLY_V(no_reply));
|
req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(ftid));
|
req->mask = cpu_to_be64(mask);
|
req->val = cpu_to_be64(val);
|
set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
|
t4_ofld_send(adap, skb);
|
return 0;
|
}
|
|
/* Set one of the t_flags bits in the TCB.
|
*/
|
static int set_tcb_tflag(struct adapter *adap, struct filter_entry *f,
|
unsigned int ftid, unsigned int bit_pos,
|
unsigned int val, int no_reply)
|
{
|
return set_tcb_field(adap, f, ftid, TCB_T_FLAGS_W, 1ULL << bit_pos,
|
(unsigned long long)val << bit_pos, no_reply);
|
}
|
|
static void mk_abort_req_ulp(struct cpl_abort_req *abort_req, unsigned int tid)
|
{
|
struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_req;
|
struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
|
|
txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
|
txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_req), 16));
|
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
|
sc->len = htonl(sizeof(*abort_req) - sizeof(struct work_request_hdr));
|
OPCODE_TID(abort_req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, tid));
|
abort_req->rsvd0 = htonl(0);
|
abort_req->rsvd1 = 0;
|
abort_req->cmd = CPL_ABORT_NO_RST;
|
}
|
|
static void mk_abort_rpl_ulp(struct cpl_abort_rpl *abort_rpl, unsigned int tid)
|
{
|
struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_rpl;
|
struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
|
|
txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
|
txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_rpl), 16));
|
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
|
sc->len = htonl(sizeof(*abort_rpl) - sizeof(struct work_request_hdr));
|
OPCODE_TID(abort_rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
|
abort_rpl->rsvd0 = htonl(0);
|
abort_rpl->rsvd1 = 0;
|
abort_rpl->cmd = CPL_ABORT_NO_RST;
|
}
|
|
static void mk_set_tcb_ulp(struct filter_entry *f,
|
struct cpl_set_tcb_field *req,
|
unsigned int word, u64 mask, u64 val,
|
u8 cookie, int no_reply)
|
{
|
struct ulp_txpkt *txpkt = (struct ulp_txpkt *)req;
|
struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
|
|
txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
|
txpkt->len = htonl(DIV_ROUND_UP(sizeof(*req), 16));
|
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
|
sc->len = htonl(sizeof(*req) - sizeof(struct work_request_hdr));
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, f->tid));
|
req->reply_ctrl = htons(NO_REPLY_V(no_reply) | REPLY_CHAN_V(0) |
|
QUEUENO_V(0));
|
req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
|
req->mask = cpu_to_be64(mask);
|
req->val = cpu_to_be64(val);
|
sc = (struct ulptx_idata *)(req + 1);
|
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
|
sc->len = htonl(0);
|
}
|
|
static int configure_filter_smac(struct adapter *adap, struct filter_entry *f)
|
{
|
int err;
|
|
/* do a set-tcb for smac-sel and CWR bit.. */
|
err = set_tcb_field(adap, f, f->tid, TCB_SMAC_SEL_W,
|
TCB_SMAC_SEL_V(TCB_SMAC_SEL_M),
|
TCB_SMAC_SEL_V(f->smt->idx), 1);
|
if (err)
|
goto smac_err;
|
|
err = set_tcb_tflag(adap, f, f->tid, TF_CCTRL_CWR_S, 1, 1);
|
if (!err)
|
return 0;
|
|
smac_err:
|
dev_err(adap->pdev_dev, "filter %u smac config failed with error %u\n",
|
f->tid, err);
|
return err;
|
}
|
|
static void set_nat_params(struct adapter *adap, struct filter_entry *f,
|
unsigned int tid, bool dip, bool sip, bool dp,
|
bool sp)
|
{
|
u8 *nat_lp = (u8 *)&f->fs.nat_lport;
|
u8 *nat_fp = (u8 *)&f->fs.nat_fport;
|
|
if (dip) {
|
if (f->fs.type) {
|
set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W,
|
WORD_MASK, f->fs.nat_lip[15] |
|
f->fs.nat_lip[14] << 8 |
|
f->fs.nat_lip[13] << 16 |
|
(u64)f->fs.nat_lip[12] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 1,
|
WORD_MASK, f->fs.nat_lip[11] |
|
f->fs.nat_lip[10] << 8 |
|
f->fs.nat_lip[9] << 16 |
|
(u64)f->fs.nat_lip[8] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 2,
|
WORD_MASK, f->fs.nat_lip[7] |
|
f->fs.nat_lip[6] << 8 |
|
f->fs.nat_lip[5] << 16 |
|
(u64)f->fs.nat_lip[4] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 3,
|
WORD_MASK, f->fs.nat_lip[3] |
|
f->fs.nat_lip[2] << 8 |
|
f->fs.nat_lip[1] << 16 |
|
(u64)f->fs.nat_lip[0] << 24, 1);
|
} else {
|
set_tcb_field(adap, f, tid, TCB_RX_FRAG3_LEN_RAW_W,
|
WORD_MASK, f->fs.nat_lip[3] |
|
f->fs.nat_lip[2] << 8 |
|
f->fs.nat_lip[1] << 16 |
|
(u64)f->fs.nat_lip[0] << 24, 1);
|
}
|
}
|
|
if (sip) {
|
if (f->fs.type) {
|
set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W,
|
WORD_MASK, f->fs.nat_fip[15] |
|
f->fs.nat_fip[14] << 8 |
|
f->fs.nat_fip[13] << 16 |
|
(u64)f->fs.nat_fip[12] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 1,
|
WORD_MASK, f->fs.nat_fip[11] |
|
f->fs.nat_fip[10] << 8 |
|
f->fs.nat_fip[9] << 16 |
|
(u64)f->fs.nat_fip[8] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 2,
|
WORD_MASK, f->fs.nat_fip[7] |
|
f->fs.nat_fip[6] << 8 |
|
f->fs.nat_fip[5] << 16 |
|
(u64)f->fs.nat_fip[4] << 24, 1);
|
|
set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 3,
|
WORD_MASK, f->fs.nat_fip[3] |
|
f->fs.nat_fip[2] << 8 |
|
f->fs.nat_fip[1] << 16 |
|
(u64)f->fs.nat_fip[0] << 24, 1);
|
|
} else {
|
set_tcb_field(adap, f, tid,
|
TCB_RX_FRAG3_START_IDX_OFFSET_RAW_W,
|
WORD_MASK, f->fs.nat_fip[3] |
|
f->fs.nat_fip[2] << 8 |
|
f->fs.nat_fip[1] << 16 |
|
(u64)f->fs.nat_fip[0] << 24, 1);
|
}
|
}
|
|
set_tcb_field(adap, f, tid, TCB_PDU_HDR_LEN_W, WORD_MASK,
|
(dp ? (nat_lp[1] | nat_lp[0] << 8) : 0) |
|
(sp ? (nat_fp[1] << 16 | (u64)nat_fp[0] << 24) : 0),
|
1);
|
}
|
|
/* Validate filter spec against configuration done on the card. */
|
static int validate_filter(struct net_device *dev,
|
struct ch_filter_specification *fs)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
u32 fconf, iconf;
|
|
/* Check for unconfigured fields being used. */
|
iconf = adapter->params.tp.ingress_config;
|
fconf = fs->hash ? adapter->params.tp.filter_mask :
|
adapter->params.tp.vlan_pri_map;
|
|
if (unsupported(fconf, FCOE_F, fs->val.fcoe, fs->mask.fcoe) ||
|
unsupported(fconf, PORT_F, fs->val.iport, fs->mask.iport) ||
|
unsupported(fconf, TOS_F, fs->val.tos, fs->mask.tos) ||
|
unsupported(fconf, ETHERTYPE_F, fs->val.ethtype,
|
fs->mask.ethtype) ||
|
unsupported(fconf, MACMATCH_F, fs->val.macidx, fs->mask.macidx) ||
|
unsupported(fconf, MPSHITTYPE_F, fs->val.matchtype,
|
fs->mask.matchtype) ||
|
unsupported(fconf, FRAGMENTATION_F, fs->val.frag, fs->mask.frag) ||
|
unsupported(fconf, PROTOCOL_F, fs->val.proto, fs->mask.proto) ||
|
unsupported(fconf, VNIC_ID_F, fs->val.pfvf_vld,
|
fs->mask.pfvf_vld) ||
|
unsupported(fconf, VNIC_ID_F, fs->val.ovlan_vld,
|
fs->mask.ovlan_vld) ||
|
unsupported(fconf, VNIC_ID_F, fs->val.encap_vld,
|
fs->mask.encap_vld) ||
|
unsupported(fconf, VLAN_F, fs->val.ivlan_vld, fs->mask.ivlan_vld))
|
return -EOPNOTSUPP;
|
|
/* T4 inconveniently uses the same FT_VNIC_ID_W bits for both the Outer
|
* VLAN Tag and PF/VF/VFvld fields based on VNIC_F being set
|
* in TP_INGRESS_CONFIG. Hense the somewhat crazy checks
|
* below. Additionally, since the T4 firmware interface also
|
* carries that overlap, we need to translate any PF/VF
|
* specification into that internal format below.
|
*/
|
if ((is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
|
is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld)) ||
|
(is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
|
is_field_set(fs->val.encap_vld, fs->mask.encap_vld)) ||
|
(is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
|
is_field_set(fs->val.encap_vld, fs->mask.encap_vld)))
|
return -EOPNOTSUPP;
|
if (unsupported(iconf, VNIC_F, fs->val.pfvf_vld, fs->mask.pfvf_vld) ||
|
(is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
|
(iconf & VNIC_F)))
|
return -EOPNOTSUPP;
|
if (fs->val.pf > 0x7 || fs->val.vf > 0x7f)
|
return -ERANGE;
|
fs->mask.pf &= 0x7;
|
fs->mask.vf &= 0x7f;
|
|
/* If the user is requesting that the filter action loop
|
* matching packets back out one of our ports, make sure that
|
* the egress port is in range.
|
*/
|
if (fs->action == FILTER_SWITCH &&
|
fs->eport >= adapter->params.nports)
|
return -ERANGE;
|
|
/* Don't allow various trivially obvious bogus out-of-range values... */
|
if (fs->val.iport >= adapter->params.nports)
|
return -ERANGE;
|
|
/* T4 doesn't support removing VLAN Tags for loop back filters. */
|
if (is_t4(adapter->params.chip) &&
|
fs->action == FILTER_SWITCH &&
|
(fs->newvlan == VLAN_REMOVE ||
|
fs->newvlan == VLAN_REWRITE))
|
return -EOPNOTSUPP;
|
|
if (fs->val.encap_vld &&
|
CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
|
return -EOPNOTSUPP;
|
return 0;
|
}
|
|
static int get_filter_steerq(struct net_device *dev,
|
struct ch_filter_specification *fs)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
int iq;
|
|
/* If the user has requested steering matching Ingress Packets
|
* to a specific Queue Set, we need to make sure it's in range
|
* for the port and map that into the Absolute Queue ID of the
|
* Queue Set's Response Queue.
|
*/
|
if (!fs->dirsteer) {
|
if (fs->iq)
|
return -EINVAL;
|
iq = 0;
|
} else {
|
struct port_info *pi = netdev_priv(dev);
|
|
/* If the iq id is greater than the number of qsets,
|
* then assume it is an absolute qid.
|
*/
|
if (fs->iq < pi->nqsets)
|
iq = adapter->sge.ethrxq[pi->first_qset +
|
fs->iq].rspq.abs_id;
|
else
|
iq = fs->iq;
|
}
|
|
return iq;
|
}
|
|
static int get_filter_count(struct adapter *adapter, unsigned int fidx,
|
u64 *pkts, u64 *bytes, bool hash)
|
{
|
unsigned int tcb_base, tcbaddr;
|
unsigned int word_offset;
|
struct filter_entry *f;
|
__be64 be64_byte_count;
|
int ret;
|
|
tcb_base = t4_read_reg(adapter, TP_CMM_TCB_BASE_A);
|
if (is_hashfilter(adapter) && hash) {
|
if (tid_out_of_range(&adapter->tids, fidx))
|
return -E2BIG;
|
f = adapter->tids.tid_tab[fidx - adapter->tids.tid_base];
|
if (!f)
|
return -EINVAL;
|
} else {
|
if ((fidx != (adapter->tids.nftids + adapter->tids.nsftids +
|
adapter->tids.nhpftids - 1)) &&
|
fidx >= (adapter->tids.nftids + adapter->tids.nhpftids))
|
return -E2BIG;
|
|
if (fidx < adapter->tids.nhpftids)
|
f = &adapter->tids.hpftid_tab[fidx];
|
else
|
f = &adapter->tids.ftid_tab[fidx -
|
adapter->tids.nhpftids];
|
if (!f->valid)
|
return -EINVAL;
|
}
|
tcbaddr = tcb_base + f->tid * TCB_SIZE;
|
|
spin_lock(&adapter->win0_lock);
|
if (is_t4(adapter->params.chip)) {
|
__be64 be64_count;
|
|
/* T4 doesn't maintain byte counts in hw */
|
*bytes = 0;
|
|
/* Get pkts */
|
word_offset = 4;
|
ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
|
tcbaddr + (word_offset * sizeof(__be32)),
|
sizeof(be64_count),
|
(__be32 *)&be64_count,
|
T4_MEMORY_READ);
|
if (ret < 0)
|
goto out;
|
*pkts = be64_to_cpu(be64_count);
|
} else {
|
__be32 be32_count;
|
|
/* Get bytes */
|
word_offset = 4;
|
ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
|
tcbaddr + (word_offset * sizeof(__be32)),
|
sizeof(be64_byte_count),
|
&be64_byte_count,
|
T4_MEMORY_READ);
|
if (ret < 0)
|
goto out;
|
*bytes = be64_to_cpu(be64_byte_count);
|
|
/* Get pkts */
|
word_offset = 6;
|
ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
|
tcbaddr + (word_offset * sizeof(__be32)),
|
sizeof(be32_count),
|
&be32_count,
|
T4_MEMORY_READ);
|
if (ret < 0)
|
goto out;
|
*pkts = (u64)be32_to_cpu(be32_count);
|
}
|
|
out:
|
spin_unlock(&adapter->win0_lock);
|
return ret;
|
}
|
|
int cxgb4_get_filter_counters(struct net_device *dev, unsigned int fidx,
|
u64 *hitcnt, u64 *bytecnt, bool hash)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
|
return get_filter_count(adapter, fidx, hitcnt, bytecnt, hash);
|
}
|
|
static bool cxgb4_filter_prio_in_range(struct tid_info *t, u32 idx, u8 nslots,
|
u32 prio)
|
{
|
struct filter_entry *prev_tab, *next_tab, *prev_fe, *next_fe;
|
u32 prev_ftid, next_ftid;
|
|
/* Only insert the rule if both of the following conditions
|
* are met:
|
* 1. The immediate previous rule has priority <= @prio.
|
* 2. The immediate next rule has priority >= @prio.
|
*/
|
|
/* High Priority (HPFILTER) region always has higher priority
|
* than normal FILTER region. So, all rules in HPFILTER region
|
* must have prio value <= rules in normal FILTER region.
|
*/
|
if (idx < t->nhpftids) {
|
/* Don't insert if there's a rule already present at @idx
|
* in HPFILTER region.
|
*/
|
if (test_bit(idx, t->hpftid_bmap))
|
return false;
|
|
next_tab = t->hpftid_tab;
|
next_ftid = find_next_bit(t->hpftid_bmap, t->nhpftids, idx);
|
if (next_ftid >= t->nhpftids) {
|
/* No next entry found in HPFILTER region.
|
* See if there's any next entry in normal
|
* FILTER region.
|
*/
|
next_ftid = find_first_bit(t->ftid_bmap, t->nftids);
|
if (next_ftid >= t->nftids)
|
next_ftid = idx;
|
else
|
next_tab = t->ftid_tab;
|
}
|
|
/* Search for the closest previous filter entry in HPFILTER
|
* region. No need to search in normal FILTER region because
|
* there can never be any entry in normal FILTER region whose
|
* prio value is < last entry in HPFILTER region.
|
*/
|
prev_ftid = find_last_bit(t->hpftid_bmap, idx);
|
if (prev_ftid >= idx)
|
prev_ftid = idx;
|
|
prev_tab = t->hpftid_tab;
|
} else {
|
idx -= t->nhpftids;
|
|
/* Don't insert if there's a rule already present at @idx
|
* in normal FILTER region.
|
*/
|
if (test_bit(idx, t->ftid_bmap))
|
return false;
|
|
prev_tab = t->ftid_tab;
|
prev_ftid = find_last_bit(t->ftid_bmap, idx);
|
if (prev_ftid >= idx) {
|
/* No previous entry found in normal FILTER
|
* region. See if there's any previous entry
|
* in HPFILTER region.
|
*/
|
prev_ftid = find_last_bit(t->hpftid_bmap, t->nhpftids);
|
if (prev_ftid >= t->nhpftids)
|
prev_ftid = idx;
|
else
|
prev_tab = t->hpftid_tab;
|
}
|
|
/* Search for the closest next filter entry in normal
|
* FILTER region. No need to search in HPFILTER region
|
* because there can never be any entry in HPFILTER
|
* region whose prio value is > first entry in normal
|
* FILTER region.
|
*/
|
next_ftid = find_next_bit(t->ftid_bmap, t->nftids, idx);
|
if (next_ftid >= t->nftids)
|
next_ftid = idx;
|
|
next_tab = t->ftid_tab;
|
}
|
|
next_fe = &next_tab[next_ftid];
|
|
/* See if the filter entry belongs to an IPv6 rule, which
|
* occupy 4 slots on T5 and 2 slots on T6. Adjust the
|
* reference to the previously inserted filter entry
|
* accordingly.
|
*/
|
prev_fe = &prev_tab[prev_ftid & ~(nslots - 1)];
|
if (!prev_fe->fs.type)
|
prev_fe = &prev_tab[prev_ftid];
|
|
if ((prev_fe->valid && prev_fe->fs.tc_prio > prio) ||
|
(next_fe->valid && next_fe->fs.tc_prio < prio))
|
return false;
|
|
return true;
|
}
|
|
int cxgb4_get_free_ftid(struct net_device *dev, u8 family, bool hash_en,
|
u32 tc_prio)
|
{
|
struct adapter *adap = netdev2adap(dev);
|
struct tid_info *t = &adap->tids;
|
u32 bmap_ftid, max_ftid;
|
struct filter_entry *f;
|
unsigned long *bmap;
|
bool found = false;
|
u8 i, cnt, n;
|
int ftid = 0;
|
|
/* IPv4 occupy 1 slot. IPv6 occupy 2 slots on T6 and 4 slots
|
* on T5.
|
*/
|
n = 1;
|
if (family == PF_INET6) {
|
n++;
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) < CHELSIO_T6)
|
n += 2;
|
}
|
|
/* There are 3 filter regions available in hardware in
|
* following order of priority:
|
*
|
* 1. High Priority (HPFILTER) region (Highest Priority).
|
* 2. HASH region.
|
* 3. Normal FILTER region (Lowest Priority).
|
*
|
* Entries in HPFILTER and normal FILTER region have index
|
* 0 as the highest priority and the rules will be scanned
|
* in ascending order until either a rule hits or end of
|
* the region is reached.
|
*
|
* All HASH region entries have same priority. The set of
|
* fields to match in headers are pre-determined. The same
|
* set of header match fields must be compulsorily specified
|
* in all the rules wanting to get inserted in HASH region.
|
* Hence, HASH region is an exact-match region. A HASH is
|
* generated for a rule based on the values in the
|
* pre-determined set of header match fields. The generated
|
* HASH serves as an index into the HASH region. There can
|
* never be 2 rules having the same HASH. Hardware will
|
* compute a HASH for every incoming packet based on the
|
* values in the pre-determined set of header match fields
|
* and uses it as an index to check if there's a rule
|
* inserted in the HASH region at the specified index. If
|
* there's a rule inserted, then it's considered as a filter
|
* hit. Otherwise, it's a filter miss and normal FILTER region
|
* is scanned afterwards.
|
*/
|
|
spin_lock_bh(&t->ftid_lock);
|
|
ftid = (tc_prio <= t->nhpftids) ? 0 : t->nhpftids;
|
max_ftid = t->nftids + t->nhpftids;
|
while (ftid < max_ftid) {
|
if (ftid < t->nhpftids) {
|
/* If the new rule wants to get inserted into
|
* HPFILTER region, but its prio is greater
|
* than the rule with the highest prio in HASH
|
* region, or if there's not enough slots
|
* available in HPFILTER region, then skip
|
* trying to insert this rule into HPFILTER
|
* region and directly go to the next region.
|
*/
|
if ((t->tc_hash_tids_max_prio &&
|
tc_prio > t->tc_hash_tids_max_prio) ||
|
(ftid + n) > t->nhpftids) {
|
ftid = t->nhpftids;
|
continue;
|
}
|
|
bmap = t->hpftid_bmap;
|
bmap_ftid = ftid;
|
} else if (hash_en) {
|
/* Ensure priority is >= last rule in HPFILTER
|
* region.
|
*/
|
ftid = find_last_bit(t->hpftid_bmap, t->nhpftids);
|
if (ftid < t->nhpftids) {
|
f = &t->hpftid_tab[ftid];
|
if (f->valid && tc_prio < f->fs.tc_prio)
|
break;
|
}
|
|
/* Ensure priority is <= first rule in normal
|
* FILTER region.
|
*/
|
ftid = find_first_bit(t->ftid_bmap, t->nftids);
|
if (ftid < t->nftids) {
|
f = &t->ftid_tab[ftid];
|
if (f->valid && tc_prio > f->fs.tc_prio)
|
break;
|
}
|
|
found = true;
|
ftid = t->nhpftids;
|
goto out_unlock;
|
} else {
|
/* If the new rule wants to get inserted into
|
* normal FILTER region, but its prio is less
|
* than the rule with the highest prio in HASH
|
* region, then reject the rule.
|
*/
|
if (t->tc_hash_tids_max_prio &&
|
tc_prio < t->tc_hash_tids_max_prio)
|
break;
|
|
if (ftid + n > max_ftid)
|
break;
|
|
bmap = t->ftid_bmap;
|
bmap_ftid = ftid - t->nhpftids;
|
}
|
|
cnt = 0;
|
for (i = 0; i < n; i++) {
|
if (test_bit(bmap_ftid + i, bmap))
|
break;
|
cnt++;
|
}
|
|
if (cnt == n) {
|
/* Ensure the new rule's prio doesn't conflict
|
* with existing rules.
|
*/
|
if (cxgb4_filter_prio_in_range(t, ftid, n,
|
tc_prio)) {
|
ftid &= ~(n - 1);
|
found = true;
|
break;
|
}
|
}
|
|
ftid += n;
|
}
|
|
out_unlock:
|
spin_unlock_bh(&t->ftid_lock);
|
return found ? ftid : -ENOMEM;
|
}
|
|
static int cxgb4_set_ftid(struct tid_info *t, int fidx, int family,
|
unsigned int chip_ver)
|
{
|
spin_lock_bh(&t->ftid_lock);
|
|
if (test_bit(fidx, t->ftid_bmap)) {
|
spin_unlock_bh(&t->ftid_lock);
|
return -EBUSY;
|
}
|
|
if (family == PF_INET) {
|
__set_bit(fidx, t->ftid_bmap);
|
} else {
|
if (chip_ver < CHELSIO_T6)
|
bitmap_allocate_region(t->ftid_bmap, fidx, 2);
|
else
|
bitmap_allocate_region(t->ftid_bmap, fidx, 1);
|
}
|
|
spin_unlock_bh(&t->ftid_lock);
|
return 0;
|
}
|
|
static int cxgb4_set_hpftid(struct tid_info *t, int fidx, int family)
|
{
|
spin_lock_bh(&t->ftid_lock);
|
|
if (test_bit(fidx, t->hpftid_bmap)) {
|
spin_unlock_bh(&t->ftid_lock);
|
return -EBUSY;
|
}
|
|
if (family == PF_INET)
|
__set_bit(fidx, t->hpftid_bmap);
|
else
|
bitmap_allocate_region(t->hpftid_bmap, fidx, 1);
|
|
spin_unlock_bh(&t->ftid_lock);
|
return 0;
|
}
|
|
static void cxgb4_clear_ftid(struct tid_info *t, int fidx, int family,
|
unsigned int chip_ver)
|
{
|
spin_lock_bh(&t->ftid_lock);
|
if (family == PF_INET) {
|
__clear_bit(fidx, t->ftid_bmap);
|
} else {
|
if (chip_ver < CHELSIO_T6)
|
bitmap_release_region(t->ftid_bmap, fidx, 2);
|
else
|
bitmap_release_region(t->ftid_bmap, fidx, 1);
|
}
|
spin_unlock_bh(&t->ftid_lock);
|
}
|
|
static void cxgb4_clear_hpftid(struct tid_info *t, int fidx, int family)
|
{
|
spin_lock_bh(&t->ftid_lock);
|
|
if (family == PF_INET)
|
__clear_bit(fidx, t->hpftid_bmap);
|
else
|
bitmap_release_region(t->hpftid_bmap, fidx, 1);
|
|
spin_unlock_bh(&t->ftid_lock);
|
}
|
|
/* Delete the filter at a specified index. */
|
static int del_filter_wr(struct adapter *adapter, int fidx)
|
{
|
struct fw_filter_wr *fwr;
|
struct filter_entry *f;
|
struct sk_buff *skb;
|
unsigned int len;
|
|
if (fidx < adapter->tids.nhpftids)
|
f = &adapter->tids.hpftid_tab[fidx];
|
else
|
f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
|
|
len = sizeof(*fwr);
|
|
skb = alloc_skb(len, GFP_KERNEL);
|
if (!skb)
|
return -ENOMEM;
|
|
fwr = __skb_put(skb, len);
|
t4_mk_filtdelwr(f->tid, fwr, adapter->sge.fw_evtq.abs_id);
|
|
/* Mark the filter as "pending" and ship off the Filter Work Request.
|
* When we get the Work Request Reply we'll clear the pending status.
|
*/
|
f->pending = 1;
|
t4_mgmt_tx(adapter, skb);
|
return 0;
|
}
|
|
/* Send a Work Request to write the filter at a specified index. We construct
|
* a Firmware Filter Work Request to have the work done and put the indicated
|
* filter into "pending" mode which will prevent any further actions against
|
* it till we get a reply from the firmware on the completion status of the
|
* request.
|
*/
|
int set_filter_wr(struct adapter *adapter, int fidx)
|
{
|
struct fw_filter2_wr *fwr;
|
struct filter_entry *f;
|
struct sk_buff *skb;
|
|
if (fidx < adapter->tids.nhpftids)
|
f = &adapter->tids.hpftid_tab[fidx];
|
else
|
f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
|
|
skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
|
if (!skb)
|
return -ENOMEM;
|
|
/* If the new filter requires loopback Destination MAC and/or VLAN
|
* rewriting then we need to allocate a Layer 2 Table (L2T) entry for
|
* the filter.
|
*/
|
if (f->fs.newdmac || f->fs.newvlan) {
|
/* allocate L2T entry for new filter */
|
f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
|
f->fs.eport, f->fs.dmac);
|
if (!f->l2t) {
|
kfree_skb(skb);
|
return -ENOMEM;
|
}
|
}
|
|
/* If the new filter requires loopback Source MAC rewriting then
|
* we need to allocate a SMT entry for the filter.
|
*/
|
if (f->fs.newsmac) {
|
f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
|
if (!f->smt) {
|
if (f->l2t) {
|
cxgb4_l2t_release(f->l2t);
|
f->l2t = NULL;
|
}
|
kfree_skb(skb);
|
return -ENOMEM;
|
}
|
}
|
|
fwr = __skb_put_zero(skb, sizeof(*fwr));
|
|
/* It would be nice to put most of the following in t4_hw.c but most
|
* of the work is translating the cxgbtool ch_filter_specification
|
* into the Work Request and the definition of that structure is
|
* currently in cxgbtool.h which isn't appropriate to pull into the
|
* common code. We may eventually try to come up with a more neutral
|
* filter specification structure but for now it's easiest to simply
|
* put this fairly direct code in line ...
|
*/
|
if (adapter->params.filter2_wr_support)
|
fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER2_WR));
|
else
|
fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
|
fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr) / 16));
|
fwr->tid_to_iq =
|
htonl(FW_FILTER_WR_TID_V(f->tid) |
|
FW_FILTER_WR_RQTYPE_V(f->fs.type) |
|
FW_FILTER_WR_NOREPLY_V(0) |
|
FW_FILTER_WR_IQ_V(f->fs.iq));
|
fwr->del_filter_to_l2tix =
|
htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
|
FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
|
FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
|
FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
|
FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
|
FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
|
FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
|
FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
|
FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
|
f->fs.newvlan == VLAN_REWRITE) |
|
FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
|
f->fs.newvlan == VLAN_REWRITE) |
|
FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
|
FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
|
FW_FILTER_WR_PRIO_V(f->fs.prio) |
|
FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
|
fwr->ethtype = htons(f->fs.val.ethtype);
|
fwr->ethtypem = htons(f->fs.mask.ethtype);
|
fwr->frag_to_ovlan_vldm =
|
(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
|
FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
|
FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
|
FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
|
FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
|
FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
|
if (f->fs.newsmac)
|
fwr->smac_sel = f->smt->idx;
|
fwr->rx_chan_rx_rpl_iq =
|
htons(FW_FILTER_WR_RX_CHAN_V(0) |
|
FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
|
fwr->maci_to_matchtypem =
|
htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
|
FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
|
FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
|
FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
|
FW_FILTER_WR_PORT_V(f->fs.val.iport) |
|
FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
|
FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
|
FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
|
fwr->ptcl = f->fs.val.proto;
|
fwr->ptclm = f->fs.mask.proto;
|
fwr->ttyp = f->fs.val.tos;
|
fwr->ttypm = f->fs.mask.tos;
|
fwr->ivlan = htons(f->fs.val.ivlan);
|
fwr->ivlanm = htons(f->fs.mask.ivlan);
|
fwr->ovlan = htons(f->fs.val.ovlan);
|
fwr->ovlanm = htons(f->fs.mask.ovlan);
|
memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
|
memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
|
memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
|
memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
|
fwr->lp = htons(f->fs.val.lport);
|
fwr->lpm = htons(f->fs.mask.lport);
|
fwr->fp = htons(f->fs.val.fport);
|
fwr->fpm = htons(f->fs.mask.fport);
|
|
if (adapter->params.filter2_wr_support) {
|
u8 *nat_lp = (u8 *)&f->fs.nat_lport;
|
u8 *nat_fp = (u8 *)&f->fs.nat_fport;
|
|
fwr->natmode_to_ulp_type =
|
FW_FILTER2_WR_ULP_TYPE_V(f->fs.nat_mode ?
|
ULP_MODE_TCPDDP :
|
ULP_MODE_NONE) |
|
FW_FILTER2_WR_NATMODE_V(f->fs.nat_mode);
|
memcpy(fwr->newlip, f->fs.nat_lip, sizeof(fwr->newlip));
|
memcpy(fwr->newfip, f->fs.nat_fip, sizeof(fwr->newfip));
|
fwr->newlport = htons(nat_lp[1] | nat_lp[0] << 8);
|
fwr->newfport = htons(nat_fp[1] | nat_fp[0] << 8);
|
}
|
|
/* Mark the filter as "pending" and ship off the Filter Work Request.
|
* When we get the Work Request Reply we'll clear the pending status.
|
*/
|
f->pending = 1;
|
set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
|
t4_ofld_send(adapter, skb);
|
return 0;
|
}
|
|
/* Return an error number if the indicated filter isn't writable ... */
|
int writable_filter(struct filter_entry *f)
|
{
|
if (f->locked)
|
return -EPERM;
|
if (f->pending)
|
return -EBUSY;
|
|
return 0;
|
}
|
|
/* Delete the filter at the specified index (if valid). The checks for all
|
* the common problems with doing this like the filter being locked, currently
|
* pending in another operation, etc.
|
*/
|
int delete_filter(struct adapter *adapter, unsigned int fidx)
|
{
|
struct filter_entry *f;
|
int ret;
|
|
if (fidx >= adapter->tids.nftids + adapter->tids.nsftids +
|
adapter->tids.nhpftids)
|
return -EINVAL;
|
|
if (fidx < adapter->tids.nhpftids)
|
f = &adapter->tids.hpftid_tab[fidx];
|
else
|
f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
|
ret = writable_filter(f);
|
if (ret)
|
return ret;
|
if (f->valid)
|
return del_filter_wr(adapter, fidx);
|
|
return 0;
|
}
|
|
/* Clear a filter and release any of its resources that we own. This also
|
* clears the filter's "pending" status.
|
*/
|
void clear_filter(struct adapter *adap, struct filter_entry *f)
|
{
|
struct port_info *pi = netdev_priv(f->dev);
|
|
/* If the new or old filter have loopback rewriteing rules then we'll
|
* need to free any existing L2T, SMT, CLIP entries of filter
|
* rule.
|
*/
|
if (f->l2t)
|
cxgb4_l2t_release(f->l2t);
|
|
if (f->smt)
|
cxgb4_smt_release(f->smt);
|
|
if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
|
t4_free_encap_mac_filt(adap, pi->viid,
|
f->fs.val.ovlan & 0x1ff, 0);
|
|
if ((f->fs.hash || is_t6(adap->params.chip)) && f->fs.type)
|
cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
|
|
/* The zeroing of the filter rule below clears the filter valid,
|
* pending, locked flags, l2t pointer, etc. so it's all we need for
|
* this operation.
|
*/
|
memset(f, 0, sizeof(*f));
|
}
|
|
void clear_all_filters(struct adapter *adapter)
|
{
|
struct net_device *dev = adapter->port[0];
|
unsigned int i;
|
|
if (adapter->tids.hpftid_tab) {
|
struct filter_entry *f = &adapter->tids.hpftid_tab[0];
|
|
for (i = 0; i < adapter->tids.nhpftids; i++, f++)
|
if (f->valid || f->pending)
|
cxgb4_del_filter(dev, i, &f->fs);
|
}
|
|
if (adapter->tids.ftid_tab) {
|
struct filter_entry *f = &adapter->tids.ftid_tab[0];
|
unsigned int max_ftid = adapter->tids.nftids +
|
adapter->tids.nsftids +
|
adapter->tids.nhpftids;
|
|
/* Clear all TCAM filters */
|
for (i = adapter->tids.nhpftids; i < max_ftid; i++, f++)
|
if (f->valid || f->pending)
|
cxgb4_del_filter(dev, i, &f->fs);
|
}
|
|
/* Clear all hash filters */
|
if (is_hashfilter(adapter) && adapter->tids.tid_tab) {
|
struct filter_entry *f;
|
unsigned int sb;
|
|
for (i = adapter->tids.hash_base;
|
i <= adapter->tids.ntids; i++) {
|
f = (struct filter_entry *)
|
adapter->tids.tid_tab[i];
|
|
if (f && (f->valid || f->pending))
|
cxgb4_del_filter(dev, f->tid, &f->fs);
|
}
|
|
sb = adapter->tids.stid_base;
|
for (i = 0; i < sb; i++) {
|
f = (struct filter_entry *)adapter->tids.tid_tab[i];
|
|
if (f && (f->valid || f->pending))
|
cxgb4_del_filter(dev, f->tid, &f->fs);
|
}
|
}
|
}
|
|
/* Fill up default masks for set match fields. */
|
static void fill_default_mask(struct ch_filter_specification *fs)
|
{
|
unsigned int lip = 0, lip_mask = 0;
|
unsigned int fip = 0, fip_mask = 0;
|
unsigned int i;
|
|
if (fs->val.iport && !fs->mask.iport)
|
fs->mask.iport |= ~0;
|
if (fs->val.fcoe && !fs->mask.fcoe)
|
fs->mask.fcoe |= ~0;
|
if (fs->val.matchtype && !fs->mask.matchtype)
|
fs->mask.matchtype |= ~0;
|
if (fs->val.macidx && !fs->mask.macidx)
|
fs->mask.macidx |= ~0;
|
if (fs->val.ethtype && !fs->mask.ethtype)
|
fs->mask.ethtype |= ~0;
|
if (fs->val.ivlan && !fs->mask.ivlan)
|
fs->mask.ivlan |= ~0;
|
if (fs->val.ovlan && !fs->mask.ovlan)
|
fs->mask.ovlan |= ~0;
|
if (fs->val.frag && !fs->mask.frag)
|
fs->mask.frag |= ~0;
|
if (fs->val.tos && !fs->mask.tos)
|
fs->mask.tos |= ~0;
|
if (fs->val.proto && !fs->mask.proto)
|
fs->mask.proto |= ~0;
|
if (fs->val.pfvf_vld && !fs->mask.pfvf_vld)
|
fs->mask.pfvf_vld |= ~0;
|
if (fs->val.pf && !fs->mask.pf)
|
fs->mask.pf |= ~0;
|
if (fs->val.vf && !fs->mask.vf)
|
fs->mask.vf |= ~0;
|
|
for (i = 0; i < ARRAY_SIZE(fs->val.lip); i++) {
|
lip |= fs->val.lip[i];
|
lip_mask |= fs->mask.lip[i];
|
fip |= fs->val.fip[i];
|
fip_mask |= fs->mask.fip[i];
|
}
|
|
if (lip && !lip_mask)
|
memset(fs->mask.lip, ~0, sizeof(fs->mask.lip));
|
|
if (fip && !fip_mask)
|
memset(fs->mask.fip, ~0, sizeof(fs->mask.lip));
|
|
if (fs->val.lport && !fs->mask.lport)
|
fs->mask.lport = ~0;
|
if (fs->val.fport && !fs->mask.fport)
|
fs->mask.fport = ~0;
|
}
|
|
static bool is_addr_all_mask(u8 *ipmask, int family)
|
{
|
if (family == AF_INET) {
|
struct in_addr *addr;
|
|
addr = (struct in_addr *)ipmask;
|
if (addr->s_addr == htonl(0xffffffff))
|
return true;
|
} else if (family == AF_INET6) {
|
struct in6_addr *addr6;
|
|
addr6 = (struct in6_addr *)ipmask;
|
if (addr6->s6_addr32[0] == htonl(0xffffffff) &&
|
addr6->s6_addr32[1] == htonl(0xffffffff) &&
|
addr6->s6_addr32[2] == htonl(0xffffffff) &&
|
addr6->s6_addr32[3] == htonl(0xffffffff))
|
return true;
|
}
|
return false;
|
}
|
|
static bool is_inaddr_any(u8 *ip, int family)
|
{
|
int addr_type;
|
|
if (family == AF_INET) {
|
struct in_addr *addr;
|
|
addr = (struct in_addr *)ip;
|
if (addr->s_addr == htonl(INADDR_ANY))
|
return true;
|
} else if (family == AF_INET6) {
|
struct in6_addr *addr6;
|
|
addr6 = (struct in6_addr *)ip;
|
addr_type = ipv6_addr_type((const struct in6_addr *)
|
&addr6);
|
if (addr_type == IPV6_ADDR_ANY)
|
return true;
|
}
|
return false;
|
}
|
|
bool is_filter_exact_match(struct adapter *adap,
|
struct ch_filter_specification *fs)
|
{
|
struct tp_params *tp = &adap->params.tp;
|
u64 hash_filter_mask = tp->hash_filter_mask;
|
u64 ntuple_mask = 0;
|
|
if (!is_hashfilter(adap))
|
return false;
|
|
if ((atomic_read(&adap->tids.hash_tids_in_use) +
|
atomic_read(&adap->tids.tids_in_use)) >=
|
(adap->tids.nhash + (adap->tids.stid_base - adap->tids.tid_base)))
|
return false;
|
|
/* Keep tunnel VNI match disabled for hash-filters for now */
|
if (fs->mask.encap_vld)
|
return false;
|
|
if (fs->type) {
|
if (is_inaddr_any(fs->val.fip, AF_INET6) ||
|
!is_addr_all_mask(fs->mask.fip, AF_INET6))
|
return false;
|
|
if (is_inaddr_any(fs->val.lip, AF_INET6) ||
|
!is_addr_all_mask(fs->mask.lip, AF_INET6))
|
return false;
|
} else {
|
if (is_inaddr_any(fs->val.fip, AF_INET) ||
|
!is_addr_all_mask(fs->mask.fip, AF_INET))
|
return false;
|
|
if (is_inaddr_any(fs->val.lip, AF_INET) ||
|
!is_addr_all_mask(fs->mask.lip, AF_INET))
|
return false;
|
}
|
|
if (!fs->val.lport || fs->mask.lport != 0xffff)
|
return false;
|
|
if (!fs->val.fport || fs->mask.fport != 0xffff)
|
return false;
|
|
/* calculate tuple mask and compare with mask configured in hw */
|
if (tp->fcoe_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.fcoe << tp->fcoe_shift;
|
|
if (tp->port_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
|
|
if (tp->vnic_shift >= 0) {
|
if ((adap->params.tp.ingress_config & VNIC_F))
|
ntuple_mask |= (u64)fs->mask.pfvf_vld << tp->vnic_shift;
|
else
|
ntuple_mask |= (u64)fs->mask.ovlan_vld <<
|
tp->vnic_shift;
|
}
|
|
if (tp->vlan_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.ivlan << tp->vlan_shift;
|
|
if (tp->tos_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
|
|
if (tp->protocol_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
|
|
if (tp->ethertype_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
|
|
if (tp->macmatch_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
|
|
if (tp->matchtype_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.matchtype << tp->matchtype_shift;
|
|
if (tp->frag_shift >= 0)
|
ntuple_mask |= (u64)fs->mask.frag << tp->frag_shift;
|
|
if (ntuple_mask != hash_filter_mask)
|
return false;
|
|
return true;
|
}
|
|
static u64 hash_filter_ntuple(struct ch_filter_specification *fs,
|
struct net_device *dev)
|
{
|
struct adapter *adap = netdev2adap(dev);
|
struct tp_params *tp = &adap->params.tp;
|
u64 ntuple = 0;
|
|
/* Initialize each of the fields which we care about which are present
|
* in the Compressed Filter Tuple.
|
*/
|
if (tp->vlan_shift >= 0 && fs->mask.ivlan)
|
ntuple |= (FT_VLAN_VLD_F | fs->val.ivlan) << tp->vlan_shift;
|
|
if (tp->port_shift >= 0 && fs->mask.iport)
|
ntuple |= (u64)fs->val.iport << tp->port_shift;
|
|
if (tp->protocol_shift >= 0) {
|
if (!fs->val.proto)
|
ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
|
else
|
ntuple |= (u64)fs->val.proto << tp->protocol_shift;
|
}
|
|
if (tp->tos_shift >= 0 && fs->mask.tos)
|
ntuple |= (u64)(fs->val.tos) << tp->tos_shift;
|
|
if (tp->vnic_shift >= 0) {
|
if ((adap->params.tp.ingress_config & USE_ENC_IDX_F) &&
|
fs->mask.encap_vld)
|
ntuple |= (u64)((fs->val.encap_vld << 16) |
|
(fs->val.ovlan)) << tp->vnic_shift;
|
else if ((adap->params.tp.ingress_config & VNIC_F) &&
|
fs->mask.pfvf_vld)
|
ntuple |= (u64)((fs->val.pfvf_vld << 16) |
|
(fs->val.pf << 13) |
|
(fs->val.vf)) << tp->vnic_shift;
|
else
|
ntuple |= (u64)((fs->val.ovlan_vld << 16) |
|
(fs->val.ovlan)) << tp->vnic_shift;
|
}
|
|
if (tp->macmatch_shift >= 0 && fs->mask.macidx)
|
ntuple |= (u64)(fs->val.macidx) << tp->macmatch_shift;
|
|
if (tp->ethertype_shift >= 0 && fs->mask.ethtype)
|
ntuple |= (u64)(fs->val.ethtype) << tp->ethertype_shift;
|
|
if (tp->matchtype_shift >= 0 && fs->mask.matchtype)
|
ntuple |= (u64)(fs->val.matchtype) << tp->matchtype_shift;
|
|
if (tp->frag_shift >= 0 && fs->mask.frag)
|
ntuple |= (u64)(fs->val.frag) << tp->frag_shift;
|
|
if (tp->fcoe_shift >= 0 && fs->mask.fcoe)
|
ntuple |= (u64)(fs->val.fcoe) << tp->fcoe_shift;
|
return ntuple;
|
}
|
|
static void mk_act_open_req6(struct filter_entry *f, struct sk_buff *skb,
|
unsigned int qid_filterid, struct adapter *adap)
|
{
|
struct cpl_t6_act_open_req6 *t6req = NULL;
|
struct cpl_act_open_req6 *req = NULL;
|
|
t6req = (struct cpl_t6_act_open_req6 *)__skb_put(skb, sizeof(*t6req));
|
INIT_TP_WR(t6req, 0);
|
req = (struct cpl_act_open_req6 *)t6req;
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, qid_filterid));
|
req->local_port = cpu_to_be16(f->fs.val.lport);
|
req->peer_port = cpu_to_be16(f->fs.val.fport);
|
req->local_ip_hi = *(__be64 *)(&f->fs.val.lip);
|
req->local_ip_lo = *(((__be64 *)&f->fs.val.lip) + 1);
|
req->peer_ip_hi = *(__be64 *)(&f->fs.val.fip);
|
req->peer_ip_lo = *(((__be64 *)&f->fs.val.fip) + 1);
|
req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
|
f->fs.newvlan == VLAN_REWRITE) |
|
DELACK_V(f->fs.hitcnts) |
|
L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
|
SMAC_SEL_V((cxgb4_port_viid(f->dev) &
|
0x7F) << 1) |
|
TX_CHAN_V(f->fs.eport) |
|
NO_CONG_V(f->fs.rpttid) |
|
ULP_MODE_V(f->fs.nat_mode ?
|
ULP_MODE_TCPDDP : ULP_MODE_NONE) |
|
TCAM_BYPASS_F | NON_OFFLOAD_F);
|
t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
|
f->dev)));
|
t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
|
RSS_QUEUE_V(f->fs.iq) |
|
TX_QUEUE_V(f->fs.nat_mode) |
|
T5_OPT_2_VALID_F |
|
RX_CHANNEL_V(cxgb4_port_e2cchan(f->dev)) |
|
PACE_V((f->fs.maskhash) |
|
((f->fs.dirsteerhash) << 1)));
|
}
|
|
static void mk_act_open_req(struct filter_entry *f, struct sk_buff *skb,
|
unsigned int qid_filterid, struct adapter *adap)
|
{
|
struct cpl_t6_act_open_req *t6req = NULL;
|
struct cpl_act_open_req *req = NULL;
|
|
t6req = (struct cpl_t6_act_open_req *)__skb_put(skb, sizeof(*t6req));
|
INIT_TP_WR(t6req, 0);
|
req = (struct cpl_act_open_req *)t6req;
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, qid_filterid));
|
req->local_port = cpu_to_be16(f->fs.val.lport);
|
req->peer_port = cpu_to_be16(f->fs.val.fport);
|
memcpy(&req->local_ip, f->fs.val.lip, 4);
|
memcpy(&req->peer_ip, f->fs.val.fip, 4);
|
req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
|
f->fs.newvlan == VLAN_REWRITE) |
|
DELACK_V(f->fs.hitcnts) |
|
L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
|
SMAC_SEL_V((cxgb4_port_viid(f->dev) &
|
0x7F) << 1) |
|
TX_CHAN_V(f->fs.eport) |
|
NO_CONG_V(f->fs.rpttid) |
|
ULP_MODE_V(f->fs.nat_mode ?
|
ULP_MODE_TCPDDP : ULP_MODE_NONE) |
|
TCAM_BYPASS_F | NON_OFFLOAD_F);
|
|
t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
|
f->dev)));
|
t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
|
RSS_QUEUE_V(f->fs.iq) |
|
TX_QUEUE_V(f->fs.nat_mode) |
|
T5_OPT_2_VALID_F |
|
RX_CHANNEL_V(cxgb4_port_e2cchan(f->dev)) |
|
PACE_V((f->fs.maskhash) |
|
((f->fs.dirsteerhash) << 1)));
|
}
|
|
static int cxgb4_set_hash_filter(struct net_device *dev,
|
struct ch_filter_specification *fs,
|
struct filter_ctx *ctx)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
struct port_info *pi = netdev_priv(dev);
|
struct tid_info *t = &adapter->tids;
|
struct filter_entry *f;
|
struct sk_buff *skb;
|
int iq, atid, size;
|
int ret = 0;
|
u32 iconf;
|
|
fill_default_mask(fs);
|
ret = validate_filter(dev, fs);
|
if (ret)
|
return ret;
|
|
iq = get_filter_steerq(dev, fs);
|
if (iq < 0)
|
return iq;
|
|
f = kzalloc(sizeof(*f), GFP_KERNEL);
|
if (!f)
|
return -ENOMEM;
|
|
f->fs = *fs;
|
f->ctx = ctx;
|
f->dev = dev;
|
f->fs.iq = iq;
|
|
/* If the new filter requires loopback Destination MAC and/or VLAN
|
* rewriting then we need to allocate a Layer 2 Table (L2T) entry for
|
* the filter.
|
*/
|
if (f->fs.newdmac || f->fs.newvlan) {
|
/* allocate L2T entry for new filter */
|
f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
|
f->fs.eport, f->fs.dmac);
|
if (!f->l2t) {
|
ret = -ENOMEM;
|
goto out_err;
|
}
|
}
|
|
/* If the new filter requires loopback Source MAC rewriting then
|
* we need to allocate a SMT entry for the filter.
|
*/
|
if (f->fs.newsmac) {
|
f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
|
if (!f->smt) {
|
if (f->l2t) {
|
cxgb4_l2t_release(f->l2t);
|
f->l2t = NULL;
|
}
|
ret = -ENOMEM;
|
goto free_l2t;
|
}
|
}
|
|
atid = cxgb4_alloc_atid(t, f);
|
if (atid < 0) {
|
ret = atid;
|
goto free_smt;
|
}
|
|
iconf = adapter->params.tp.ingress_config;
|
if (iconf & VNIC_F) {
|
f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
|
f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
|
f->fs.val.ovlan_vld = fs->val.pfvf_vld;
|
f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
|
} else if (iconf & USE_ENC_IDX_F) {
|
if (f->fs.val.encap_vld) {
|
struct port_info *pi = netdev_priv(f->dev);
|
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
|
|
/* allocate MPS TCAM entry */
|
ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
|
match_all_mac,
|
match_all_mac,
|
f->fs.val.vni,
|
f->fs.mask.vni,
|
0, 1, 1);
|
if (ret < 0)
|
goto free_atid;
|
|
f->fs.val.ovlan = ret;
|
f->fs.mask.ovlan = 0xffff;
|
f->fs.val.ovlan_vld = 1;
|
f->fs.mask.ovlan_vld = 1;
|
}
|
}
|
|
size = sizeof(struct cpl_t6_act_open_req);
|
if (f->fs.type) {
|
ret = cxgb4_clip_get(f->dev, (const u32 *)&f->fs.val.lip, 1);
|
if (ret)
|
goto free_mps;
|
|
skb = alloc_skb(size, GFP_KERNEL);
|
if (!skb) {
|
ret = -ENOMEM;
|
goto free_clip;
|
}
|
|
mk_act_open_req6(f, skb,
|
((adapter->sge.fw_evtq.abs_id << 14) | atid),
|
adapter);
|
} else {
|
skb = alloc_skb(size, GFP_KERNEL);
|
if (!skb) {
|
ret = -ENOMEM;
|
goto free_mps;
|
}
|
|
mk_act_open_req(f, skb,
|
((adapter->sge.fw_evtq.abs_id << 14) | atid),
|
adapter);
|
}
|
|
f->pending = 1;
|
set_wr_txq(skb, CPL_PRIORITY_SETUP, f->fs.val.iport & 0x3);
|
t4_ofld_send(adapter, skb);
|
return 0;
|
|
free_clip:
|
cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
|
|
free_mps:
|
if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
|
t4_free_encap_mac_filt(adapter, pi->viid, f->fs.val.ovlan, 1);
|
|
free_atid:
|
cxgb4_free_atid(t, atid);
|
|
free_smt:
|
if (f->smt) {
|
cxgb4_smt_release(f->smt);
|
f->smt = NULL;
|
}
|
|
free_l2t:
|
if (f->l2t) {
|
cxgb4_l2t_release(f->l2t);
|
f->l2t = NULL;
|
}
|
|
out_err:
|
kfree(f);
|
return ret;
|
}
|
|
/* Check a Chelsio Filter Request for validity, convert it into our internal
|
* format and send it to the hardware. Return 0 on success, an error number
|
* otherwise. We attach any provided filter operation context to the internal
|
* filter specification in order to facilitate signaling completion of the
|
* operation.
|
*/
|
int __cxgb4_set_filter(struct net_device *dev, int ftid,
|
struct ch_filter_specification *fs,
|
struct filter_ctx *ctx)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
unsigned int max_fidx, fidx, chip_ver;
|
int iq, ret, filter_id = ftid;
|
struct filter_entry *f, *tab;
|
u32 iconf;
|
|
chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
if (fs->hash) {
|
if (is_hashfilter(adapter))
|
return cxgb4_set_hash_filter(dev, fs, ctx);
|
netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
|
__func__);
|
return -EINVAL;
|
}
|
|
max_fidx = adapter->tids.nftids + adapter->tids.nhpftids;
|
if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
|
filter_id >= max_fidx)
|
return -E2BIG;
|
|
fill_default_mask(fs);
|
|
ret = validate_filter(dev, fs);
|
if (ret)
|
return ret;
|
|
iq = get_filter_steerq(dev, fs);
|
if (iq < 0)
|
return iq;
|
|
if (fs->prio) {
|
tab = &adapter->tids.hpftid_tab[0];
|
} else {
|
tab = &adapter->tids.ftid_tab[0];
|
filter_id = ftid - adapter->tids.nhpftids;
|
}
|
|
/* IPv6 filters occupy four slots and must be aligned on
|
* four-slot boundaries. IPv4 filters only occupy a single
|
* slot and have no alignment requirements but writing a new
|
* IPv4 filter into the middle of an existing IPv6 filter
|
* requires clearing the old IPv6 filter and hence we prevent
|
* insertion.
|
*/
|
if (fs->type == 0) { /* IPv4 */
|
/* For T6, If our IPv4 filter isn't being written to a
|
* multiple of two filter index and there's an IPv6
|
* filter at the multiple of 2 base slot, then we need
|
* to delete that IPv6 filter ...
|
* For adapters below T6, IPv6 filter occupies 4 entries.
|
* Hence we need to delete the filter in multiple of 4 slot.
|
*/
|
if (chip_ver < CHELSIO_T6)
|
fidx = filter_id & ~0x3;
|
else
|
fidx = filter_id & ~0x1;
|
|
if (fidx != filter_id && tab[fidx].fs.type) {
|
f = &tab[fidx];
|
if (f->valid) {
|
dev_err(adapter->pdev_dev,
|
"Invalid location. IPv6 requires 4 slots and is occupying slots %u to %u\n",
|
fidx, fidx + 3);
|
return -EINVAL;
|
}
|
}
|
} else { /* IPv6 */
|
if (chip_ver < CHELSIO_T6) {
|
/* Ensure that the IPv6 filter is aligned on a
|
* multiple of 4 boundary.
|
*/
|
if (filter_id & 0x3) {
|
dev_err(adapter->pdev_dev,
|
"Invalid location. IPv6 must be aligned on a 4-slot boundary\n");
|
return -EINVAL;
|
}
|
|
/* Check all except the base overlapping IPv4 filter
|
* slots.
|
*/
|
for (fidx = filter_id + 1; fidx < filter_id + 4;
|
fidx++) {
|
f = &tab[fidx];
|
if (f->valid) {
|
dev_err(adapter->pdev_dev,
|
"Invalid location. IPv6 requires 4 slots and an IPv4 filter exists at %u\n",
|
fidx);
|
return -EBUSY;
|
}
|
}
|
} else {
|
/* For T6, CLIP being enabled, IPv6 filter would occupy
|
* 2 entries.
|
*/
|
if (filter_id & 0x1)
|
return -EINVAL;
|
/* Check overlapping IPv4 filter slot */
|
fidx = filter_id + 1;
|
f = &tab[fidx];
|
if (f->valid) {
|
pr_err("%s: IPv6 filter requires 2 indices. IPv4 filter already present at %d. Please remove IPv4 filter first.\n",
|
__func__, fidx);
|
return -EBUSY;
|
}
|
}
|
}
|
|
/* Check to make sure that provided filter index is not
|
* already in use by someone else
|
*/
|
f = &tab[filter_id];
|
if (f->valid)
|
return -EBUSY;
|
|
if (fs->prio) {
|
fidx = filter_id + adapter->tids.hpftid_base;
|
ret = cxgb4_set_hpftid(&adapter->tids, filter_id,
|
fs->type ? PF_INET6 : PF_INET);
|
} else {
|
fidx = filter_id + adapter->tids.ftid_base;
|
ret = cxgb4_set_ftid(&adapter->tids, filter_id,
|
fs->type ? PF_INET6 : PF_INET,
|
chip_ver);
|
}
|
|
if (ret)
|
return ret;
|
|
/* Check t make sure the filter requested is writable ... */
|
ret = writable_filter(f);
|
if (ret)
|
goto free_tid;
|
|
if (is_t6(adapter->params.chip) && fs->type &&
|
ipv6_addr_type((const struct in6_addr *)fs->val.lip) !=
|
IPV6_ADDR_ANY) {
|
ret = cxgb4_clip_get(dev, (const u32 *)&fs->val.lip, 1);
|
if (ret)
|
goto free_tid;
|
}
|
|
/* Convert the filter specification into our internal format.
|
* We copy the PF/VF specification into the Outer VLAN field
|
* here so the rest of the code -- including the interface to
|
* the firmware -- doesn't have to constantly do these checks.
|
*/
|
f->fs = *fs;
|
f->fs.iq = iq;
|
f->dev = dev;
|
|
iconf = adapter->params.tp.ingress_config;
|
if (iconf & VNIC_F) {
|
f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
|
f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
|
f->fs.val.ovlan_vld = fs->val.pfvf_vld;
|
f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
|
} else if (iconf & USE_ENC_IDX_F) {
|
if (f->fs.val.encap_vld) {
|
struct port_info *pi = netdev_priv(f->dev);
|
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
|
|
/* allocate MPS TCAM entry */
|
ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
|
match_all_mac,
|
match_all_mac,
|
f->fs.val.vni,
|
f->fs.mask.vni,
|
0, 1, 1);
|
if (ret < 0)
|
goto free_tid;
|
|
f->fs.val.ovlan = ret;
|
f->fs.mask.ovlan = 0x1ff;
|
f->fs.val.ovlan_vld = 1;
|
f->fs.mask.ovlan_vld = 1;
|
}
|
}
|
|
/* Attempt to set the filter. If we don't succeed, we clear
|
* it and return the failure.
|
*/
|
f->ctx = ctx;
|
f->tid = fidx; /* Save the actual tid */
|
ret = set_filter_wr(adapter, ftid);
|
if (ret)
|
goto free_tid;
|
|
return ret;
|
|
free_tid:
|
if (f->fs.prio)
|
cxgb4_clear_hpftid(&adapter->tids, filter_id,
|
fs->type ? PF_INET6 : PF_INET);
|
else
|
cxgb4_clear_ftid(&adapter->tids, filter_id,
|
fs->type ? PF_INET6 : PF_INET,
|
chip_ver);
|
|
clear_filter(adapter, f);
|
return ret;
|
}
|
|
static int cxgb4_del_hash_filter(struct net_device *dev, int filter_id,
|
struct filter_ctx *ctx)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
struct tid_info *t = &adapter->tids;
|
struct cpl_abort_req *abort_req;
|
struct cpl_abort_rpl *abort_rpl;
|
struct cpl_set_tcb_field *req;
|
struct ulptx_idata *aligner;
|
struct work_request_hdr *wr;
|
struct filter_entry *f;
|
struct sk_buff *skb;
|
unsigned int wrlen;
|
int ret;
|
|
netdev_dbg(dev, "%s: filter_id = %d ; nftids = %d\n",
|
__func__, filter_id, adapter->tids.nftids);
|
|
if (tid_out_of_range(t, filter_id))
|
return -E2BIG;
|
|
f = lookup_tid(t, filter_id);
|
if (!f) {
|
netdev_err(dev, "%s: no filter entry for filter_id = %d",
|
__func__, filter_id);
|
return -EINVAL;
|
}
|
|
ret = writable_filter(f);
|
if (ret)
|
return ret;
|
|
if (!f->valid)
|
return -EINVAL;
|
|
f->ctx = ctx;
|
f->pending = 1;
|
wrlen = roundup(sizeof(*wr) + (sizeof(*req) + sizeof(*aligner))
|
+ sizeof(*abort_req) + sizeof(*abort_rpl), 16);
|
skb = alloc_skb(wrlen, GFP_KERNEL);
|
if (!skb) {
|
netdev_err(dev, "%s: could not allocate skb ..\n", __func__);
|
return -ENOMEM;
|
}
|
set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
|
req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
|
INIT_ULPTX_WR(req, wrlen, 0, 0);
|
wr = (struct work_request_hdr *)req;
|
wr++;
|
req = (struct cpl_set_tcb_field *)wr;
|
mk_set_tcb_ulp(f, req, TCB_RSS_INFO_W, TCB_RSS_INFO_V(TCB_RSS_INFO_M),
|
TCB_RSS_INFO_V(adapter->sge.fw_evtq.abs_id), 0, 1);
|
aligner = (struct ulptx_idata *)(req + 1);
|
abort_req = (struct cpl_abort_req *)(aligner + 1);
|
mk_abort_req_ulp(abort_req, f->tid);
|
abort_rpl = (struct cpl_abort_rpl *)(abort_req + 1);
|
mk_abort_rpl_ulp(abort_rpl, f->tid);
|
t4_ofld_send(adapter, skb);
|
return 0;
|
}
|
|
/* Check a delete filter request for validity and send it to the hardware.
|
* Return 0 on success, an error number otherwise. We attach any provided
|
* filter operation context to the internal filter specification in order to
|
* facilitate signaling completion of the operation.
|
*/
|
int __cxgb4_del_filter(struct net_device *dev, int filter_id,
|
struct ch_filter_specification *fs,
|
struct filter_ctx *ctx)
|
{
|
struct adapter *adapter = netdev2adap(dev);
|
unsigned int max_fidx, chip_ver;
|
struct filter_entry *f;
|
int ret;
|
|
chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
if (fs && fs->hash) {
|
if (is_hashfilter(adapter))
|
return cxgb4_del_hash_filter(dev, filter_id, ctx);
|
netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
|
__func__);
|
return -EINVAL;
|
}
|
|
max_fidx = adapter->tids.nftids + adapter->tids.nhpftids;
|
if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
|
filter_id >= max_fidx)
|
return -E2BIG;
|
|
if (filter_id < adapter->tids.nhpftids)
|
f = &adapter->tids.hpftid_tab[filter_id];
|
else
|
f = &adapter->tids.ftid_tab[filter_id - adapter->tids.nhpftids];
|
|
ret = writable_filter(f);
|
if (ret)
|
return ret;
|
|
if (f->valid) {
|
f->ctx = ctx;
|
if (f->fs.prio)
|
cxgb4_clear_hpftid(&adapter->tids,
|
f->tid - adapter->tids.hpftid_base,
|
f->fs.type ? PF_INET6 : PF_INET);
|
else
|
cxgb4_clear_ftid(&adapter->tids,
|
f->tid - adapter->tids.ftid_base,
|
f->fs.type ? PF_INET6 : PF_INET,
|
chip_ver);
|
return del_filter_wr(adapter, filter_id);
|
}
|
|
/* If the caller has passed in a Completion Context then we need to
|
* mark it as a successful completion so they don't stall waiting
|
* for it.
|
*/
|
if (ctx) {
|
ctx->result = 0;
|
complete(&ctx->completion);
|
}
|
return ret;
|
}
|
|
int cxgb4_set_filter(struct net_device *dev, int filter_id,
|
struct ch_filter_specification *fs)
|
{
|
struct filter_ctx ctx;
|
int ret;
|
|
init_completion(&ctx.completion);
|
|
ret = __cxgb4_set_filter(dev, filter_id, fs, &ctx);
|
if (ret)
|
goto out;
|
|
/* Wait for reply */
|
ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
|
if (!ret)
|
return -ETIMEDOUT;
|
|
ret = ctx.result;
|
out:
|
return ret;
|
}
|
|
int cxgb4_del_filter(struct net_device *dev, int filter_id,
|
struct ch_filter_specification *fs)
|
{
|
struct filter_ctx ctx;
|
int ret;
|
|
if (netdev2adap(dev)->flags & CXGB4_SHUTTING_DOWN)
|
return 0;
|
|
init_completion(&ctx.completion);
|
|
ret = __cxgb4_del_filter(dev, filter_id, fs, &ctx);
|
if (ret)
|
goto out;
|
|
/* Wait for reply */
|
ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
|
if (!ret)
|
return -ETIMEDOUT;
|
|
ret = ctx.result;
|
out:
|
return ret;
|
}
|
|
static int configure_filter_tcb(struct adapter *adap, unsigned int tid,
|
struct filter_entry *f)
|
{
|
if (f->fs.hitcnts) {
|
set_tcb_field(adap, f, tid, TCB_TIMESTAMP_W,
|
TCB_TIMESTAMP_V(TCB_TIMESTAMP_M),
|
TCB_TIMESTAMP_V(0ULL),
|
1);
|
set_tcb_field(adap, f, tid, TCB_RTT_TS_RECENT_AGE_W,
|
TCB_RTT_TS_RECENT_AGE_V(TCB_RTT_TS_RECENT_AGE_M),
|
TCB_RTT_TS_RECENT_AGE_V(0ULL),
|
1);
|
}
|
|
if (f->fs.newdmac)
|
set_tcb_tflag(adap, f, tid, TF_CCTRL_ECE_S, 1,
|
1);
|
|
if (f->fs.newvlan == VLAN_INSERT ||
|
f->fs.newvlan == VLAN_REWRITE)
|
set_tcb_tflag(adap, f, tid, TF_CCTRL_RFR_S, 1,
|
1);
|
if (f->fs.newsmac)
|
configure_filter_smac(adap, f);
|
|
if (f->fs.nat_mode) {
|
switch (f->fs.nat_mode) {
|
case NAT_MODE_DIP:
|
set_nat_params(adap, f, tid, true, false, false, false);
|
break;
|
|
case NAT_MODE_DIP_DP:
|
set_nat_params(adap, f, tid, true, false, true, false);
|
break;
|
|
case NAT_MODE_DIP_DP_SIP:
|
set_nat_params(adap, f, tid, true, true, true, false);
|
break;
|
case NAT_MODE_DIP_DP_SP:
|
set_nat_params(adap, f, tid, true, false, true, true);
|
break;
|
|
case NAT_MODE_SIP_SP:
|
set_nat_params(adap, f, tid, false, true, false, true);
|
break;
|
|
case NAT_MODE_DIP_SIP_SP:
|
set_nat_params(adap, f, tid, true, true, false, true);
|
break;
|
|
case NAT_MODE_ALL:
|
set_nat_params(adap, f, tid, true, true, true, true);
|
break;
|
|
default:
|
pr_err("%s: Invalid NAT mode: %d\n",
|
__func__, f->fs.nat_mode);
|
return -EINVAL;
|
}
|
}
|
return 0;
|
}
|
|
void hash_del_filter_rpl(struct adapter *adap,
|
const struct cpl_abort_rpl_rss *rpl)
|
{
|
unsigned int status = rpl->status;
|
struct tid_info *t = &adap->tids;
|
unsigned int tid = GET_TID(rpl);
|
struct filter_ctx *ctx = NULL;
|
struct filter_entry *f;
|
|
dev_dbg(adap->pdev_dev, "%s: status = %u; tid = %u\n",
|
__func__, status, tid);
|
|
f = lookup_tid(t, tid);
|
if (!f) {
|
dev_err(adap->pdev_dev, "%s:could not find filter entry",
|
__func__);
|
return;
|
}
|
ctx = f->ctx;
|
f->ctx = NULL;
|
clear_filter(adap, f);
|
cxgb4_remove_tid(t, 0, tid, 0);
|
kfree(f);
|
if (ctx) {
|
ctx->result = 0;
|
complete(&ctx->completion);
|
}
|
}
|
|
void hash_filter_rpl(struct adapter *adap, const struct cpl_act_open_rpl *rpl)
|
{
|
unsigned int ftid = TID_TID_G(AOPEN_ATID_G(ntohl(rpl->atid_status)));
|
unsigned int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
|
struct tid_info *t = &adap->tids;
|
unsigned int tid = GET_TID(rpl);
|
struct filter_ctx *ctx = NULL;
|
struct filter_entry *f;
|
|
dev_dbg(adap->pdev_dev, "%s: tid = %u; atid = %u; status = %u\n",
|
__func__, tid, ftid, status);
|
|
f = lookup_atid(t, ftid);
|
if (!f) {
|
dev_err(adap->pdev_dev, "%s:could not find filter entry",
|
__func__);
|
return;
|
}
|
ctx = f->ctx;
|
f->ctx = NULL;
|
|
switch (status) {
|
case CPL_ERR_NONE:
|
f->tid = tid;
|
f->pending = 0;
|
f->valid = 1;
|
cxgb4_insert_tid(t, f, f->tid, 0);
|
cxgb4_free_atid(t, ftid);
|
if (ctx) {
|
ctx->tid = f->tid;
|
ctx->result = 0;
|
}
|
if (configure_filter_tcb(adap, tid, f)) {
|
clear_filter(adap, f);
|
cxgb4_remove_tid(t, 0, tid, 0);
|
kfree(f);
|
if (ctx) {
|
ctx->result = -EINVAL;
|
complete(&ctx->completion);
|
}
|
return;
|
}
|
switch (f->fs.action) {
|
case FILTER_PASS:
|
if (f->fs.dirsteer)
|
set_tcb_tflag(adap, f, tid,
|
TF_DIRECT_STEER_S, 1, 1);
|
break;
|
case FILTER_DROP:
|
set_tcb_tflag(adap, f, tid, TF_DROP_S, 1, 1);
|
break;
|
case FILTER_SWITCH:
|
set_tcb_tflag(adap, f, tid, TF_LPBK_S, 1, 1);
|
break;
|
}
|
|
break;
|
|
default:
|
if (status != CPL_ERR_TCAM_FULL)
|
dev_err(adap->pdev_dev, "%s: filter creation PROBLEM; status = %u\n",
|
__func__, status);
|
|
if (ctx) {
|
if (status == CPL_ERR_TCAM_FULL)
|
ctx->result = -ENOSPC;
|
else
|
ctx->result = -EINVAL;
|
}
|
clear_filter(adap, f);
|
cxgb4_free_atid(t, ftid);
|
kfree(f);
|
}
|
if (ctx)
|
complete(&ctx->completion);
|
}
|
|
/* Handle a filter write/deletion reply. */
|
void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
|
{
|
unsigned int tid = GET_TID(rpl);
|
struct filter_entry *f = NULL;
|
unsigned int max_fidx;
|
int idx;
|
|
max_fidx = adap->tids.nftids + adap->tids.nsftids;
|
/* Get the corresponding filter entry for this tid */
|
if (adap->tids.ftid_tab) {
|
idx = tid - adap->tids.hpftid_base;
|
if (idx < adap->tids.nhpftids) {
|
f = &adap->tids.hpftid_tab[idx];
|
} else {
|
/* Check this in normal filter region */
|
idx = tid - adap->tids.ftid_base;
|
if (idx >= max_fidx)
|
return;
|
f = &adap->tids.ftid_tab[idx];
|
idx += adap->tids.nhpftids;
|
}
|
|
if (f->tid != tid)
|
return;
|
}
|
|
/* We found the filter entry for this tid */
|
if (f) {
|
unsigned int ret = TCB_COOKIE_G(rpl->cookie);
|
struct filter_ctx *ctx;
|
|
/* Pull off any filter operation context attached to the
|
* filter.
|
*/
|
ctx = f->ctx;
|
f->ctx = NULL;
|
|
if (ret == FW_FILTER_WR_FLT_DELETED) {
|
/* Clear the filter when we get confirmation from the
|
* hardware that the filter has been deleted.
|
*/
|
clear_filter(adap, f);
|
if (ctx)
|
ctx->result = 0;
|
} else if (ret == FW_FILTER_WR_FLT_ADDED) {
|
f->pending = 0; /* async setup completed */
|
f->valid = 1;
|
if (ctx) {
|
ctx->result = 0;
|
ctx->tid = idx;
|
}
|
} else {
|
/* Something went wrong. Issue a warning about the
|
* problem and clear everything out.
|
*/
|
dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
|
idx, ret);
|
clear_filter(adap, f);
|
if (ctx)
|
ctx->result = -EINVAL;
|
}
|
if (ctx)
|
complete(&ctx->completion);
|
}
|
}
|
|
void init_hash_filter(struct adapter *adap)
|
{
|
u32 reg;
|
|
/* On T6, verify the necessary register configs and warn the user in
|
* case of improper config
|
*/
|
if (is_t6(adap->params.chip)) {
|
if (is_offload(adap)) {
|
if (!(t4_read_reg(adap, TP_GLOBAL_CONFIG_A)
|
& ACTIVEFILTERCOUNTS_F)) {
|
dev_err(adap->pdev_dev, "Invalid hash filter + ofld config\n");
|
return;
|
}
|
} else {
|
reg = t4_read_reg(adap, LE_DB_RSP_CODE_0_A);
|
if (TCAM_ACTV_HIT_G(reg) != 4) {
|
dev_err(adap->pdev_dev, "Invalid hash filter config\n");
|
return;
|
}
|
|
reg = t4_read_reg(adap, LE_DB_RSP_CODE_1_A);
|
if (HASH_ACTV_HIT_G(reg) != 4) {
|
dev_err(adap->pdev_dev, "Invalid hash filter config\n");
|
return;
|
}
|
}
|
|
} else {
|
dev_err(adap->pdev_dev, "Hash filter supported only on T6\n");
|
return;
|
}
|
|
adap->params.hash_filter = 1;
|
}
|