// This file is part of OpenCV project.
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
// of this distribution and at http://opencv.org/license.html.
|
//
|
// Copyright (C) 2019 Intel Corporation
|
|
|
#ifndef OPENCV_GAPI_INFER_HPP
|
#define OPENCV_GAPI_INFER_HPP
|
|
// FIXME: Inference API is currently only available in full mode
|
#if !defined(GAPI_STANDALONE)
|
|
#include <functional>
|
#include <string> // string
|
#include <utility> // tuple
|
|
#include <opencv2/gapi/util/any.hpp> // any<>
|
#include <opencv2/gapi/gkernel.hpp> // GKernelType[M], GBackend
|
#include <opencv2/gapi/garg.hpp> // GArg
|
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
|
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
|
|
namespace cv {
|
|
namespace detail {
|
// This tiny class eliminates the semantic difference between
|
// GKernelType and GKernelTypeM.
|
// FIXME: Something similar can be reused for regular kernels
|
template<typename, typename>
|
struct KernelTypeMedium;
|
|
template<class K, typename... R, typename... Args>
|
struct KernelTypeMedium<K, std::function<std::tuple<R...>(Args...)> >:
|
public GKernelTypeM<K, std::function<std::tuple<R...>(Args...)> > {};
|
|
template<class K, typename R, typename... Args>
|
struct KernelTypeMedium<K, std::function<R(Args...)> >:
|
public GKernelType<K, std::function<R(Args...)> > {};
|
|
} // namespace detail
|
|
template<typename, typename> class GNetworkType;
|
|
// TODO: maybe tuple_wrap_helper from util.hpp may help with this.
|
// Multiple-return-value network definition (specialized base class)
|
template<typename K, typename... R, typename... Args>
|
class GNetworkType<K, std::function<std::tuple<R...>(Args...)> >
|
{
|
public:
|
using InArgs = std::tuple<Args...>;
|
using OutArgs = std::tuple<R...>;
|
|
using Result = OutArgs;
|
using API = std::function<Result(Args...)>;
|
|
using ResultL = std::tuple< cv::GArray<R>... >;
|
using APIList = std::function<ResultL(cv::GArray<cv::Rect>, Args...)>;
|
};
|
|
// Single-return-value network definition (specialized base class)
|
template<typename K, typename R, typename... Args>
|
class GNetworkType<K, std::function<R(Args...)> >
|
{
|
public:
|
using InArgs = std::tuple<Args...>;
|
using OutArgs = std::tuple<R>;
|
|
using Result = R;
|
using API = std::function<R(Args...)>;
|
|
using ResultL = cv::GArray<R>;
|
using APIList = std::function<ResultL(cv::GArray<cv::Rect>, Args...)>;
|
};
|
|
// Base "Infer" kernel. Note - for whatever network, kernel ID
|
// is always the same. Different inference calls are distinguished by
|
// network _tag_ (an extra field in GCall)
|
//
|
// getOutMeta is a stub callback collected by G-API kernel subsystem
|
// automatically. This is a rare case when this callback is defined by
|
// a particular backend, not by a network itself.
|
struct GInferBase {
|
static constexpr const char * id() {
|
return "org.opencv.dnn.infer"; // Universal stub
|
}
|
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
|
return GMetaArgs{}; // One more universal stub
|
}
|
};
|
|
|
// Base "Infer list" kernel.
|
// All notes from "Infer" kernel apply here as well.
|
struct GInferListBase {
|
static constexpr const char * id() {
|
return "org.opencv.dnn.infer-roi"; // Universal stub
|
}
|
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
|
return GMetaArgs{}; // One more universal stub
|
}
|
};
|
|
// A generic inference kernel. API (::on()) is fully defined by the Net
|
// template parameter.
|
// Acts as a regular kernel in graph (via KernelTypeMedium).
|
template<typename Net>
|
struct GInfer final
|
: public GInferBase
|
, public detail::KernelTypeMedium< GInfer<Net>
|
, typename Net::API > {
|
using GInferBase::getOutMeta; // FIXME: name lookup conflict workaround?
|
|
static constexpr const char* tag() { return Net::tag(); }
|
};
|
|
// A generic roi-list inference kernel. API (::on()) is derived from
|
// the Net template parameter (see more in infer<> overload).
|
template<typename Net>
|
struct GInferList final
|
: public GInferListBase
|
, public detail::KernelTypeMedium< GInferList<Net>
|
, typename Net::APIList > {
|
using GInferListBase::getOutMeta; // FIXME: name lookup conflict workaround?
|
|
static constexpr const char* tag() { return Net::tag(); }
|
};
|
|
} // namespace cv
|
|
// FIXME: Probably the <API> signature makes a function/tuple/function round-trip
|
#define G_API_NET(Class, API, Tag) \
|
struct Class final: public cv::GNetworkType<Class, std::function API> { \
|
static constexpr const char * tag() { return Tag; } \
|
}
|
|
namespace cv {
|
namespace gapi {
|
|
|
/** @brief Calculates responses for the specified network (template
|
* parameter) for every region in the source image.
|
*
|
* @tparam A network type defined with G_API_NET() macro.
|
* @param roi a list of rectangles describing regions of interest
|
* in the source image. Usually an output of object detector or tracker.
|
* @param args network's input parameters as specified in G_API_NET() macro.
|
* NOTE: verified to work reliably with 1-input topologies only.
|
* @return a list of objects of return type as defined in G_API_NET().
|
* If a network has multiple return values (defined with a tuple), a tuple of
|
* GArray<> objects is returned with the appropriate types inside.
|
* @sa G_API_NET()
|
*/
|
template<typename Net, typename... Args>
|
typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
|
return GInferList<Net>::on(roi, std::forward<Args>(args)...);
|
}
|
|
/**
|
* @brief Calculates response for the specified network (template
|
* parameter) given the input data.
|
*
|
* @tparam A network type defined with G_API_NET() macro.
|
* @param args network's input parameters as specified in G_API_NET() macro.
|
* @return an object of return type as defined in G_API_NET().
|
* If a network has multiple return values (defined with a tuple), a tuple of
|
* objects of appropriate type is returned.
|
* @sa G_API_NET()
|
*/
|
template<typename Net, typename... Args>
|
typename Net::Result infer(Args&&... args) {
|
return GInfer<Net>::on(std::forward<Args>(args)...);
|
}
|
|
|
} // namespace gapi
|
} // namespace cv
|
|
#endif // GAPI_STANDALONE
|
|
namespace cv {
|
namespace gapi {
|
|
// Note: the below code _is_ part of STANDALONE build,
|
// just to make our compiler code compileable.
|
|
// A type-erased form of network parameters.
|
// Similar to how a type-erased GKernel is represented and used.
|
struct GAPI_EXPORTS GNetParam {
|
std::string tag; // FIXME: const?
|
GBackend backend; // Specifies the execution model
|
util::any params; // Backend-interpreted parameter structure
|
};
|
|
/** \addtogroup gapi_compile_args
|
* @{
|
*/
|
/**
|
* @brief A container class for network configurations. Similar to
|
* GKernelPackage.Use cv::gapi::networks() to construct this object.
|
*
|
* @sa cv::gapi::networks
|
*/
|
struct GAPI_EXPORTS GNetPackage {
|
GNetPackage() : GNetPackage({}) {}
|
explicit GNetPackage(std::initializer_list<GNetParam> &&ii);
|
std::vector<GBackend> backends() const;
|
std::vector<GNetParam> networks;
|
};
|
/** @} gapi_compile_args */
|
} // namespace gapi
|
|
namespace detail {
|
template<typename T>
|
gapi::GNetParam strip(T&& t) {
|
return gapi::GNetParam { t.tag()
|
, t.backend()
|
, t.params()
|
};
|
}
|
|
template<> struct CompileArgTag<cv::gapi::GNetPackage> {
|
static const char* tag() { return "gapi.net_package"; }
|
};
|
|
} // namespace cv::detail
|
|
namespace gapi {
|
template<typename... Args>
|
cv::gapi::GNetPackage networks(Args&&... args) {
|
return cv::gapi::GNetPackage({ cv::detail::strip(args)... });
|
}
|
} // namespace gapi
|
} // namespace cv
|
|
#endif // OPENCV_GAPI_INFER_HPP
|