// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2010-2023 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
/**
|
* DOC: Base kernel memory APIs
|
*/
|
#include <linux/dma-buf.h>
|
#include <linux/kernel.h>
|
#include <linux/bug.h>
|
#include <linux/compat.h>
|
#include <linux/version.h>
|
#include <linux/log2.h>
|
#if IS_ENABLED(CONFIG_OF)
|
#include <linux/of_platform.h>
|
#endif
|
|
#include <mali_kbase_config.h>
|
#include <mali_kbase.h>
|
#include <gpu/mali_kbase_gpu_regmap.h>
|
#include <mali_kbase_cache_policy.h>
|
#include <mali_kbase_hw.h>
|
#include <tl/mali_kbase_tracepoints.h>
|
#include <mali_kbase_native_mgm.h>
|
#include <mali_kbase_mem_pool_group.h>
|
#include <mmu/mali_kbase_mmu.h>
|
#include <mali_kbase_config_defaults.h>
|
#include <mali_kbase_trace_gpu_mem.h>
|
|
#define VA_REGION_SLAB_NAME_PREFIX "va-region-slab-"
|
#define VA_REGION_SLAB_NAME_SIZE (DEVNAME_SIZE + sizeof(VA_REGION_SLAB_NAME_PREFIX) + 1)
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
|
/*
|
* Alignment of objects allocated by the GPU inside a just-in-time memory
|
* region whose size is given by an end address
|
*
|
* This is the alignment of objects allocated by the GPU, but possibly not
|
* fully written to. When taken into account with
|
* KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES it gives the maximum number of bytes
|
* that the JIT memory report size can exceed the actual backed memory size.
|
*/
|
#define KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES (128u)
|
|
/*
|
* Maximum size of objects allocated by the GPU inside a just-in-time memory
|
* region whose size is given by an end address
|
*
|
* This is the maximum size of objects allocated by the GPU, but possibly not
|
* fully written to. When taken into account with
|
* KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES it gives the maximum number of bytes
|
* that the JIT memory report size can exceed the actual backed memory size.
|
*/
|
#define KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES (512u)
|
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
/* Forward declarations */
|
static void free_partial_locked(struct kbase_context *kctx,
|
struct kbase_mem_pool *pool, struct tagged_addr tp);
|
|
static size_t kbase_get_num_cpu_va_bits(struct kbase_context *kctx)
|
{
|
#if defined(CONFIG_ARM64)
|
/* VA_BITS can be as high as 48 bits, but all bits are available for
|
* both user and kernel.
|
*/
|
size_t cpu_va_bits = VA_BITS;
|
#elif defined(CONFIG_X86_64)
|
/* x86_64 can access 48 bits of VA, but the 48th is used to denote
|
* kernel (1) vs userspace (0), so the max here is 47.
|
*/
|
size_t cpu_va_bits = 47;
|
#elif defined(CONFIG_ARM) || defined(CONFIG_X86_32)
|
size_t cpu_va_bits = sizeof(void *) * BITS_PER_BYTE;
|
#else
|
#error "Unknown CPU VA width for this architecture"
|
#endif
|
|
if (kbase_ctx_compat_mode(kctx))
|
cpu_va_bits = 32;
|
|
return cpu_va_bits;
|
}
|
|
/* This function finds out which RB tree the given pfn from the GPU VA belongs
|
* to based on the memory zone the pfn refers to
|
*/
|
static struct rb_root *kbase_gpu_va_to_rbtree(struct kbase_context *kctx,
|
u64 gpu_pfn)
|
{
|
struct rb_root *rbtree = NULL;
|
|
struct kbase_reg_zone *exec_va_zone = kbase_ctx_reg_zone_get(kctx, KBASE_REG_ZONE_EXEC_VA);
|
|
#if MALI_USE_CSF
|
struct kbase_reg_zone *fixed_va_zone =
|
kbase_ctx_reg_zone_get(kctx, KBASE_REG_ZONE_FIXED_VA);
|
|
struct kbase_reg_zone *exec_fixed_va_zone =
|
kbase_ctx_reg_zone_get(kctx, KBASE_REG_ZONE_EXEC_FIXED_VA);
|
|
if (gpu_pfn >= fixed_va_zone->base_pfn) {
|
rbtree = &kctx->reg_rbtree_fixed;
|
return rbtree;
|
} else if (gpu_pfn >= exec_fixed_va_zone->base_pfn) {
|
rbtree = &kctx->reg_rbtree_exec_fixed;
|
return rbtree;
|
}
|
#endif
|
if (gpu_pfn >= exec_va_zone->base_pfn)
|
rbtree = &kctx->reg_rbtree_exec;
|
else {
|
u64 same_va_end;
|
|
if (kbase_ctx_compat_mode(kctx)) {
|
same_va_end = KBASE_REG_ZONE_CUSTOM_VA_BASE;
|
} else {
|
struct kbase_reg_zone *same_va_zone =
|
kbase_ctx_reg_zone_get(kctx,
|
KBASE_REG_ZONE_SAME_VA);
|
same_va_end = kbase_reg_zone_end_pfn(same_va_zone);
|
}
|
|
if (gpu_pfn >= same_va_end)
|
rbtree = &kctx->reg_rbtree_custom;
|
else
|
rbtree = &kctx->reg_rbtree_same;
|
}
|
|
return rbtree;
|
}
|
|
/* This function inserts a region into the tree. */
|
static void kbase_region_tracker_insert(struct kbase_va_region *new_reg)
|
{
|
u64 start_pfn = new_reg->start_pfn;
|
struct rb_node **link = NULL;
|
struct rb_node *parent = NULL;
|
struct rb_root *rbtree = NULL;
|
|
rbtree = new_reg->rbtree;
|
|
link = &(rbtree->rb_node);
|
/* Find the right place in the tree using tree search */
|
while (*link) {
|
struct kbase_va_region *old_reg;
|
|
parent = *link;
|
old_reg = rb_entry(parent, struct kbase_va_region, rblink);
|
|
/* RBTree requires no duplicate entries. */
|
KBASE_DEBUG_ASSERT(old_reg->start_pfn != start_pfn);
|
|
if (old_reg->start_pfn > start_pfn)
|
link = &(*link)->rb_left;
|
else
|
link = &(*link)->rb_right;
|
}
|
|
/* Put the new node there, and rebalance tree */
|
rb_link_node(&(new_reg->rblink), parent, link);
|
|
rb_insert_color(&(new_reg->rblink), rbtree);
|
}
|
|
static struct kbase_va_region *find_region_enclosing_range_rbtree(
|
struct rb_root *rbtree, u64 start_pfn, size_t nr_pages)
|
{
|
struct rb_node *rbnode;
|
struct kbase_va_region *reg;
|
u64 end_pfn = start_pfn + nr_pages;
|
|
rbnode = rbtree->rb_node;
|
|
while (rbnode) {
|
u64 tmp_start_pfn, tmp_end_pfn;
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
tmp_start_pfn = reg->start_pfn;
|
tmp_end_pfn = reg->start_pfn + reg->nr_pages;
|
|
/* If start is lower than this, go left. */
|
if (start_pfn < tmp_start_pfn)
|
rbnode = rbnode->rb_left;
|
/* If end is higher than this, then go right. */
|
else if (end_pfn > tmp_end_pfn)
|
rbnode = rbnode->rb_right;
|
else /* Enclosing */
|
return reg;
|
}
|
|
return NULL;
|
}
|
|
struct kbase_va_region *kbase_find_region_enclosing_address(
|
struct rb_root *rbtree, u64 gpu_addr)
|
{
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
struct rb_node *rbnode;
|
struct kbase_va_region *reg;
|
|
rbnode = rbtree->rb_node;
|
|
while (rbnode) {
|
u64 tmp_start_pfn, tmp_end_pfn;
|
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
tmp_start_pfn = reg->start_pfn;
|
tmp_end_pfn = reg->start_pfn + reg->nr_pages;
|
|
/* If start is lower than this, go left. */
|
if (gpu_pfn < tmp_start_pfn)
|
rbnode = rbnode->rb_left;
|
/* If end is higher than this, then go right. */
|
else if (gpu_pfn >= tmp_end_pfn)
|
rbnode = rbnode->rb_right;
|
else /* Enclosing */
|
return reg;
|
}
|
|
return NULL;
|
}
|
|
/* Find region enclosing given address. */
|
struct kbase_va_region *kbase_region_tracker_find_region_enclosing_address(
|
struct kbase_context *kctx, u64 gpu_addr)
|
{
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
struct rb_root *rbtree = NULL;
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
rbtree = kbase_gpu_va_to_rbtree(kctx, gpu_pfn);
|
|
return kbase_find_region_enclosing_address(rbtree, gpu_addr);
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_region_tracker_find_region_enclosing_address);
|
|
struct kbase_va_region *kbase_find_region_base_address(
|
struct rb_root *rbtree, u64 gpu_addr)
|
{
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
struct rb_node *rbnode = NULL;
|
struct kbase_va_region *reg = NULL;
|
|
rbnode = rbtree->rb_node;
|
|
while (rbnode) {
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
if (reg->start_pfn > gpu_pfn)
|
rbnode = rbnode->rb_left;
|
else if (reg->start_pfn < gpu_pfn)
|
rbnode = rbnode->rb_right;
|
else
|
return reg;
|
}
|
|
return NULL;
|
}
|
|
/* Find region with given base address */
|
struct kbase_va_region *kbase_region_tracker_find_region_base_address(
|
struct kbase_context *kctx, u64 gpu_addr)
|
{
|
u64 gpu_pfn = gpu_addr >> PAGE_SHIFT;
|
struct rb_root *rbtree = NULL;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
rbtree = kbase_gpu_va_to_rbtree(kctx, gpu_pfn);
|
|
return kbase_find_region_base_address(rbtree, gpu_addr);
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_region_tracker_find_region_base_address);
|
|
/* Find region meeting given requirements */
|
static struct kbase_va_region *kbase_region_tracker_find_region_meeting_reqs(
|
struct kbase_va_region *reg_reqs,
|
size_t nr_pages, size_t align_offset, size_t align_mask,
|
u64 *out_start_pfn)
|
{
|
struct rb_node *rbnode = NULL;
|
struct kbase_va_region *reg = NULL;
|
struct rb_root *rbtree = NULL;
|
|
/* Note that this search is a linear search, as we do not have a target
|
* address in mind, so does not benefit from the rbtree search
|
*/
|
rbtree = reg_reqs->rbtree;
|
|
for (rbnode = rb_first(rbtree); rbnode; rbnode = rb_next(rbnode)) {
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
if ((reg->nr_pages >= nr_pages) &&
|
(reg->flags & KBASE_REG_FREE)) {
|
/* Check alignment */
|
u64 start_pfn = reg->start_pfn;
|
|
/* When align_offset == align, this sequence is
|
* equivalent to:
|
* (start_pfn + align_mask) & ~(align_mask)
|
*
|
* Otherwise, it aligns to n*align + offset, for the
|
* lowest value n that makes this still >start_pfn
|
*/
|
start_pfn += align_mask;
|
start_pfn -= (start_pfn - align_offset) & (align_mask);
|
|
if (!(reg_reqs->flags & KBASE_REG_GPU_NX)) {
|
/* Can't end at 4GB boundary */
|
if (0 == ((start_pfn + nr_pages) & BASE_MEM_PFN_MASK_4GB))
|
start_pfn += align_offset;
|
|
/* Can't start at 4GB boundary */
|
if (0 == (start_pfn & BASE_MEM_PFN_MASK_4GB))
|
start_pfn += align_offset;
|
|
if (!((start_pfn + nr_pages) & BASE_MEM_PFN_MASK_4GB) ||
|
!(start_pfn & BASE_MEM_PFN_MASK_4GB))
|
continue;
|
} else if (reg_reqs->flags &
|
KBASE_REG_GPU_VA_SAME_4GB_PAGE) {
|
u64 end_pfn = start_pfn + nr_pages - 1;
|
|
if ((start_pfn & ~BASE_MEM_PFN_MASK_4GB) !=
|
(end_pfn & ~BASE_MEM_PFN_MASK_4GB))
|
start_pfn = end_pfn & ~BASE_MEM_PFN_MASK_4GB;
|
}
|
|
if ((start_pfn >= reg->start_pfn) &&
|
(start_pfn <= (reg->start_pfn + reg->nr_pages - 1)) &&
|
((start_pfn + nr_pages - 1) <= (reg->start_pfn + reg->nr_pages - 1))) {
|
*out_start_pfn = start_pfn;
|
return reg;
|
}
|
}
|
}
|
|
return NULL;
|
}
|
|
/**
|
* kbase_remove_va_region - Remove a region object from the global list.
|
*
|
* @kbdev: The kbase device
|
* @reg: Region object to remove
|
*
|
* The region reg is removed, possibly by merging with other free and
|
* compatible adjacent regions. It must be called with the context
|
* region lock held. The associated memory is not released (see
|
* kbase_free_alloced_region). Internal use only.
|
*/
|
void kbase_remove_va_region(struct kbase_device *kbdev,
|
struct kbase_va_region *reg)
|
{
|
struct rb_node *rbprev;
|
struct kbase_va_region *prev = NULL;
|
struct rb_node *rbnext;
|
struct kbase_va_region *next = NULL;
|
struct rb_root *reg_rbtree = NULL;
|
struct kbase_va_region *orig_reg = reg;
|
|
int merged_front = 0;
|
int merged_back = 0;
|
|
reg_rbtree = reg->rbtree;
|
|
if (WARN_ON(RB_EMPTY_ROOT(reg_rbtree)))
|
return;
|
|
/* Try to merge with the previous block first */
|
rbprev = rb_prev(&(reg->rblink));
|
if (rbprev) {
|
prev = rb_entry(rbprev, struct kbase_va_region, rblink);
|
if (prev->flags & KBASE_REG_FREE) {
|
/* We're compatible with the previous VMA, merge with
|
* it, handling any gaps for robustness.
|
*/
|
u64 prev_end_pfn = prev->start_pfn + prev->nr_pages;
|
|
WARN_ON((prev->flags & KBASE_REG_ZONE_MASK) !=
|
(reg->flags & KBASE_REG_ZONE_MASK));
|
if (!WARN_ON(reg->start_pfn < prev_end_pfn))
|
prev->nr_pages += reg->start_pfn - prev_end_pfn;
|
prev->nr_pages += reg->nr_pages;
|
rb_erase(&(reg->rblink), reg_rbtree);
|
reg = prev;
|
merged_front = 1;
|
}
|
}
|
|
/* Try to merge with the next block second */
|
/* Note we do the lookup here as the tree may have been rebalanced. */
|
rbnext = rb_next(&(reg->rblink));
|
if (rbnext) {
|
next = rb_entry(rbnext, struct kbase_va_region, rblink);
|
if (next->flags & KBASE_REG_FREE) {
|
/* We're compatible with the next VMA, merge with it,
|
* handling any gaps for robustness.
|
*/
|
u64 reg_end_pfn = reg->start_pfn + reg->nr_pages;
|
|
WARN_ON((next->flags & KBASE_REG_ZONE_MASK) !=
|
(reg->flags & KBASE_REG_ZONE_MASK));
|
if (!WARN_ON(next->start_pfn < reg_end_pfn))
|
next->nr_pages += next->start_pfn - reg_end_pfn;
|
next->start_pfn = reg->start_pfn;
|
next->nr_pages += reg->nr_pages;
|
rb_erase(&(reg->rblink), reg_rbtree);
|
merged_back = 1;
|
}
|
}
|
|
if (merged_front && merged_back) {
|
/* We already merged with prev, free it */
|
kfree(reg);
|
} else if (!(merged_front || merged_back)) {
|
/* If we failed to merge then we need to add a new block */
|
|
/*
|
* We didn't merge anything. Try to add a new free
|
* placeholder, and in any case, remove the original one.
|
*/
|
struct kbase_va_region *free_reg;
|
|
free_reg = kbase_alloc_free_region(kbdev, reg_rbtree, reg->start_pfn, reg->nr_pages,
|
reg->flags & KBASE_REG_ZONE_MASK);
|
if (!free_reg) {
|
/* In case of failure, we cannot allocate a replacement
|
* free region, so we will be left with a 'gap' in the
|
* region tracker's address range (though, the rbtree
|
* will itself still be correct after erasing
|
* 'reg').
|
*
|
* The gap will be rectified when an adjacent region is
|
* removed by one of the above merging paths. Other
|
* paths will gracefully fail to allocate if they try
|
* to allocate in the gap.
|
*
|
* There is nothing that the caller can do, since free
|
* paths must not fail. The existing 'reg' cannot be
|
* repurposed as the free region as callers must have
|
* freedom of use with it by virtue of it being owned
|
* by them, not the region tracker insert/remove code.
|
*/
|
dev_warn(
|
kbdev->dev,
|
"Could not alloc a replacement free region for 0x%.16llx..0x%.16llx",
|
(unsigned long long)reg->start_pfn << PAGE_SHIFT,
|
(unsigned long long)(reg->start_pfn + reg->nr_pages) << PAGE_SHIFT);
|
rb_erase(&(reg->rblink), reg_rbtree);
|
|
goto out;
|
}
|
rb_replace_node(&(reg->rblink), &(free_reg->rblink), reg_rbtree);
|
}
|
|
/* This operation is always safe because the function never frees
|
* the region. If the region has been merged to both front and back,
|
* then it's the previous region that is supposed to be freed.
|
*/
|
orig_reg->start_pfn = 0;
|
|
out:
|
return;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_remove_va_region);
|
|
/**
|
* kbase_insert_va_region_nolock - Insert a VA region to the list,
|
* replacing the existing one.
|
*
|
* @kbdev: The kbase device
|
* @new_reg: The new region to insert
|
* @at_reg: The region to replace
|
* @start_pfn: The Page Frame Number to insert at
|
* @nr_pages: The number of pages of the region
|
*
|
* Return: 0 on success, error code otherwise.
|
*/
|
static int kbase_insert_va_region_nolock(struct kbase_device *kbdev,
|
struct kbase_va_region *new_reg,
|
struct kbase_va_region *at_reg, u64 start_pfn,
|
size_t nr_pages)
|
{
|
struct rb_root *reg_rbtree = NULL;
|
int err = 0;
|
|
reg_rbtree = at_reg->rbtree;
|
|
/* Must be a free region */
|
KBASE_DEBUG_ASSERT((at_reg->flags & KBASE_REG_FREE) != 0);
|
/* start_pfn should be contained within at_reg */
|
KBASE_DEBUG_ASSERT((start_pfn >= at_reg->start_pfn) && (start_pfn < at_reg->start_pfn + at_reg->nr_pages));
|
/* at least nr_pages from start_pfn should be contained within at_reg */
|
KBASE_DEBUG_ASSERT(start_pfn + nr_pages <= at_reg->start_pfn + at_reg->nr_pages);
|
/* having at_reg means the rb_tree should not be empty */
|
if (WARN_ON(RB_EMPTY_ROOT(reg_rbtree)))
|
return -ENOMEM;
|
|
new_reg->start_pfn = start_pfn;
|
new_reg->nr_pages = nr_pages;
|
|
/* Regions are a whole use, so swap and delete old one. */
|
if (at_reg->start_pfn == start_pfn && at_reg->nr_pages == nr_pages) {
|
rb_replace_node(&(at_reg->rblink), &(new_reg->rblink),
|
reg_rbtree);
|
kfree(at_reg);
|
}
|
/* New region replaces the start of the old one, so insert before. */
|
else if (at_reg->start_pfn == start_pfn) {
|
at_reg->start_pfn += nr_pages;
|
KBASE_DEBUG_ASSERT(at_reg->nr_pages >= nr_pages);
|
at_reg->nr_pages -= nr_pages;
|
|
kbase_region_tracker_insert(new_reg);
|
}
|
/* New region replaces the end of the old one, so insert after. */
|
else if ((at_reg->start_pfn + at_reg->nr_pages) == (start_pfn + nr_pages)) {
|
at_reg->nr_pages -= nr_pages;
|
|
kbase_region_tracker_insert(new_reg);
|
}
|
/* New region splits the old one, so insert and create new */
|
else {
|
struct kbase_va_region *new_front_reg;
|
|
new_front_reg = kbase_alloc_free_region(kbdev, reg_rbtree, at_reg->start_pfn,
|
start_pfn - at_reg->start_pfn,
|
at_reg->flags & KBASE_REG_ZONE_MASK);
|
|
if (new_front_reg) {
|
at_reg->nr_pages -= nr_pages + new_front_reg->nr_pages;
|
at_reg->start_pfn = start_pfn + nr_pages;
|
|
kbase_region_tracker_insert(new_front_reg);
|
kbase_region_tracker_insert(new_reg);
|
} else {
|
err = -ENOMEM;
|
}
|
}
|
|
return err;
|
}
|
|
/**
|
* kbase_add_va_region - Add a VA region to the region list for a context.
|
*
|
* @kctx: kbase context containing the region
|
* @reg: the region to add
|
* @addr: the address to insert the region at
|
* @nr_pages: the number of pages in the region
|
* @align: the minimum alignment in pages
|
*
|
* Return: 0 on success, error code otherwise.
|
*/
|
int kbase_add_va_region(struct kbase_context *kctx,
|
struct kbase_va_region *reg, u64 addr,
|
size_t nr_pages, size_t align)
|
{
|
int err = 0;
|
struct kbase_device *kbdev = kctx->kbdev;
|
int cpu_va_bits = kbase_get_num_cpu_va_bits(kctx);
|
int gpu_pc_bits =
|
kbdev->gpu_props.props.core_props.log2_program_counter_size;
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
KBASE_DEBUG_ASSERT(reg != NULL);
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* The executable allocation from the SAME_VA zone should already have an
|
* appropriately aligned GPU VA chosen for it.
|
* Also, executable allocations from EXEC_VA don't need the special
|
* alignment.
|
*/
|
#if MALI_USE_CSF
|
/* The same is also true for the EXEC_FIXED_VA zone.
|
*/
|
#endif
|
if (!(reg->flags & KBASE_REG_GPU_NX) && !addr &&
|
#if MALI_USE_CSF
|
((reg->flags & KBASE_REG_ZONE_MASK) != KBASE_REG_ZONE_EXEC_FIXED_VA) &&
|
#endif
|
((reg->flags & KBASE_REG_ZONE_MASK) != KBASE_REG_ZONE_EXEC_VA)) {
|
if (cpu_va_bits > gpu_pc_bits) {
|
align = max(align, (size_t)((1ULL << gpu_pc_bits)
|
>> PAGE_SHIFT));
|
}
|
}
|
|
do {
|
err = kbase_add_va_region_rbtree(kbdev, reg, addr, nr_pages,
|
align);
|
if (err != -ENOMEM)
|
break;
|
|
/*
|
* If the allocation is not from the same zone as JIT
|
* then don't retry, we're out of VA and there is
|
* nothing which can be done about it.
|
*/
|
if ((reg->flags & KBASE_REG_ZONE_MASK) !=
|
KBASE_REG_ZONE_CUSTOM_VA)
|
break;
|
} while (kbase_jit_evict(kctx));
|
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_add_va_region);
|
|
/**
|
* kbase_add_va_region_rbtree - Insert a region into its corresponding rbtree
|
*
|
* @kbdev: The kbase device
|
* @reg: The region to add
|
* @addr: The address to add the region at, or 0 to map at any available address
|
* @nr_pages: The size of the region in pages
|
* @align: The minimum alignment in pages
|
*
|
* Insert a region into the rbtree that was specified when the region was
|
* created. If addr is 0 a free area in the rbtree is used, otherwise the
|
* specified address is used.
|
*
|
* Return: 0 on success, error code otherwise.
|
*/
|
int kbase_add_va_region_rbtree(struct kbase_device *kbdev,
|
struct kbase_va_region *reg,
|
u64 addr, size_t nr_pages, size_t align)
|
{
|
struct device *const dev = kbdev->dev;
|
struct rb_root *rbtree = NULL;
|
struct kbase_va_region *tmp;
|
u64 gpu_pfn = addr >> PAGE_SHIFT;
|
int err = 0;
|
|
rbtree = reg->rbtree;
|
|
if (!align)
|
align = 1;
|
|
/* must be a power of 2 */
|
KBASE_DEBUG_ASSERT(is_power_of_2(align));
|
KBASE_DEBUG_ASSERT(nr_pages > 0);
|
|
/* Path 1: Map a specific address. Find the enclosing region,
|
* which *must* be free.
|
*/
|
if (gpu_pfn) {
|
KBASE_DEBUG_ASSERT(!(gpu_pfn & (align - 1)));
|
|
tmp = find_region_enclosing_range_rbtree(rbtree, gpu_pfn,
|
nr_pages);
|
if (kbase_is_region_invalid(tmp)) {
|
dev_warn(dev, "Enclosing region not found or invalid: 0x%08llx gpu_pfn, %zu nr_pages", gpu_pfn, nr_pages);
|
err = -ENOMEM;
|
goto exit;
|
} else if (!kbase_is_region_free(tmp)) {
|
dev_warn(dev, "!(tmp->flags & KBASE_REG_FREE): tmp->start_pfn=0x%llx tmp->flags=0x%lx tmp->nr_pages=0x%zx gpu_pfn=0x%llx nr_pages=0x%zx\n",
|
tmp->start_pfn, tmp->flags,
|
tmp->nr_pages, gpu_pfn, nr_pages);
|
err = -ENOMEM;
|
goto exit;
|
}
|
|
err = kbase_insert_va_region_nolock(kbdev, reg, tmp, gpu_pfn, nr_pages);
|
if (err) {
|
dev_warn(dev, "Failed to insert va region");
|
err = -ENOMEM;
|
}
|
} else {
|
/* Path 2: Map any free address which meets the requirements. */
|
u64 start_pfn;
|
size_t align_offset = align;
|
size_t align_mask = align - 1;
|
|
#if !MALI_USE_CSF
|
if ((reg->flags & KBASE_REG_TILER_ALIGN_TOP)) {
|
WARN(align > 1, "%s with align %lx might not be honored for KBASE_REG_TILER_ALIGN_TOP memory",
|
__func__,
|
(unsigned long)align);
|
align_mask = reg->extension - 1;
|
align_offset = reg->extension - reg->initial_commit;
|
}
|
#endif /* !MALI_USE_CSF */
|
|
tmp = kbase_region_tracker_find_region_meeting_reqs(reg,
|
nr_pages, align_offset, align_mask,
|
&start_pfn);
|
if (tmp) {
|
err = kbase_insert_va_region_nolock(kbdev, reg, tmp, start_pfn, nr_pages);
|
if (unlikely(err)) {
|
dev_warn(dev, "Failed to insert region: 0x%08llx start_pfn, %zu nr_pages",
|
start_pfn, nr_pages);
|
}
|
} else {
|
dev_dbg(dev, "Failed to find a suitable region: %zu nr_pages, %zu align_offset, %zu align_mask\n",
|
nr_pages, align_offset, align_mask);
|
err = -ENOMEM;
|
}
|
}
|
|
exit:
|
return err;
|
}
|
|
/*
|
* @brief Initialize the internal region tracker data structure.
|
*/
|
#if MALI_USE_CSF
|
static void kbase_region_tracker_ds_init(struct kbase_context *kctx,
|
struct kbase_va_region *same_va_reg,
|
struct kbase_va_region *custom_va_reg,
|
struct kbase_va_region *exec_va_reg,
|
struct kbase_va_region *exec_fixed_va_reg,
|
struct kbase_va_region *fixed_va_reg)
|
{
|
u64 last_zone_end_pfn;
|
|
kctx->reg_rbtree_same = RB_ROOT;
|
kbase_region_tracker_insert(same_va_reg);
|
|
last_zone_end_pfn = same_va_reg->start_pfn + same_va_reg->nr_pages;
|
|
/* Although custom_va_reg doesn't always exist, initialize
|
* unconditionally because of the mem_view debugfs
|
* implementation which relies on it being empty.
|
*/
|
kctx->reg_rbtree_custom = RB_ROOT;
|
kctx->reg_rbtree_exec = RB_ROOT;
|
|
if (custom_va_reg) {
|
WARN_ON(custom_va_reg->start_pfn < last_zone_end_pfn);
|
kbase_region_tracker_insert(custom_va_reg);
|
last_zone_end_pfn = custom_va_reg->start_pfn + custom_va_reg->nr_pages;
|
}
|
|
/* Initialize exec, fixed and exec_fixed. These are always
|
* initialized at this stage, if they will exist at all.
|
*/
|
kctx->reg_rbtree_fixed = RB_ROOT;
|
kctx->reg_rbtree_exec_fixed = RB_ROOT;
|
|
if (exec_va_reg) {
|
WARN_ON(exec_va_reg->start_pfn < last_zone_end_pfn);
|
kbase_region_tracker_insert(exec_va_reg);
|
last_zone_end_pfn = exec_va_reg->start_pfn + exec_va_reg->nr_pages;
|
}
|
|
if (exec_fixed_va_reg) {
|
WARN_ON(exec_fixed_va_reg->start_pfn < last_zone_end_pfn);
|
kbase_region_tracker_insert(exec_fixed_va_reg);
|
last_zone_end_pfn = exec_fixed_va_reg->start_pfn + exec_fixed_va_reg->nr_pages;
|
}
|
|
if (fixed_va_reg) {
|
WARN_ON(fixed_va_reg->start_pfn < last_zone_end_pfn);
|
kbase_region_tracker_insert(fixed_va_reg);
|
last_zone_end_pfn = fixed_va_reg->start_pfn + fixed_va_reg->nr_pages;
|
}
|
}
|
#else
|
static void kbase_region_tracker_ds_init(struct kbase_context *kctx,
|
struct kbase_va_region *same_va_reg,
|
struct kbase_va_region *custom_va_reg)
|
{
|
kctx->reg_rbtree_same = RB_ROOT;
|
kbase_region_tracker_insert(same_va_reg);
|
|
/* Although custom_va_reg and exec_va_reg don't always exist,
|
* initialize unconditionally because of the mem_view debugfs
|
* implementation which relies on them being empty.
|
*
|
* The difference between the two is that the EXEC_VA region
|
* is never initialized at this stage.
|
*/
|
kctx->reg_rbtree_custom = RB_ROOT;
|
kctx->reg_rbtree_exec = RB_ROOT;
|
|
if (custom_va_reg)
|
kbase_region_tracker_insert(custom_va_reg);
|
}
|
#endif /* MALI_USE_CSF */
|
|
static struct kbase_context *kbase_reg_flags_to_kctx(struct kbase_va_region *reg)
|
{
|
struct kbase_context *kctx = NULL;
|
struct rb_root *rbtree = reg->rbtree;
|
|
switch (reg->flags & KBASE_REG_ZONE_MASK) {
|
case KBASE_REG_ZONE_CUSTOM_VA:
|
kctx = container_of(rbtree, struct kbase_context, reg_rbtree_custom);
|
break;
|
case KBASE_REG_ZONE_SAME_VA:
|
kctx = container_of(rbtree, struct kbase_context, reg_rbtree_same);
|
break;
|
case KBASE_REG_ZONE_EXEC_VA:
|
kctx = container_of(rbtree, struct kbase_context, reg_rbtree_exec);
|
break;
|
#if MALI_USE_CSF
|
case KBASE_REG_ZONE_EXEC_FIXED_VA:
|
kctx = container_of(rbtree, struct kbase_context, reg_rbtree_exec_fixed);
|
break;
|
case KBASE_REG_ZONE_FIXED_VA:
|
kctx = container_of(rbtree, struct kbase_context, reg_rbtree_fixed);
|
break;
|
case KBASE_REG_ZONE_MCU_SHARED:
|
/* This is only expected to be called on driver unload. */
|
break;
|
#endif
|
default:
|
WARN(1, "Unknown zone in region: flags=0x%lx\n", reg->flags);
|
break;
|
}
|
|
return kctx;
|
}
|
|
static void kbase_region_tracker_erase_rbtree(struct rb_root *rbtree)
|
{
|
struct rb_node *rbnode;
|
struct kbase_va_region *reg;
|
|
do {
|
rbnode = rb_first(rbtree);
|
if (rbnode) {
|
rb_erase(rbnode, rbtree);
|
reg = rb_entry(rbnode, struct kbase_va_region, rblink);
|
WARN_ON(kbase_refcount_read(®->va_refcnt) != 1);
|
if (kbase_page_migration_enabled)
|
kbase_gpu_munmap(kbase_reg_flags_to_kctx(reg), reg);
|
/* Reset the start_pfn - as the rbtree is being
|
* destroyed and we've already erased this region, there
|
* is no further need to attempt to remove it.
|
* This won't affect the cleanup if the region was
|
* being used as a sticky resource as the cleanup
|
* related to sticky resources anyways need to be
|
* performed before the term of region tracker.
|
*/
|
reg->start_pfn = 0;
|
kbase_free_alloced_region(reg);
|
}
|
} while (rbnode);
|
}
|
|
void kbase_region_tracker_term(struct kbase_context *kctx)
|
{
|
WARN(kctx->as_nr != KBASEP_AS_NR_INVALID,
|
"kctx-%d_%d must first be scheduled out to flush GPU caches+tlbs before erasing remaining regions",
|
kctx->tgid, kctx->id);
|
|
kbase_gpu_vm_lock(kctx);
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_same);
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_custom);
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_exec);
|
#if MALI_USE_CSF
|
WARN_ON(!list_empty(&kctx->csf.event_pages_head));
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_exec_fixed);
|
kbase_region_tracker_erase_rbtree(&kctx->reg_rbtree_fixed);
|
|
#endif
|
kbase_gpu_vm_unlock(kctx);
|
}
|
|
void kbase_region_tracker_term_rbtree(struct rb_root *rbtree)
|
{
|
kbase_region_tracker_erase_rbtree(rbtree);
|
}
|
|
static size_t kbase_get_same_va_bits(struct kbase_context *kctx)
|
{
|
return min_t(size_t, kbase_get_num_cpu_va_bits(kctx),
|
kctx->kbdev->gpu_props.mmu.va_bits);
|
}
|
|
int kbase_region_tracker_init(struct kbase_context *kctx)
|
{
|
struct kbase_va_region *same_va_reg;
|
struct kbase_va_region *custom_va_reg = NULL;
|
size_t same_va_bits = kbase_get_same_va_bits(kctx);
|
u64 custom_va_size = KBASE_REG_ZONE_CUSTOM_VA_SIZE;
|
u64 gpu_va_bits = kctx->kbdev->gpu_props.mmu.va_bits;
|
u64 gpu_va_limit = (1ULL << gpu_va_bits) >> PAGE_SHIFT;
|
u64 same_va_pages;
|
u64 same_va_base = 1u;
|
int err;
|
#if MALI_USE_CSF
|
struct kbase_va_region *exec_va_reg;
|
struct kbase_va_region *exec_fixed_va_reg;
|
struct kbase_va_region *fixed_va_reg;
|
|
u64 exec_va_base;
|
u64 fixed_va_end;
|
u64 exec_fixed_va_base;
|
u64 fixed_va_base;
|
u64 fixed_va_pages;
|
#endif
|
|
/* Take the lock as kbase_free_alloced_region requires it */
|
kbase_gpu_vm_lock(kctx);
|
|
same_va_pages = (1ULL << (same_va_bits - PAGE_SHIFT)) - same_va_base;
|
|
#if MALI_USE_CSF
|
if ((same_va_base + same_va_pages) > KBASE_REG_ZONE_EXEC_VA_BASE_64) {
|
/* Depending on how the kernel is configured, it's possible (eg on aarch64) for
|
* same_va_bits to reach 48 bits. Cap same_va_pages so that the same_va zone
|
* doesn't cross into the exec_va zone.
|
*/
|
same_va_pages = KBASE_REG_ZONE_EXEC_VA_BASE_64 - same_va_base;
|
}
|
#endif
|
|
/* all have SAME_VA */
|
same_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_same, same_va_base,
|
same_va_pages, KBASE_REG_ZONE_SAME_VA);
|
|
if (!same_va_reg) {
|
err = -ENOMEM;
|
goto fail_unlock;
|
}
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_SAME_VA, same_va_base,
|
same_va_pages);
|
|
if (kbase_ctx_compat_mode(kctx)) {
|
if (gpu_va_limit <= KBASE_REG_ZONE_CUSTOM_VA_BASE) {
|
err = -EINVAL;
|
goto fail_free_same_va;
|
}
|
/* If the current size of TMEM is out of range of the
|
* virtual address space addressable by the MMU then
|
* we should shrink it to fit
|
*/
|
if ((KBASE_REG_ZONE_CUSTOM_VA_BASE + KBASE_REG_ZONE_CUSTOM_VA_SIZE) >= gpu_va_limit)
|
custom_va_size = gpu_va_limit - KBASE_REG_ZONE_CUSTOM_VA_BASE;
|
|
custom_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_custom,
|
KBASE_REG_ZONE_CUSTOM_VA_BASE,
|
custom_va_size, KBASE_REG_ZONE_CUSTOM_VA);
|
|
if (!custom_va_reg) {
|
err = -ENOMEM;
|
goto fail_free_same_va;
|
}
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_CUSTOM_VA,
|
KBASE_REG_ZONE_CUSTOM_VA_BASE,
|
custom_va_size);
|
} else {
|
custom_va_size = 0;
|
}
|
|
#if MALI_USE_CSF
|
/* The position of EXEC_VA depends on whether the client is 32-bit or 64-bit. */
|
exec_va_base = KBASE_REG_ZONE_EXEC_VA_BASE_64;
|
|
/* Similarly the end of the FIXED_VA zone also depends on whether the client
|
* is 32 or 64-bits.
|
*/
|
fixed_va_end = KBASE_REG_ZONE_FIXED_VA_END_64;
|
|
if (kbase_ctx_compat_mode(kctx)) {
|
exec_va_base = KBASE_REG_ZONE_EXEC_VA_BASE_32;
|
fixed_va_end = KBASE_REG_ZONE_FIXED_VA_END_32;
|
}
|
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_EXEC_VA, exec_va_base,
|
KBASE_REG_ZONE_EXEC_VA_SIZE);
|
|
exec_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_exec, exec_va_base,
|
KBASE_REG_ZONE_EXEC_VA_SIZE, KBASE_REG_ZONE_EXEC_VA);
|
|
if (!exec_va_reg) {
|
err = -ENOMEM;
|
goto fail_free_custom_va;
|
}
|
|
exec_fixed_va_base = exec_va_base + KBASE_REG_ZONE_EXEC_VA_SIZE;
|
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_EXEC_FIXED_VA, exec_fixed_va_base,
|
KBASE_REG_ZONE_EXEC_FIXED_VA_SIZE);
|
|
exec_fixed_va_reg =
|
kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_exec_fixed,
|
exec_fixed_va_base, KBASE_REG_ZONE_EXEC_FIXED_VA_SIZE,
|
KBASE_REG_ZONE_EXEC_FIXED_VA);
|
|
if (!exec_fixed_va_reg) {
|
err = -ENOMEM;
|
goto fail_free_exec_va;
|
}
|
|
fixed_va_base = exec_fixed_va_base + KBASE_REG_ZONE_EXEC_FIXED_VA_SIZE;
|
fixed_va_pages = fixed_va_end - fixed_va_base;
|
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_FIXED_VA, fixed_va_base, fixed_va_pages);
|
|
fixed_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_fixed, fixed_va_base,
|
fixed_va_pages, KBASE_REG_ZONE_FIXED_VA);
|
|
kctx->gpu_va_end = fixed_va_end;
|
|
if (!fixed_va_reg) {
|
err = -ENOMEM;
|
goto fail_free_exec_fixed_va;
|
}
|
|
kbase_region_tracker_ds_init(kctx, same_va_reg, custom_va_reg, exec_va_reg,
|
exec_fixed_va_reg, fixed_va_reg);
|
|
INIT_LIST_HEAD(&kctx->csf.event_pages_head);
|
#else
|
/* EXEC_VA zone's codepaths are slightly easier when its base_pfn is
|
* initially U64_MAX
|
*/
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_EXEC_VA, U64_MAX, 0u);
|
/* Other zones are 0: kbase_create_context() uses vzalloc */
|
|
kbase_region_tracker_ds_init(kctx, same_va_reg, custom_va_reg);
|
kctx->gpu_va_end = same_va_base + same_va_pages + custom_va_size;
|
#endif
|
kctx->jit_va = false;
|
|
kbase_gpu_vm_unlock(kctx);
|
return 0;
|
|
#if MALI_USE_CSF
|
fail_free_exec_fixed_va:
|
kbase_free_alloced_region(exec_fixed_va_reg);
|
fail_free_exec_va:
|
kbase_free_alloced_region(exec_va_reg);
|
fail_free_custom_va:
|
if (custom_va_reg)
|
kbase_free_alloced_region(custom_va_reg);
|
#endif
|
|
fail_free_same_va:
|
kbase_free_alloced_region(same_va_reg);
|
fail_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return err;
|
}
|
|
static bool kbase_has_exec_va_zone_locked(struct kbase_context *kctx)
|
{
|
struct kbase_reg_zone *exec_va_zone;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
exec_va_zone = kbase_ctx_reg_zone_get(kctx, KBASE_REG_ZONE_EXEC_VA);
|
|
return (exec_va_zone->base_pfn != U64_MAX);
|
}
|
|
bool kbase_has_exec_va_zone(struct kbase_context *kctx)
|
{
|
bool has_exec_va_zone;
|
|
kbase_gpu_vm_lock(kctx);
|
has_exec_va_zone = kbase_has_exec_va_zone_locked(kctx);
|
kbase_gpu_vm_unlock(kctx);
|
|
return has_exec_va_zone;
|
}
|
|
/**
|
* kbase_region_tracker_has_allocs - Determine if any allocations have been made
|
* on a context's region tracker
|
*
|
* @kctx: KBase context
|
*
|
* Check the context to determine if any allocations have been made yet from
|
* any of its zones. This check should be done before resizing a zone, e.g. to
|
* make space to add a second zone.
|
*
|
* Whilst a zone without allocations can be resized whilst other zones have
|
* allocations, we still check all of @kctx 's zones anyway: this is a stronger
|
* guarantee and should be adhered to when creating new zones anyway.
|
*
|
* Allocations from kbdev zones are not counted.
|
*
|
* Return: true if any allocs exist on any zone, false otherwise
|
*/
|
static bool kbase_region_tracker_has_allocs(struct kbase_context *kctx)
|
{
|
unsigned int zone_idx;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
for (zone_idx = 0; zone_idx < KBASE_REG_ZONE_MAX; ++zone_idx) {
|
struct kbase_reg_zone *zone;
|
struct kbase_va_region *reg;
|
u64 zone_base_addr;
|
unsigned long zone_bits = KBASE_REG_ZONE(zone_idx);
|
unsigned long reg_zone;
|
|
if (!kbase_is_ctx_reg_zone(zone_bits))
|
continue;
|
zone = kbase_ctx_reg_zone_get(kctx, zone_bits);
|
zone_base_addr = zone->base_pfn << PAGE_SHIFT;
|
|
reg = kbase_region_tracker_find_region_base_address(
|
kctx, zone_base_addr);
|
|
if (!zone->va_size_pages) {
|
WARN(reg,
|
"Should not have found a region that starts at 0x%.16llx for zone 0x%lx",
|
(unsigned long long)zone_base_addr, zone_bits);
|
continue;
|
}
|
|
if (WARN(!reg,
|
"There should always be a region that starts at 0x%.16llx for zone 0x%lx, couldn't find it",
|
(unsigned long long)zone_base_addr, zone_bits))
|
return true; /* Safest return value */
|
|
reg_zone = reg->flags & KBASE_REG_ZONE_MASK;
|
if (WARN(reg_zone != zone_bits,
|
"The region that starts at 0x%.16llx should be in zone 0x%lx but was found in the wrong zone 0x%lx",
|
(unsigned long long)zone_base_addr, zone_bits,
|
reg_zone))
|
return true; /* Safest return value */
|
|
/* Unless the region is completely free, of the same size as
|
* the original zone, then it has allocs
|
*/
|
if ((!(reg->flags & KBASE_REG_FREE)) ||
|
(reg->nr_pages != zone->va_size_pages))
|
return true;
|
}
|
|
/* All zones are the same size as originally made, so there are no
|
* allocs
|
*/
|
return false;
|
}
|
|
static int kbase_region_tracker_init_jit_64(struct kbase_context *kctx,
|
u64 jit_va_pages)
|
{
|
struct kbase_va_region *same_va_reg;
|
struct kbase_reg_zone *same_va_zone;
|
u64 same_va_zone_base_addr;
|
const unsigned long same_va_zone_bits = KBASE_REG_ZONE_SAME_VA;
|
struct kbase_va_region *custom_va_reg;
|
u64 jit_va_start;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/*
|
* Modify the same VA free region after creation. The caller has
|
* ensured that allocations haven't been made, as any allocations could
|
* cause an overlap to happen with existing same VA allocations and the
|
* custom VA zone.
|
*/
|
same_va_zone = kbase_ctx_reg_zone_get(kctx, same_va_zone_bits);
|
same_va_zone_base_addr = same_va_zone->base_pfn << PAGE_SHIFT;
|
|
same_va_reg = kbase_region_tracker_find_region_base_address(
|
kctx, same_va_zone_base_addr);
|
if (WARN(!same_va_reg,
|
"Already found a free region at the start of every zone, but now cannot find any region for zone base 0x%.16llx zone 0x%lx",
|
(unsigned long long)same_va_zone_base_addr, same_va_zone_bits))
|
return -ENOMEM;
|
|
/* kbase_region_tracker_has_allocs() in the caller has already ensured
|
* that all of the zones have no allocs, so no need to check that again
|
* on same_va_reg
|
*/
|
WARN_ON((!(same_va_reg->flags & KBASE_REG_FREE)) ||
|
same_va_reg->nr_pages != same_va_zone->va_size_pages);
|
|
if (same_va_reg->nr_pages < jit_va_pages ||
|
same_va_zone->va_size_pages < jit_va_pages)
|
return -ENOMEM;
|
|
/* It's safe to adjust the same VA zone now */
|
same_va_reg->nr_pages -= jit_va_pages;
|
same_va_zone->va_size_pages -= jit_va_pages;
|
jit_va_start = kbase_reg_zone_end_pfn(same_va_zone);
|
|
/*
|
* Create a custom VA zone at the end of the VA for allocations which
|
* JIT can use so it doesn't have to allocate VA from the kernel.
|
*/
|
custom_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_custom, jit_va_start,
|
jit_va_pages, KBASE_REG_ZONE_CUSTOM_VA);
|
|
/*
|
* The context will be destroyed if we fail here so no point
|
* reverting the change we made to same_va.
|
*/
|
if (!custom_va_reg)
|
return -ENOMEM;
|
/* Since this is 64-bit, the custom zone will not have been
|
* initialized, so initialize it now
|
*/
|
kbase_ctx_reg_zone_init(kctx, KBASE_REG_ZONE_CUSTOM_VA, jit_va_start,
|
jit_va_pages);
|
|
kbase_region_tracker_insert(custom_va_reg);
|
return 0;
|
}
|
|
int kbase_region_tracker_init_jit(struct kbase_context *kctx, u64 jit_va_pages,
|
int max_allocations, int trim_level, int group_id,
|
u64 phys_pages_limit)
|
{
|
int err = 0;
|
|
if (trim_level < 0 || trim_level > BASE_JIT_MAX_TRIM_LEVEL)
|
return -EINVAL;
|
|
if (group_id < 0 || group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS)
|
return -EINVAL;
|
|
if (phys_pages_limit > jit_va_pages)
|
return -EINVAL;
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (phys_pages_limit != jit_va_pages)
|
kbase_ctx_flag_set(kctx, KCTX_JPL_ENABLED);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
kbase_gpu_vm_lock(kctx);
|
|
/* Verify that a JIT_VA zone has not been created already. */
|
if (kctx->jit_va) {
|
err = -EINVAL;
|
goto exit_unlock;
|
}
|
|
/* If in 64-bit, we always lookup the SAME_VA zone. To ensure it has no
|
* allocs, we can ensure there are no allocs anywhere.
|
*
|
* This check is also useful in 32-bit, just to make sure init of the
|
* zone is always done before any allocs.
|
*/
|
if (kbase_region_tracker_has_allocs(kctx)) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
|
if (!kbase_ctx_compat_mode(kctx))
|
err = kbase_region_tracker_init_jit_64(kctx, jit_va_pages);
|
/*
|
* Nothing to do for 32-bit clients, JIT uses the existing
|
* custom VA zone.
|
*/
|
|
if (!err) {
|
kctx->jit_max_allocations = max_allocations;
|
kctx->trim_level = trim_level;
|
kctx->jit_va = true;
|
kctx->jit_group_id = group_id;
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
kctx->jit_phys_pages_limit = phys_pages_limit;
|
dev_dbg(kctx->kbdev->dev, "phys_pages_limit set to %llu\n",
|
phys_pages_limit);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
}
|
|
exit_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
|
return err;
|
}
|
|
int kbase_region_tracker_init_exec(struct kbase_context *kctx, u64 exec_va_pages)
|
{
|
#if !MALI_USE_CSF
|
struct kbase_va_region *exec_va_reg;
|
struct kbase_reg_zone *exec_va_zone;
|
struct kbase_reg_zone *target_zone;
|
struct kbase_va_region *target_reg;
|
u64 target_zone_base_addr;
|
unsigned long target_zone_bits;
|
u64 exec_va_start;
|
int err;
|
#endif
|
|
/* The EXEC_VA zone shall be created by making space either:
|
* - for 64-bit clients, at the end of the process's address space
|
* - for 32-bit clients, in the CUSTOM zone
|
*
|
* Firstly, verify that the number of EXEC_VA pages requested by the
|
* client is reasonable and then make sure that it is not greater than
|
* the address space itself before calculating the base address of the
|
* new zone.
|
*/
|
if (exec_va_pages == 0 || exec_va_pages > KBASE_REG_ZONE_EXEC_VA_MAX_PAGES)
|
return -EINVAL;
|
|
#if MALI_USE_CSF
|
/* For CSF GPUs we now setup the EXEC_VA zone during initialization,
|
* so this request is a null-op.
|
*/
|
return 0;
|
#else
|
kbase_gpu_vm_lock(kctx);
|
|
/* Verify that we've not already created a EXEC_VA zone, and that the
|
* EXEC_VA zone must come before JIT's CUSTOM_VA.
|
*/
|
if (kbase_has_exec_va_zone_locked(kctx) || kctx->jit_va) {
|
err = -EPERM;
|
goto exit_unlock;
|
}
|
|
if (exec_va_pages > kctx->gpu_va_end) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
|
/* Verify no allocations have already been made */
|
if (kbase_region_tracker_has_allocs(kctx)) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
|
if (kbase_ctx_compat_mode(kctx)) {
|
/* 32-bit client: take from CUSTOM_VA zone */
|
target_zone_bits = KBASE_REG_ZONE_CUSTOM_VA;
|
} else {
|
/* 64-bit client: take from SAME_VA zone */
|
target_zone_bits = KBASE_REG_ZONE_SAME_VA;
|
}
|
|
target_zone = kbase_ctx_reg_zone_get(kctx, target_zone_bits);
|
target_zone_base_addr = target_zone->base_pfn << PAGE_SHIFT;
|
|
target_reg = kbase_region_tracker_find_region_base_address(
|
kctx, target_zone_base_addr);
|
if (WARN(!target_reg,
|
"Already found a free region at the start of every zone, but now cannot find any region for zone base 0x%.16llx zone 0x%lx",
|
(unsigned long long)target_zone_base_addr, target_zone_bits)) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
/* kbase_region_tracker_has_allocs() above has already ensured that all
|
* of the zones have no allocs, so no need to check that again on
|
* target_reg
|
*/
|
WARN_ON((!(target_reg->flags & KBASE_REG_FREE)) ||
|
target_reg->nr_pages != target_zone->va_size_pages);
|
|
if (target_reg->nr_pages <= exec_va_pages ||
|
target_zone->va_size_pages <= exec_va_pages) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
|
/* Taken from the end of the target zone */
|
exec_va_start = kbase_reg_zone_end_pfn(target_zone) - exec_va_pages;
|
|
exec_va_reg = kbase_alloc_free_region(kctx->kbdev, &kctx->reg_rbtree_exec, exec_va_start,
|
exec_va_pages, KBASE_REG_ZONE_EXEC_VA);
|
if (!exec_va_reg) {
|
err = -ENOMEM;
|
goto exit_unlock;
|
}
|
/* Update EXEC_VA zone
|
*
|
* not using kbase_ctx_reg_zone_init() - it was already initialized
|
*/
|
exec_va_zone = kbase_ctx_reg_zone_get(kctx, KBASE_REG_ZONE_EXEC_VA);
|
exec_va_zone->base_pfn = exec_va_start;
|
exec_va_zone->va_size_pages = exec_va_pages;
|
|
/* Update target zone and corresponding region */
|
target_reg->nr_pages -= exec_va_pages;
|
target_zone->va_size_pages -= exec_va_pages;
|
|
kbase_region_tracker_insert(exec_va_reg);
|
err = 0;
|
|
exit_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return err;
|
#endif /* MALI_USE_CSF */
|
}
|
|
#if MALI_USE_CSF
|
void kbase_mcu_shared_interface_region_tracker_term(struct kbase_device *kbdev)
|
{
|
kbase_region_tracker_term_rbtree(&kbdev->csf.shared_reg_rbtree);
|
}
|
|
int kbase_mcu_shared_interface_region_tracker_init(struct kbase_device *kbdev)
|
{
|
struct kbase_va_region *shared_reg;
|
u64 shared_reg_start_pfn;
|
u64 shared_reg_size;
|
|
shared_reg_start_pfn = KBASE_REG_ZONE_MCU_SHARED_BASE;
|
shared_reg_size = KBASE_REG_ZONE_MCU_SHARED_SIZE;
|
|
kbdev->csf.shared_reg_rbtree = RB_ROOT;
|
|
shared_reg =
|
kbase_alloc_free_region(kbdev, &kbdev->csf.shared_reg_rbtree, shared_reg_start_pfn,
|
shared_reg_size, KBASE_REG_ZONE_MCU_SHARED);
|
if (!shared_reg)
|
return -ENOMEM;
|
|
kbase_region_tracker_insert(shared_reg);
|
return 0;
|
}
|
#endif
|
|
static void kbasep_mem_page_size_init(struct kbase_device *kbdev)
|
{
|
#if IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC_OVERRIDE)
|
#if IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC)
|
kbdev->pagesize_2mb = true;
|
if (kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_LARGE_PAGE_ALLOC) != 1) {
|
dev_warn(
|
kbdev->dev,
|
"2MB page is enabled by force while current GPU-HW doesn't meet the requirement to do so.\n");
|
}
|
#else /* IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC) */
|
kbdev->pagesize_2mb = false;
|
#endif /* IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC) */
|
#else /* IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC_OVERRIDE) */
|
/* Set it to the default based on which GPU is present */
|
kbdev->pagesize_2mb = kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_LARGE_PAGE_ALLOC);
|
#endif /* IS_ENABLED(CONFIG_LARGE_PAGE_ALLOC_OVERRIDE) */
|
}
|
|
int kbase_mem_init(struct kbase_device *kbdev)
|
{
|
int err = 0;
|
struct kbasep_mem_device *memdev;
|
char va_region_slab_name[VA_REGION_SLAB_NAME_SIZE];
|
#if IS_ENABLED(CONFIG_OF)
|
struct device_node *mgm_node = NULL;
|
#endif
|
|
KBASE_DEBUG_ASSERT(kbdev);
|
|
memdev = &kbdev->memdev;
|
|
kbasep_mem_page_size_init(kbdev);
|
|
scnprintf(va_region_slab_name, VA_REGION_SLAB_NAME_SIZE, VA_REGION_SLAB_NAME_PREFIX "%s",
|
kbdev->devname);
|
|
/* Initialize slab cache for kbase_va_regions */
|
kbdev->va_region_slab =
|
kmem_cache_create(va_region_slab_name, sizeof(struct kbase_va_region), 0, 0, NULL);
|
if (kbdev->va_region_slab == NULL) {
|
dev_err(kbdev->dev, "Failed to create va_region_slab\n");
|
return -ENOMEM;
|
}
|
|
kbase_mem_migrate_init(kbdev);
|
kbase_mem_pool_group_config_set_max_size(&kbdev->mem_pool_defaults,
|
KBASE_MEM_POOL_MAX_SIZE_KCTX);
|
|
/* Initialize memory usage */
|
atomic_set(&memdev->used_pages, 0);
|
|
spin_lock_init(&kbdev->gpu_mem_usage_lock);
|
kbdev->total_gpu_pages = 0;
|
kbdev->process_root = RB_ROOT;
|
kbdev->dma_buf_root = RB_ROOT;
|
mutex_init(&kbdev->dma_buf_lock);
|
|
#ifdef IR_THRESHOLD
|
atomic_set(&memdev->ir_threshold, IR_THRESHOLD);
|
#else
|
atomic_set(&memdev->ir_threshold, DEFAULT_IR_THRESHOLD);
|
#endif
|
|
kbdev->mgm_dev = &kbase_native_mgm_dev;
|
|
#if IS_ENABLED(CONFIG_OF)
|
/* Check to see whether or not a platform-specific memory group manager
|
* is configured and available.
|
*/
|
mgm_node = of_parse_phandle(kbdev->dev->of_node,
|
"physical-memory-group-manager", 0);
|
if (!mgm_node) {
|
dev_info(kbdev->dev,
|
"No memory group manager is configured\n");
|
} else {
|
struct platform_device *const pdev =
|
of_find_device_by_node(mgm_node);
|
|
if (!pdev) {
|
dev_err(kbdev->dev,
|
"The configured memory group manager was not found\n");
|
} else {
|
kbdev->mgm_dev = platform_get_drvdata(pdev);
|
if (!kbdev->mgm_dev) {
|
dev_info(kbdev->dev,
|
"Memory group manager is not ready\n");
|
err = -EPROBE_DEFER;
|
} else if (!try_module_get(kbdev->mgm_dev->owner)) {
|
dev_err(kbdev->dev,
|
"Failed to get memory group manger module\n");
|
err = -ENODEV;
|
kbdev->mgm_dev = NULL;
|
} else {
|
dev_info(kbdev->dev,
|
"Memory group manager successfully loaded\n");
|
}
|
}
|
of_node_put(mgm_node);
|
}
|
#endif
|
|
if (likely(!err)) {
|
struct kbase_mem_pool_group_config mem_pool_defaults;
|
|
kbase_mem_pool_group_config_set_max_size(&mem_pool_defaults,
|
KBASE_MEM_POOL_MAX_SIZE_KBDEV);
|
|
err = kbase_mem_pool_group_init(&kbdev->mem_pools, kbdev, &mem_pool_defaults, NULL);
|
}
|
|
return err;
|
}
|
|
void kbase_mem_halt(struct kbase_device *kbdev)
|
{
|
CSTD_UNUSED(kbdev);
|
}
|
|
void kbase_mem_term(struct kbase_device *kbdev)
|
{
|
struct kbasep_mem_device *memdev;
|
int pages;
|
|
KBASE_DEBUG_ASSERT(kbdev);
|
|
memdev = &kbdev->memdev;
|
|
pages = atomic_read(&memdev->used_pages);
|
if (pages != 0)
|
dev_warn(kbdev->dev, "%s: %d pages in use!\n", __func__, pages);
|
|
kbase_mem_pool_group_term(&kbdev->mem_pools);
|
|
kbase_mem_migrate_term(kbdev);
|
|
kmem_cache_destroy(kbdev->va_region_slab);
|
kbdev->va_region_slab = NULL;
|
|
WARN_ON(kbdev->total_gpu_pages);
|
WARN_ON(!RB_EMPTY_ROOT(&kbdev->process_root));
|
WARN_ON(!RB_EMPTY_ROOT(&kbdev->dma_buf_root));
|
mutex_destroy(&kbdev->dma_buf_lock);
|
|
if (kbdev->mgm_dev)
|
module_put(kbdev->mgm_dev->owner);
|
}
|
KBASE_EXPORT_TEST_API(kbase_mem_term);
|
|
/**
|
* kbase_alloc_free_region - Allocate a free region object.
|
*
|
* @kbdev: kbase device
|
* @rbtree: Backlink to the red-black tree of memory regions.
|
* @start_pfn: The Page Frame Number in GPU virtual address space.
|
* @nr_pages: The size of the region in pages.
|
* @zone: KBASE_REG_ZONE_CUSTOM_VA or KBASE_REG_ZONE_SAME_VA
|
*
|
* The allocated object is not part of any list yet, and is flagged as
|
* KBASE_REG_FREE. No mapping is allocated yet.
|
*
|
* zone is KBASE_REG_ZONE_CUSTOM_VA or KBASE_REG_ZONE_SAME_VA.
|
*
|
* Return: pointer to the allocated region object on success, NULL otherwise.
|
*/
|
struct kbase_va_region *kbase_alloc_free_region(struct kbase_device *kbdev, struct rb_root *rbtree,
|
u64 start_pfn, size_t nr_pages, int zone)
|
{
|
struct kbase_va_region *new_reg;
|
|
KBASE_DEBUG_ASSERT(rbtree != NULL);
|
|
/* zone argument should only contain zone related region flags */
|
KBASE_DEBUG_ASSERT((zone & ~KBASE_REG_ZONE_MASK) == 0);
|
KBASE_DEBUG_ASSERT(nr_pages > 0);
|
/* 64-bit address range is the max */
|
KBASE_DEBUG_ASSERT(start_pfn + nr_pages <= (U64_MAX / PAGE_SIZE));
|
|
new_reg = kmem_cache_zalloc(kbdev->va_region_slab, GFP_KERNEL);
|
|
if (!new_reg)
|
return NULL;
|
|
kbase_refcount_set(&new_reg->va_refcnt, 1);
|
atomic_set(&new_reg->no_user_free_count, 0);
|
new_reg->cpu_alloc = NULL; /* no alloc bound yet */
|
new_reg->gpu_alloc = NULL; /* no alloc bound yet */
|
new_reg->rbtree = rbtree;
|
new_reg->flags = zone | KBASE_REG_FREE;
|
|
new_reg->flags |= KBASE_REG_GROWABLE;
|
|
new_reg->start_pfn = start_pfn;
|
new_reg->nr_pages = nr_pages;
|
|
INIT_LIST_HEAD(&new_reg->jit_node);
|
INIT_LIST_HEAD(&new_reg->link);
|
|
return new_reg;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_alloc_free_region);
|
|
/**
|
* kbase_free_alloced_region - Free a region object.
|
*
|
* @reg: Region
|
*
|
* The described region must be freed of any mapping.
|
*
|
* If the region is not flagged as KBASE_REG_FREE, the region's
|
* alloc object will be released.
|
* It is a bug if no alloc object exists for non-free regions.
|
*
|
* If region is KBASE_REG_ZONE_MCU_SHARED it is freed
|
*/
|
void kbase_free_alloced_region(struct kbase_va_region *reg)
|
{
|
#if MALI_USE_CSF
|
if ((reg->flags & KBASE_REG_ZONE_MASK) ==
|
KBASE_REG_ZONE_MCU_SHARED) {
|
kfree(reg);
|
return;
|
}
|
#endif
|
if (!(reg->flags & KBASE_REG_FREE)) {
|
struct kbase_context *kctx = kbase_reg_flags_to_kctx(reg);
|
|
if (WARN_ON(!kctx))
|
return;
|
|
if (WARN_ON(kbase_is_region_invalid(reg)))
|
return;
|
|
dev_dbg(kctx->kbdev->dev, "Freeing memory region %pK\n",
|
(void *)reg);
|
#if MALI_USE_CSF
|
if (reg->flags & KBASE_REG_CSF_EVENT)
|
/*
|
* This should not be reachable if called from 'mcu_shared' functions
|
* such as:
|
* kbase_csf_firmware_mcu_shared_mapping_init
|
* kbase_csf_firmware_mcu_shared_mapping_term
|
*/
|
|
kbase_unlink_event_mem_page(kctx, reg);
|
#endif
|
|
mutex_lock(&kctx->jit_evict_lock);
|
|
/*
|
* The physical allocation should have been removed from the
|
* eviction list before this function is called. However, in the
|
* case of abnormal process termination or the app leaking the
|
* memory kbase_mem_free_region is not called so it can still be
|
* on the list at termination time of the region tracker.
|
*/
|
if (!list_empty(®->gpu_alloc->evict_node)) {
|
/*
|
* Unlink the physical allocation before unmaking it
|
* evictable so that the allocation isn't grown back to
|
* its last backed size as we're going to unmap it
|
* anyway.
|
*/
|
reg->cpu_alloc->reg = NULL;
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
reg->gpu_alloc->reg = NULL;
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
/*
|
* If a region has been made evictable then we must
|
* unmake it before trying to free it.
|
* If the memory hasn't been reclaimed it will be
|
* unmapped and freed below, if it has been reclaimed
|
* then the operations below are no-ops.
|
*/
|
if (reg->flags & KBASE_REG_DONT_NEED) {
|
KBASE_DEBUG_ASSERT(reg->cpu_alloc->type ==
|
KBASE_MEM_TYPE_NATIVE);
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
}
|
} else {
|
mutex_unlock(&kctx->jit_evict_lock);
|
}
|
|
/*
|
* Remove the region from the sticky resource metadata
|
* list should it be there.
|
*/
|
kbase_sticky_resource_release_force(kctx, NULL,
|
reg->start_pfn << PAGE_SHIFT);
|
|
kbase_mem_phy_alloc_put(reg->cpu_alloc);
|
kbase_mem_phy_alloc_put(reg->gpu_alloc);
|
|
reg->flags |= KBASE_REG_VA_FREED;
|
kbase_va_region_alloc_put(kctx, reg);
|
} else {
|
kfree(reg);
|
}
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_free_alloced_region);
|
|
int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg,
|
u64 addr, size_t nr_pages, size_t align,
|
enum kbase_caller_mmu_sync_info mmu_sync_info)
|
{
|
int err;
|
size_t i = 0;
|
unsigned long attr;
|
unsigned long mask = ~KBASE_REG_MEMATTR_MASK;
|
unsigned long gwt_mask = ~0;
|
int group_id;
|
struct kbase_mem_phy_alloc *alloc;
|
|
#ifdef CONFIG_MALI_CINSTR_GWT
|
if (kctx->gwt_enabled)
|
gwt_mask = ~KBASE_REG_GPU_WR;
|
#endif
|
|
if ((kctx->kbdev->system_coherency == COHERENCY_ACE) &&
|
(reg->flags & KBASE_REG_SHARE_BOTH))
|
attr = KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_OUTER_WA);
|
else
|
attr = KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_WRITE_ALLOC);
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
KBASE_DEBUG_ASSERT(reg != NULL);
|
|
err = kbase_add_va_region(kctx, reg, addr, nr_pages, align);
|
if (err)
|
return err;
|
|
alloc = reg->gpu_alloc;
|
group_id = alloc->group_id;
|
|
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
|
u64 const stride = alloc->imported.alias.stride;
|
|
KBASE_DEBUG_ASSERT(alloc->imported.alias.aliased);
|
for (i = 0; i < alloc->imported.alias.nents; i++) {
|
if (alloc->imported.alias.aliased[i].alloc) {
|
err = kbase_mmu_insert_aliased_pages(
|
kctx->kbdev, &kctx->mmu, reg->start_pfn + (i * stride),
|
alloc->imported.alias.aliased[i].alloc->pages +
|
alloc->imported.alias.aliased[i].offset,
|
alloc->imported.alias.aliased[i].length,
|
reg->flags & gwt_mask, kctx->as_nr, group_id, mmu_sync_info,
|
NULL);
|
if (err)
|
goto bad_aliased_insert;
|
|
/* Note: mapping count is tracked at alias
|
* creation time
|
*/
|
} else {
|
err = kbase_mmu_insert_single_aliased_page(
|
kctx, reg->start_pfn + i * stride, kctx->aliasing_sink_page,
|
alloc->imported.alias.aliased[i].length,
|
(reg->flags & mask & gwt_mask) | attr, group_id,
|
mmu_sync_info);
|
|
if (err)
|
goto bad_aliased_insert;
|
}
|
}
|
} else {
|
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM ||
|
reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) {
|
|
err = kbase_mmu_insert_imported_pages(
|
kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
kbase_get_gpu_phy_pages(reg), kbase_reg_current_backed_size(reg),
|
reg->flags & gwt_mask, kctx->as_nr, group_id, mmu_sync_info, reg);
|
} else {
|
err = kbase_mmu_insert_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
kbase_get_gpu_phy_pages(reg),
|
kbase_reg_current_backed_size(reg),
|
reg->flags & gwt_mask, kctx->as_nr, group_id,
|
mmu_sync_info, reg, true);
|
}
|
|
if (err)
|
goto bad_insert;
|
kbase_mem_phy_alloc_gpu_mapped(alloc);
|
}
|
|
if (reg->flags & KBASE_REG_IMPORT_PAD &&
|
!WARN_ON(reg->nr_pages < reg->gpu_alloc->nents) &&
|
reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM &&
|
reg->gpu_alloc->imported.umm.current_mapping_usage_count) {
|
/* For padded imported dma-buf or user-buf memory, map the dummy
|
* aliasing page from the end of the imported pages, to the end of
|
* the region using a read only mapping.
|
*
|
* Only map when it's imported dma-buf memory that is currently
|
* mapped.
|
*
|
* Assume reg->gpu_alloc->nents is the number of actual pages
|
* in the dma-buf memory.
|
*/
|
err = kbase_mmu_insert_single_imported_page(
|
kctx, reg->start_pfn + reg->gpu_alloc->nents, kctx->aliasing_sink_page,
|
reg->nr_pages - reg->gpu_alloc->nents,
|
(reg->flags | KBASE_REG_GPU_RD) & ~KBASE_REG_GPU_WR, KBASE_MEM_GROUP_SINK,
|
mmu_sync_info);
|
if (err)
|
goto bad_insert;
|
}
|
|
return err;
|
|
bad_aliased_insert:
|
while (i-- > 0) {
|
struct tagged_addr *phys_alloc = NULL;
|
u64 const stride = alloc->imported.alias.stride;
|
|
if (alloc->imported.alias.aliased[i].alloc != NULL)
|
phys_alloc = alloc->imported.alias.aliased[i].alloc->pages +
|
alloc->imported.alias.aliased[i].offset;
|
|
kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn + (i * stride),
|
phys_alloc, alloc->imported.alias.aliased[i].length,
|
alloc->imported.alias.aliased[i].length, kctx->as_nr,
|
false);
|
}
|
bad_insert:
|
kbase_remove_va_region(kctx->kbdev, reg);
|
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_mmap);
|
|
static void kbase_jd_user_buf_unmap(struct kbase_context *kctx, struct kbase_mem_phy_alloc *alloc,
|
struct kbase_va_region *reg, bool writeable);
|
|
int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg)
|
{
|
int err = 0;
|
struct kbase_mem_phy_alloc *alloc;
|
|
if (reg->start_pfn == 0)
|
return 0;
|
|
if (!reg->gpu_alloc)
|
return -EINVAL;
|
|
alloc = reg->gpu_alloc;
|
|
/* Tear down GPU page tables, depending on memory type. */
|
switch (alloc->type) {
|
case KBASE_MEM_TYPE_ALIAS: {
|
size_t i = 0;
|
/* Due to the way the number of valid PTEs and ATEs are tracked
|
* currently, only the GPU virtual range that is backed & mapped
|
* should be passed to the kbase_mmu_teardown_pages() function,
|
* hence individual aliased regions needs to be unmapped
|
* separately.
|
*/
|
for (i = 0; i < alloc->imported.alias.nents; i++) {
|
struct tagged_addr *phys_alloc = NULL;
|
int err_loop;
|
|
if (alloc->imported.alias.aliased[i].alloc != NULL)
|
phys_alloc = alloc->imported.alias.aliased[i].alloc->pages +
|
alloc->imported.alias.aliased[i].offset;
|
|
err_loop = kbase_mmu_teardown_pages(
|
kctx->kbdev, &kctx->mmu,
|
reg->start_pfn + (i * alloc->imported.alias.stride),
|
phys_alloc, alloc->imported.alias.aliased[i].length,
|
alloc->imported.alias.aliased[i].length, kctx->as_nr,
|
false);
|
|
if (WARN_ON_ONCE(err_loop))
|
err = err_loop;
|
}
|
}
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_UMM: {
|
size_t nr_phys_pages = reg->nr_pages;
|
size_t nr_virt_pages = reg->nr_pages;
|
/* If the region has import padding and falls under the threshold for
|
* issuing a partial GPU cache flush, we want to reduce the number of
|
* physical pages that get flushed.
|
|
* This is symmetric with case of mapping the memory, which first maps
|
* each imported physical page to a separate virtual page, and then
|
* maps the single aliasing sink page to each of the virtual padding
|
* pages.
|
*/
|
if (reg->flags & KBASE_REG_IMPORT_PAD)
|
nr_phys_pages = alloc->nents + 1;
|
|
err = kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
alloc->pages, nr_phys_pages, nr_virt_pages,
|
kctx->as_nr, true);
|
}
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
size_t nr_reg_pages = kbase_reg_current_backed_size(reg);
|
|
err = kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
alloc->pages, nr_reg_pages, nr_reg_pages,
|
kctx->as_nr, true);
|
}
|
break;
|
default: {
|
size_t nr_reg_pages = kbase_reg_current_backed_size(reg);
|
|
err = kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
alloc->pages, nr_reg_pages, nr_reg_pages,
|
kctx->as_nr, false);
|
}
|
break;
|
}
|
|
/* Update tracking, and other cleanup, depending on memory type. */
|
switch (alloc->type) {
|
case KBASE_MEM_TYPE_ALIAS:
|
/* We mark the source allocs as unmapped from the GPU when
|
* putting reg's allocs
|
*/
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
struct kbase_alloc_import_user_buf *user_buf = &alloc->imported.user_buf;
|
|
if (user_buf->current_mapping_usage_count & PINNED_ON_IMPORT) {
|
user_buf->current_mapping_usage_count &= ~PINNED_ON_IMPORT;
|
|
/* The allocation could still have active mappings. */
|
if (user_buf->current_mapping_usage_count == 0) {
|
kbase_jd_user_buf_unmap(kctx, alloc, reg,
|
(reg->flags &
|
(KBASE_REG_CPU_WR | KBASE_REG_GPU_WR)));
|
}
|
}
|
}
|
fallthrough;
|
default:
|
kbase_mem_phy_alloc_gpu_unmapped(reg->gpu_alloc);
|
break;
|
}
|
|
return err;
|
}
|
|
static struct kbase_cpu_mapping *kbasep_find_enclosing_cpu_mapping(
|
struct kbase_context *kctx,
|
unsigned long uaddr, size_t size, u64 *offset)
|
{
|
struct vm_area_struct *vma;
|
struct kbase_cpu_mapping *map;
|
unsigned long vm_pgoff_in_region;
|
unsigned long vm_off_in_region;
|
unsigned long map_start;
|
size_t map_size;
|
|
lockdep_assert_held(kbase_mem_get_process_mmap_lock());
|
|
if ((uintptr_t) uaddr + size < (uintptr_t) uaddr) /* overflow check */
|
return NULL;
|
|
vma = find_vma_intersection(current->mm, uaddr, uaddr+size);
|
|
if (!vma || vma->vm_start > uaddr)
|
return NULL;
|
if (vma->vm_ops != &kbase_vm_ops)
|
/* Not ours! */
|
return NULL;
|
|
map = vma->vm_private_data;
|
|
if (map->kctx != kctx)
|
/* Not from this context! */
|
return NULL;
|
|
vm_pgoff_in_region = vma->vm_pgoff - map->region->start_pfn;
|
vm_off_in_region = vm_pgoff_in_region << PAGE_SHIFT;
|
map_start = vma->vm_start - vm_off_in_region;
|
map_size = map->region->nr_pages << PAGE_SHIFT;
|
|
if ((uaddr + size) > (map_start + map_size))
|
/* Not within the CPU mapping */
|
return NULL;
|
|
*offset = (uaddr - vma->vm_start) + vm_off_in_region;
|
|
return map;
|
}
|
|
int kbasep_find_enclosing_cpu_mapping_offset(
|
struct kbase_context *kctx,
|
unsigned long uaddr, size_t size, u64 *offset)
|
{
|
struct kbase_cpu_mapping *map;
|
|
kbase_os_mem_map_lock(kctx);
|
|
map = kbasep_find_enclosing_cpu_mapping(kctx, uaddr, size, offset);
|
|
kbase_os_mem_map_unlock(kctx);
|
|
if (!map)
|
return -EINVAL;
|
|
return 0;
|
}
|
|
KBASE_EXPORT_TEST_API(kbasep_find_enclosing_cpu_mapping_offset);
|
|
int kbasep_find_enclosing_gpu_mapping_start_and_offset(struct kbase_context *kctx,
|
u64 gpu_addr, size_t size, u64 *start, u64 *offset)
|
{
|
struct kbase_va_region *region;
|
|
kbase_gpu_vm_lock(kctx);
|
|
region = kbase_region_tracker_find_region_enclosing_address(kctx, gpu_addr);
|
|
if (!region) {
|
kbase_gpu_vm_unlock(kctx);
|
return -EINVAL;
|
}
|
|
*start = region->start_pfn << PAGE_SHIFT;
|
|
*offset = gpu_addr - *start;
|
|
if (((region->start_pfn + region->nr_pages) << PAGE_SHIFT) < (gpu_addr + size)) {
|
kbase_gpu_vm_unlock(kctx);
|
return -EINVAL;
|
}
|
|
kbase_gpu_vm_unlock(kctx);
|
|
return 0;
|
}
|
|
KBASE_EXPORT_TEST_API(kbasep_find_enclosing_gpu_mapping_start_and_offset);
|
|
void kbase_sync_single(struct kbase_context *kctx,
|
struct tagged_addr t_cpu_pa, struct tagged_addr t_gpu_pa,
|
off_t offset, size_t size, enum kbase_sync_type sync_fn)
|
{
|
struct page *cpu_page;
|
phys_addr_t cpu_pa = as_phys_addr_t(t_cpu_pa);
|
phys_addr_t gpu_pa = as_phys_addr_t(t_gpu_pa);
|
|
cpu_page = pfn_to_page(PFN_DOWN(cpu_pa));
|
|
if (likely(cpu_pa == gpu_pa)) {
|
dma_addr_t dma_addr;
|
|
BUG_ON(!cpu_page);
|
BUG_ON(offset + size > PAGE_SIZE);
|
|
dma_addr = kbase_dma_addr_from_tagged(t_cpu_pa) + offset;
|
|
if (sync_fn == KBASE_SYNC_TO_CPU)
|
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr,
|
size, DMA_BIDIRECTIONAL);
|
else if (sync_fn == KBASE_SYNC_TO_DEVICE)
|
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr,
|
size, DMA_BIDIRECTIONAL);
|
} else {
|
void *src = NULL;
|
void *dst = NULL;
|
struct page *gpu_page;
|
dma_addr_t dma_addr;
|
|
if (WARN(!gpu_pa, "No GPU PA found for infinite cache op"))
|
return;
|
|
gpu_page = pfn_to_page(PFN_DOWN(gpu_pa));
|
dma_addr = kbase_dma_addr_from_tagged(t_gpu_pa) + offset;
|
|
if (sync_fn == KBASE_SYNC_TO_DEVICE) {
|
src = ((unsigned char *)kmap(cpu_page)) + offset;
|
dst = ((unsigned char *)kmap(gpu_page)) + offset;
|
} else if (sync_fn == KBASE_SYNC_TO_CPU) {
|
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr, size,
|
DMA_BIDIRECTIONAL);
|
src = ((unsigned char *)kmap(gpu_page)) + offset;
|
dst = ((unsigned char *)kmap(cpu_page)) + offset;
|
}
|
|
memcpy(dst, src, size);
|
kunmap(gpu_page);
|
kunmap(cpu_page);
|
if (sync_fn == KBASE_SYNC_TO_DEVICE)
|
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr, size,
|
DMA_BIDIRECTIONAL);
|
}
|
}
|
|
static int kbase_do_syncset(struct kbase_context *kctx,
|
struct basep_syncset *sset, enum kbase_sync_type sync_fn)
|
{
|
int err = 0;
|
struct kbase_va_region *reg;
|
struct kbase_cpu_mapping *map;
|
unsigned long start;
|
size_t size;
|
struct tagged_addr *cpu_pa;
|
struct tagged_addr *gpu_pa;
|
u64 page_off, page_count;
|
u64 i;
|
u64 offset;
|
|
kbase_os_mem_map_lock(kctx);
|
kbase_gpu_vm_lock(kctx);
|
|
/* find the region where the virtual address is contained */
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
|
sset->mem_handle.basep.handle);
|
if (kbase_is_region_invalid_or_free(reg)) {
|
dev_warn(kctx->kbdev->dev, "Can't find a valid region at VA 0x%016llX",
|
sset->mem_handle.basep.handle);
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
|
/*
|
* Handle imported memory before checking for KBASE_REG_CPU_CACHED. The
|
* CPU mapping cacheability is defined by the owner of the imported
|
* memory, and not by kbase, therefore we must assume that any imported
|
* memory may be cached.
|
*/
|
if (kbase_mem_is_imported(reg->gpu_alloc->type)) {
|
err = kbase_mem_do_sync_imported(kctx, reg, sync_fn);
|
goto out_unlock;
|
}
|
|
if (!(reg->flags & KBASE_REG_CPU_CACHED))
|
goto out_unlock;
|
|
start = (uintptr_t)sset->user_addr;
|
size = (size_t)sset->size;
|
|
map = kbasep_find_enclosing_cpu_mapping(kctx, start, size, &offset);
|
if (!map) {
|
dev_warn(kctx->kbdev->dev, "Can't find CPU mapping 0x%016lX for VA 0x%016llX",
|
start, sset->mem_handle.basep.handle);
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
|
page_off = offset >> PAGE_SHIFT;
|
offset &= ~PAGE_MASK;
|
page_count = (size + offset + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
|
cpu_pa = kbase_get_cpu_phy_pages(reg);
|
gpu_pa = kbase_get_gpu_phy_pages(reg);
|
|
if (page_off > reg->nr_pages ||
|
page_off + page_count > reg->nr_pages) {
|
/* Sync overflows the region */
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
|
/* Sync first page */
|
if (as_phys_addr_t(cpu_pa[page_off])) {
|
size_t sz = MIN(((size_t) PAGE_SIZE - offset), size);
|
|
kbase_sync_single(kctx, cpu_pa[page_off], gpu_pa[page_off],
|
offset, sz, sync_fn);
|
}
|
|
/* Sync middle pages (if any) */
|
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
|
/* we grow upwards, so bail on first non-present page */
|
if (!as_phys_addr_t(cpu_pa[page_off + i]))
|
break;
|
|
kbase_sync_single(kctx, cpu_pa[page_off + i],
|
gpu_pa[page_off + i], 0, PAGE_SIZE, sync_fn);
|
}
|
|
/* Sync last page (if any) */
|
if (page_count > 1 &&
|
as_phys_addr_t(cpu_pa[page_off + page_count - 1])) {
|
size_t sz = ((start + size - 1) & ~PAGE_MASK) + 1;
|
|
kbase_sync_single(kctx, cpu_pa[page_off + page_count - 1],
|
gpu_pa[page_off + page_count - 1], 0, sz,
|
sync_fn);
|
}
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
kbase_os_mem_map_unlock(kctx);
|
return err;
|
}
|
|
int kbase_sync_now(struct kbase_context *kctx, struct basep_syncset *sset)
|
{
|
int err = -EINVAL;
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
KBASE_DEBUG_ASSERT(sset != NULL);
|
|
if (sset->mem_handle.basep.handle & ~PAGE_MASK) {
|
dev_warn(kctx->kbdev->dev,
|
"mem_handle: passed parameter is invalid");
|
return -EINVAL;
|
}
|
|
switch (sset->type) {
|
case BASE_SYNCSET_OP_MSYNC:
|
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_DEVICE);
|
break;
|
|
case BASE_SYNCSET_OP_CSYNC:
|
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_CPU);
|
break;
|
|
default:
|
dev_warn(kctx->kbdev->dev, "Unknown msync op %d\n", sset->type);
|
break;
|
}
|
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_sync_now);
|
|
/* vm lock must be held */
|
int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg)
|
{
|
int err;
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
KBASE_DEBUG_ASSERT(reg != NULL);
|
dev_dbg(kctx->kbdev->dev, "%s %pK in kctx %pK\n",
|
__func__, (void *)reg, (void *)kctx);
|
lockdep_assert_held(&kctx->reg_lock);
|
|
if (kbase_va_region_is_no_user_free(reg)) {
|
dev_warn(kctx->kbdev->dev, "Attempt to free GPU memory whose freeing by user space is forbidden!\n");
|
return -EINVAL;
|
}
|
|
/* If a region has been made evictable then we must unmake it
|
* before trying to free it.
|
* If the memory hasn't been reclaimed it will be unmapped and freed
|
* below, if it has been reclaimed then the operations below are no-ops.
|
*/
|
if (reg->flags & KBASE_REG_DONT_NEED) {
|
WARN_ON(reg->cpu_alloc->type != KBASE_MEM_TYPE_NATIVE);
|
mutex_lock(&kctx->jit_evict_lock);
|
/* Unlink the physical allocation before unmaking it evictable so
|
* that the allocation isn't grown back to its last backed size
|
* as we're going to unmap it anyway.
|
*/
|
reg->cpu_alloc->reg = NULL;
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
reg->gpu_alloc->reg = NULL;
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_mem_evictable_unmake(reg->gpu_alloc);
|
}
|
|
err = kbase_gpu_munmap(kctx, reg);
|
if (err) {
|
dev_warn(kctx->kbdev->dev, "Could not unmap from the GPU...\n");
|
goto out;
|
}
|
|
#if MALI_USE_CSF
|
if (((reg->flags & KBASE_REG_ZONE_MASK) == KBASE_REG_ZONE_FIXED_VA) ||
|
((reg->flags & KBASE_REG_ZONE_MASK) == KBASE_REG_ZONE_EXEC_FIXED_VA)) {
|
if (reg->flags & KBASE_REG_FIXED_ADDRESS)
|
atomic64_dec(&kctx->num_fixed_allocs);
|
else
|
atomic64_dec(&kctx->num_fixable_allocs);
|
}
|
#endif
|
|
/* This will also free the physical pages */
|
kbase_free_alloced_region(reg);
|
|
out:
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_mem_free_region);
|
|
/**
|
* kbase_mem_free - Free the region from the GPU and unregister it.
|
*
|
* @kctx: KBase context
|
* @gpu_addr: GPU address to free
|
*
|
* This function implements the free operation on a memory segment.
|
* It will loudly fail if called with outstanding mappings.
|
*
|
* Return: 0 on success.
|
*/
|
int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr)
|
{
|
int err = 0;
|
struct kbase_va_region *reg;
|
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
dev_dbg(kctx->kbdev->dev, "%s 0x%llx in kctx %pK\n",
|
__func__, gpu_addr, (void *)kctx);
|
|
if ((gpu_addr & ~PAGE_MASK) && (gpu_addr >= PAGE_SIZE)) {
|
dev_warn(kctx->kbdev->dev, "%s: gpu_addr parameter is invalid", __func__);
|
return -EINVAL;
|
}
|
|
if (gpu_addr == 0) {
|
dev_warn(kctx->kbdev->dev,
|
"gpu_addr 0 is reserved for the ringbuffer and it's an error to try to free it using %s\n",
|
__func__);
|
return -EINVAL;
|
}
|
kbase_gpu_vm_lock(kctx);
|
|
if (gpu_addr >= BASE_MEM_COOKIE_BASE &&
|
gpu_addr < BASE_MEM_FIRST_FREE_ADDRESS) {
|
int cookie = PFN_DOWN(gpu_addr - BASE_MEM_COOKIE_BASE);
|
|
reg = kctx->pending_regions[cookie];
|
if (!reg) {
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
|
/* ask to unlink the cookie as we'll free it */
|
|
kctx->pending_regions[cookie] = NULL;
|
bitmap_set(kctx->cookies, cookie, 1);
|
|
kbase_free_alloced_region(reg);
|
} else {
|
/* A real GPU va */
|
/* Validate the region */
|
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg)) {
|
dev_warn(kctx->kbdev->dev, "%s called with nonexistent gpu_addr 0x%llX",
|
__func__, gpu_addr);
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
|
if ((reg->flags & KBASE_REG_ZONE_MASK) == KBASE_REG_ZONE_SAME_VA) {
|
/* SAME_VA must be freed through munmap */
|
dev_warn(kctx->kbdev->dev, "%s called on SAME_VA memory 0x%llX", __func__,
|
gpu_addr);
|
err = -EINVAL;
|
goto out_unlock;
|
}
|
err = kbase_mem_free_region(kctx, reg);
|
}
|
|
out_unlock:
|
kbase_gpu_vm_unlock(kctx);
|
return err;
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_mem_free);
|
|
int kbase_update_region_flags(struct kbase_context *kctx,
|
struct kbase_va_region *reg, unsigned long flags)
|
{
|
KBASE_DEBUG_ASSERT(reg != NULL);
|
KBASE_DEBUG_ASSERT((flags & ~((1ul << BASE_MEM_FLAGS_NR_BITS) - 1)) == 0);
|
|
reg->flags |= kbase_cache_enabled(flags, reg->nr_pages);
|
/* all memory is now growable */
|
reg->flags |= KBASE_REG_GROWABLE;
|
|
if (flags & BASE_MEM_GROW_ON_GPF)
|
reg->flags |= KBASE_REG_PF_GROW;
|
|
if (flags & BASE_MEM_PROT_CPU_WR)
|
reg->flags |= KBASE_REG_CPU_WR;
|
|
if (flags & BASE_MEM_PROT_CPU_RD)
|
reg->flags |= KBASE_REG_CPU_RD;
|
|
if (flags & BASE_MEM_PROT_GPU_WR)
|
reg->flags |= KBASE_REG_GPU_WR;
|
|
if (flags & BASE_MEM_PROT_GPU_RD)
|
reg->flags |= KBASE_REG_GPU_RD;
|
|
if (0 == (flags & BASE_MEM_PROT_GPU_EX))
|
reg->flags |= KBASE_REG_GPU_NX;
|
|
if (!kbase_device_is_cpu_coherent(kctx->kbdev)) {
|
if (flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED &&
|
!(flags & BASE_MEM_UNCACHED_GPU))
|
return -EINVAL;
|
} else if (flags & (BASE_MEM_COHERENT_SYSTEM |
|
BASE_MEM_COHERENT_SYSTEM_REQUIRED)) {
|
reg->flags |= KBASE_REG_SHARE_BOTH;
|
}
|
|
if (!(reg->flags & KBASE_REG_SHARE_BOTH) &&
|
flags & BASE_MEM_COHERENT_LOCAL) {
|
reg->flags |= KBASE_REG_SHARE_IN;
|
}
|
|
#if !MALI_USE_CSF
|
if (flags & BASE_MEM_TILER_ALIGN_TOP)
|
reg->flags |= KBASE_REG_TILER_ALIGN_TOP;
|
#endif /* !MALI_USE_CSF */
|
|
#if MALI_USE_CSF
|
if (flags & BASE_MEM_CSF_EVENT) {
|
reg->flags |= KBASE_REG_CSF_EVENT;
|
reg->flags |= KBASE_REG_PERMANENT_KERNEL_MAPPING;
|
|
if (!(reg->flags & KBASE_REG_SHARE_BOTH)) {
|
/* On non coherent platforms need to map as uncached on
|
* both sides.
|
*/
|
reg->flags &= ~KBASE_REG_CPU_CACHED;
|
reg->flags &= ~KBASE_REG_GPU_CACHED;
|
}
|
}
|
#endif
|
|
/* Set up default MEMATTR usage */
|
if (!(reg->flags & KBASE_REG_GPU_CACHED)) {
|
if (kctx->kbdev->mmu_mode->flags &
|
KBASE_MMU_MODE_HAS_NON_CACHEABLE) {
|
/* Override shareability, and MEMATTR for uncached */
|
reg->flags &= ~(KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH);
|
reg->flags |= KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
|
} else {
|
dev_warn(kctx->kbdev->dev,
|
"Can't allocate GPU uncached memory due to MMU in Legacy Mode\n");
|
return -EINVAL;
|
}
|
#if MALI_USE_CSF
|
} else if (reg->flags & KBASE_REG_CSF_EVENT) {
|
WARN_ON(!(reg->flags & KBASE_REG_SHARE_BOTH));
|
|
reg->flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_SHARED);
|
#endif
|
} else if (kctx->kbdev->system_coherency == COHERENCY_ACE &&
|
(reg->flags & KBASE_REG_SHARE_BOTH)) {
|
reg->flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
|
} else {
|
reg->flags |=
|
KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT);
|
}
|
|
if (flags & BASEP_MEM_PERMANENT_KERNEL_MAPPING)
|
reg->flags |= KBASE_REG_PERMANENT_KERNEL_MAPPING;
|
|
if (flags & BASEP_MEM_NO_USER_FREE) {
|
kbase_gpu_vm_lock(kctx);
|
kbase_va_region_no_user_free_inc(reg);
|
kbase_gpu_vm_unlock(kctx);
|
}
|
|
if (flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE)
|
reg->flags |= KBASE_REG_GPU_VA_SAME_4GB_PAGE;
|
|
#if MALI_USE_CSF
|
if (flags & BASE_MEM_FIXED)
|
reg->flags |= KBASE_REG_FIXED_ADDRESS;
|
#endif
|
|
return 0;
|
}
|
|
int kbase_alloc_phy_pages_helper(struct kbase_mem_phy_alloc *alloc,
|
size_t nr_pages_requested)
|
{
|
int new_page_count __maybe_unused;
|
size_t nr_left = nr_pages_requested;
|
int res;
|
struct kbase_context *kctx;
|
struct kbase_device *kbdev;
|
struct tagged_addr *tp;
|
|
if (WARN_ON(alloc->type != KBASE_MEM_TYPE_NATIVE) ||
|
WARN_ON(alloc->imported.native.kctx == NULL) ||
|
WARN_ON(alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS)) {
|
return -EINVAL;
|
}
|
|
if (alloc->reg) {
|
if (nr_pages_requested > alloc->reg->nr_pages - alloc->nents)
|
goto invalid_request;
|
}
|
|
kctx = alloc->imported.native.kctx;
|
kbdev = kctx->kbdev;
|
|
if (nr_pages_requested == 0)
|
goto done; /*nothing to do*/
|
|
new_page_count = atomic_add_return(
|
nr_pages_requested, &kctx->used_pages);
|
atomic_add(nr_pages_requested,
|
&kctx->kbdev->memdev.used_pages);
|
|
/* Increase mm counters before we allocate pages so that this
|
* allocation is visible to the OOM killer
|
*/
|
kbase_process_page_usage_inc(kctx, nr_pages_requested);
|
|
tp = alloc->pages + alloc->nents;
|
|
/* Check if we have enough pages requested so we can allocate a large
|
* page (512 * 4KB = 2MB )
|
*/
|
if (kbdev->pagesize_2mb && nr_left >= (SZ_2M / SZ_4K)) {
|
int nr_lp = nr_left / (SZ_2M / SZ_4K);
|
|
res = kbase_mem_pool_alloc_pages(&kctx->mem_pools.large[alloc->group_id],
|
nr_lp * (SZ_2M / SZ_4K), tp, true, kctx->task);
|
|
if (res > 0) {
|
nr_left -= res;
|
tp += res;
|
}
|
|
if (nr_left) {
|
struct kbase_sub_alloc *sa, *temp_sa;
|
|
spin_lock(&kctx->mem_partials_lock);
|
|
list_for_each_entry_safe(sa, temp_sa,
|
&kctx->mem_partials, link) {
|
int pidx = 0;
|
|
while (nr_left) {
|
pidx = find_next_zero_bit(sa->sub_pages,
|
SZ_2M / SZ_4K,
|
pidx);
|
bitmap_set(sa->sub_pages, pidx, 1);
|
*tp++ = as_tagged_tag(page_to_phys(sa->page +
|
pidx),
|
FROM_PARTIAL);
|
nr_left--;
|
|
if (bitmap_full(sa->sub_pages, SZ_2M / SZ_4K)) {
|
/* unlink from partial list when full */
|
list_del_init(&sa->link);
|
break;
|
}
|
}
|
}
|
spin_unlock(&kctx->mem_partials_lock);
|
}
|
|
/* only if we actually have a chunk left <512. If more it indicates
|
* that we couldn't allocate a 2MB above, so no point to retry here.
|
*/
|
if (nr_left > 0 && nr_left < (SZ_2M / SZ_4K)) {
|
/* create a new partial and suballocate the rest from it */
|
struct page *np = NULL;
|
|
do {
|
int err;
|
|
np = kbase_mem_pool_alloc(
|
&kctx->mem_pools.large[
|
alloc->group_id]);
|
if (np)
|
break;
|
|
err = kbase_mem_pool_grow(
|
&kctx->mem_pools.large[alloc->group_id],
|
1, kctx->task);
|
if (err)
|
break;
|
} while (1);
|
|
if (np) {
|
int i;
|
struct kbase_sub_alloc *sa;
|
struct page *p;
|
|
sa = kmalloc(sizeof(*sa), GFP_KERNEL);
|
if (!sa) {
|
kbase_mem_pool_free(
|
&kctx->mem_pools.large[
|
alloc->group_id],
|
np,
|
false);
|
goto no_new_partial;
|
}
|
|
/* store pointers back to the control struct */
|
np->lru.next = (void *)sa;
|
for (p = np; p < np + SZ_2M / SZ_4K; p++)
|
p->lru.prev = (void *)np;
|
INIT_LIST_HEAD(&sa->link);
|
bitmap_zero(sa->sub_pages, SZ_2M / SZ_4K);
|
sa->page = np;
|
|
for (i = 0; i < nr_left; i++)
|
*tp++ = as_tagged_tag(page_to_phys(np + i), FROM_PARTIAL);
|
|
bitmap_set(sa->sub_pages, 0, nr_left);
|
nr_left = 0;
|
|
/* expose for later use */
|
spin_lock(&kctx->mem_partials_lock);
|
list_add(&sa->link, &kctx->mem_partials);
|
spin_unlock(&kctx->mem_partials_lock);
|
}
|
}
|
}
|
|
no_new_partial:
|
if (nr_left) {
|
res = kbase_mem_pool_alloc_pages(&kctx->mem_pools.small[alloc->group_id], nr_left,
|
tp, false, kctx->task);
|
if (res <= 0)
|
goto alloc_failed;
|
}
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
|
alloc->nents += nr_pages_requested;
|
|
kbase_trace_gpu_mem_usage_inc(kctx->kbdev, kctx, nr_pages_requested);
|
|
done:
|
return 0;
|
|
alloc_failed:
|
/* rollback needed if got one or more 2MB but failed later */
|
if (nr_left != nr_pages_requested) {
|
size_t nr_pages_to_free = nr_pages_requested - nr_left;
|
|
alloc->nents += nr_pages_to_free;
|
|
kbase_process_page_usage_inc(kctx, nr_pages_to_free);
|
atomic_add(nr_pages_to_free, &kctx->used_pages);
|
atomic_add(nr_pages_to_free,
|
&kctx->kbdev->memdev.used_pages);
|
|
kbase_free_phy_pages_helper(alloc, nr_pages_to_free);
|
}
|
|
kbase_process_page_usage_dec(kctx, nr_pages_requested);
|
atomic_sub(nr_pages_requested, &kctx->used_pages);
|
atomic_sub(nr_pages_requested,
|
&kctx->kbdev->memdev.used_pages);
|
|
invalid_request:
|
return -ENOMEM;
|
}
|
|
struct tagged_addr *kbase_alloc_phy_pages_helper_locked(
|
struct kbase_mem_phy_alloc *alloc, struct kbase_mem_pool *pool,
|
size_t nr_pages_requested,
|
struct kbase_sub_alloc **prealloc_sa)
|
{
|
int new_page_count __maybe_unused;
|
size_t nr_left = nr_pages_requested;
|
int res;
|
struct kbase_context *kctx;
|
struct kbase_device *kbdev;
|
struct tagged_addr *tp;
|
struct tagged_addr *new_pages = NULL;
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
|
KBASE_DEBUG_ASSERT(alloc->imported.native.kctx);
|
|
lockdep_assert_held(&pool->pool_lock);
|
|
kctx = alloc->imported.native.kctx;
|
kbdev = kctx->kbdev;
|
|
if (!kbdev->pagesize_2mb)
|
WARN_ON(pool->order);
|
|
if (alloc->reg) {
|
if (nr_pages_requested > alloc->reg->nr_pages - alloc->nents)
|
goto invalid_request;
|
}
|
|
lockdep_assert_held(&kctx->mem_partials_lock);
|
|
if (nr_pages_requested == 0)
|
goto done; /*nothing to do*/
|
|
new_page_count = atomic_add_return(
|
nr_pages_requested, &kctx->used_pages);
|
atomic_add(nr_pages_requested,
|
&kctx->kbdev->memdev.used_pages);
|
|
/* Increase mm counters before we allocate pages so that this
|
* allocation is visible to the OOM killer
|
*/
|
kbase_process_page_usage_inc(kctx, nr_pages_requested);
|
|
tp = alloc->pages + alloc->nents;
|
new_pages = tp;
|
|
if (kbdev->pagesize_2mb && pool->order) {
|
int nr_lp = nr_left / (SZ_2M / SZ_4K);
|
|
res = kbase_mem_pool_alloc_pages_locked(pool,
|
nr_lp * (SZ_2M / SZ_4K),
|
tp);
|
|
if (res > 0) {
|
nr_left -= res;
|
tp += res;
|
}
|
|
if (nr_left) {
|
struct kbase_sub_alloc *sa, *temp_sa;
|
|
list_for_each_entry_safe(sa, temp_sa,
|
&kctx->mem_partials, link) {
|
int pidx = 0;
|
|
while (nr_left) {
|
pidx = find_next_zero_bit(sa->sub_pages,
|
SZ_2M / SZ_4K,
|
pidx);
|
bitmap_set(sa->sub_pages, pidx, 1);
|
*tp++ = as_tagged_tag(page_to_phys(
|
sa->page + pidx),
|
FROM_PARTIAL);
|
nr_left--;
|
|
if (bitmap_full(sa->sub_pages,
|
SZ_2M / SZ_4K)) {
|
/* unlink from partial list when
|
* full
|
*/
|
list_del_init(&sa->link);
|
break;
|
}
|
}
|
}
|
}
|
|
/* only if we actually have a chunk left <512. If more it
|
* indicates that we couldn't allocate a 2MB above, so no point
|
* to retry here.
|
*/
|
if (nr_left > 0 && nr_left < (SZ_2M / SZ_4K)) {
|
/* create a new partial and suballocate the rest from it
|
*/
|
struct page *np = NULL;
|
|
np = kbase_mem_pool_alloc_locked(pool);
|
|
if (np) {
|
int i;
|
struct kbase_sub_alloc *const sa = *prealloc_sa;
|
struct page *p;
|
|
/* store pointers back to the control struct */
|
np->lru.next = (void *)sa;
|
for (p = np; p < np + SZ_2M / SZ_4K; p++)
|
p->lru.prev = (void *)np;
|
INIT_LIST_HEAD(&sa->link);
|
bitmap_zero(sa->sub_pages, SZ_2M / SZ_4K);
|
sa->page = np;
|
|
for (i = 0; i < nr_left; i++)
|
*tp++ = as_tagged_tag(
|
page_to_phys(np + i),
|
FROM_PARTIAL);
|
|
bitmap_set(sa->sub_pages, 0, nr_left);
|
nr_left = 0;
|
/* Indicate to user that we'll free this memory
|
* later.
|
*/
|
*prealloc_sa = NULL;
|
|
/* expose for later use */
|
list_add(&sa->link, &kctx->mem_partials);
|
}
|
}
|
if (nr_left)
|
goto alloc_failed;
|
} else {
|
res = kbase_mem_pool_alloc_pages_locked(pool,
|
nr_left,
|
tp);
|
if (res <= 0)
|
goto alloc_failed;
|
}
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
|
alloc->nents += nr_pages_requested;
|
|
kbase_trace_gpu_mem_usage_inc(kctx->kbdev, kctx, nr_pages_requested);
|
|
done:
|
return new_pages;
|
|
alloc_failed:
|
/* rollback needed if got one or more 2MB but failed later */
|
if (nr_left != nr_pages_requested) {
|
size_t nr_pages_to_free = nr_pages_requested - nr_left;
|
|
struct tagged_addr *start_free = alloc->pages + alloc->nents;
|
|
if (kbdev->pagesize_2mb && pool->order) {
|
while (nr_pages_to_free) {
|
if (is_huge_head(*start_free)) {
|
kbase_mem_pool_free_pages_locked(
|
pool, 512,
|
start_free,
|
false, /* not dirty */
|
true); /* return to pool */
|
nr_pages_to_free -= 512;
|
start_free += 512;
|
} else if (is_partial(*start_free)) {
|
free_partial_locked(kctx, pool,
|
*start_free);
|
nr_pages_to_free--;
|
start_free++;
|
}
|
}
|
} else {
|
kbase_mem_pool_free_pages_locked(pool,
|
nr_pages_to_free,
|
start_free,
|
false, /* not dirty */
|
true); /* return to pool */
|
}
|
}
|
|
kbase_process_page_usage_dec(kctx, nr_pages_requested);
|
atomic_sub(nr_pages_requested, &kctx->used_pages);
|
atomic_sub(nr_pages_requested, &kctx->kbdev->memdev.used_pages);
|
|
invalid_request:
|
return NULL;
|
}
|
|
static void free_partial(struct kbase_context *kctx, int group_id, struct
|
tagged_addr tp)
|
{
|
struct page *p, *head_page;
|
struct kbase_sub_alloc *sa;
|
|
p = as_page(tp);
|
head_page = (struct page *)p->lru.prev;
|
sa = (struct kbase_sub_alloc *)head_page->lru.next;
|
spin_lock(&kctx->mem_partials_lock);
|
clear_bit(p - head_page, sa->sub_pages);
|
if (bitmap_empty(sa->sub_pages, SZ_2M / SZ_4K)) {
|
list_del(&sa->link);
|
kbase_mem_pool_free(
|
&kctx->mem_pools.large[group_id],
|
head_page,
|
true);
|
kfree(sa);
|
} else if (bitmap_weight(sa->sub_pages, SZ_2M / SZ_4K) ==
|
SZ_2M / SZ_4K - 1) {
|
/* expose the partial again */
|
list_add(&sa->link, &kctx->mem_partials);
|
}
|
spin_unlock(&kctx->mem_partials_lock);
|
}
|
|
int kbase_free_phy_pages_helper(
|
struct kbase_mem_phy_alloc *alloc,
|
size_t nr_pages_to_free)
|
{
|
struct kbase_context *kctx = alloc->imported.native.kctx;
|
struct kbase_device *kbdev = kctx->kbdev;
|
bool syncback;
|
bool reclaimed = (alloc->evicted != 0);
|
struct tagged_addr *start_free;
|
int new_page_count __maybe_unused;
|
size_t freed = 0;
|
|
if (WARN_ON(alloc->type != KBASE_MEM_TYPE_NATIVE) ||
|
WARN_ON(alloc->imported.native.kctx == NULL) ||
|
WARN_ON(alloc->nents < nr_pages_to_free) ||
|
WARN_ON(alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS)) {
|
return -EINVAL;
|
}
|
|
/* early out if nothing to do */
|
if (nr_pages_to_free == 0)
|
return 0;
|
|
start_free = alloc->pages + alloc->nents - nr_pages_to_free;
|
|
syncback = alloc->properties & KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
|
|
/* pad start_free to a valid start location */
|
while (nr_pages_to_free && is_huge(*start_free) &&
|
!is_huge_head(*start_free)) {
|
nr_pages_to_free--;
|
start_free++;
|
}
|
|
while (nr_pages_to_free) {
|
if (is_huge_head(*start_free)) {
|
/* This is a 2MB entry, so free all the 512 pages that
|
* it points to
|
*/
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.large[alloc->group_id],
|
512,
|
start_free,
|
syncback,
|
reclaimed);
|
nr_pages_to_free -= 512;
|
start_free += 512;
|
freed += 512;
|
} else if (is_partial(*start_free)) {
|
free_partial(kctx, alloc->group_id, *start_free);
|
nr_pages_to_free--;
|
start_free++;
|
freed++;
|
} else {
|
struct tagged_addr *local_end_free;
|
|
local_end_free = start_free;
|
while (nr_pages_to_free &&
|
!is_huge(*local_end_free) &&
|
!is_partial(*local_end_free)) {
|
local_end_free++;
|
nr_pages_to_free--;
|
}
|
kbase_mem_pool_free_pages(
|
&kctx->mem_pools.small[alloc->group_id],
|
local_end_free - start_free,
|
start_free,
|
syncback,
|
reclaimed);
|
freed += local_end_free - start_free;
|
start_free += local_end_free - start_free;
|
}
|
}
|
|
alloc->nents -= freed;
|
|
/*
|
* If the allocation was not evicted (i.e. evicted == 0) then
|
* the page accounting needs to be done.
|
*/
|
if (!reclaimed) {
|
kbase_process_page_usage_dec(kctx, freed);
|
new_page_count = atomic_sub_return(freed,
|
&kctx->used_pages);
|
atomic_sub(freed,
|
&kctx->kbdev->memdev.used_pages);
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
|
kbase_trace_gpu_mem_usage_dec(kctx->kbdev, kctx, freed);
|
}
|
|
return 0;
|
}
|
|
static void free_partial_locked(struct kbase_context *kctx,
|
struct kbase_mem_pool *pool, struct tagged_addr tp)
|
{
|
struct page *p, *head_page;
|
struct kbase_sub_alloc *sa;
|
|
lockdep_assert_held(&pool->pool_lock);
|
lockdep_assert_held(&kctx->mem_partials_lock);
|
|
p = as_page(tp);
|
head_page = (struct page *)p->lru.prev;
|
sa = (struct kbase_sub_alloc *)head_page->lru.next;
|
clear_bit(p - head_page, sa->sub_pages);
|
if (bitmap_empty(sa->sub_pages, SZ_2M / SZ_4K)) {
|
list_del(&sa->link);
|
kbase_mem_pool_free_locked(pool, head_page, true);
|
kfree(sa);
|
} else if (bitmap_weight(sa->sub_pages, SZ_2M / SZ_4K) ==
|
SZ_2M / SZ_4K - 1) {
|
/* expose the partial again */
|
list_add(&sa->link, &kctx->mem_partials);
|
}
|
}
|
|
void kbase_free_phy_pages_helper_locked(struct kbase_mem_phy_alloc *alloc,
|
struct kbase_mem_pool *pool, struct tagged_addr *pages,
|
size_t nr_pages_to_free)
|
{
|
struct kbase_context *kctx = alloc->imported.native.kctx;
|
struct kbase_device *kbdev = kctx->kbdev;
|
bool syncback;
|
bool reclaimed = (alloc->evicted != 0);
|
struct tagged_addr *start_free;
|
size_t freed = 0;
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
|
KBASE_DEBUG_ASSERT(alloc->imported.native.kctx);
|
KBASE_DEBUG_ASSERT(alloc->nents >= nr_pages_to_free);
|
|
lockdep_assert_held(&pool->pool_lock);
|
lockdep_assert_held(&kctx->mem_partials_lock);
|
|
/* early out if nothing to do */
|
if (!nr_pages_to_free)
|
return;
|
|
start_free = pages;
|
|
syncback = alloc->properties & KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
|
|
/* pad start_free to a valid start location */
|
while (nr_pages_to_free && is_huge(*start_free) &&
|
!is_huge_head(*start_free)) {
|
nr_pages_to_free--;
|
start_free++;
|
}
|
|
while (nr_pages_to_free) {
|
if (is_huge_head(*start_free)) {
|
/* This is a 2MB entry, so free all the 512 pages that
|
* it points to
|
*/
|
WARN_ON(!pool->order);
|
kbase_mem_pool_free_pages_locked(pool,
|
512,
|
start_free,
|
syncback,
|
reclaimed);
|
nr_pages_to_free -= 512;
|
start_free += 512;
|
freed += 512;
|
} else if (is_partial(*start_free)) {
|
WARN_ON(!pool->order);
|
free_partial_locked(kctx, pool, *start_free);
|
nr_pages_to_free--;
|
start_free++;
|
freed++;
|
} else {
|
struct tagged_addr *local_end_free;
|
|
WARN_ON(pool->order);
|
local_end_free = start_free;
|
while (nr_pages_to_free &&
|
!is_huge(*local_end_free) &&
|
!is_partial(*local_end_free)) {
|
local_end_free++;
|
nr_pages_to_free--;
|
}
|
kbase_mem_pool_free_pages_locked(pool,
|
local_end_free - start_free,
|
start_free,
|
syncback,
|
reclaimed);
|
freed += local_end_free - start_free;
|
start_free += local_end_free - start_free;
|
}
|
}
|
|
alloc->nents -= freed;
|
|
/*
|
* If the allocation was not evicted (i.e. evicted == 0) then
|
* the page accounting needs to be done.
|
*/
|
if (!reclaimed) {
|
int new_page_count;
|
|
kbase_process_page_usage_dec(kctx, freed);
|
new_page_count = atomic_sub_return(freed,
|
&kctx->used_pages);
|
atomic_sub(freed,
|
&kctx->kbdev->memdev.used_pages);
|
|
KBASE_TLSTREAM_AUX_PAGESALLOC(
|
kbdev,
|
kctx->id,
|
(u64)new_page_count);
|
|
kbase_trace_gpu_mem_usage_dec(kctx->kbdev, kctx, freed);
|
}
|
}
|
KBASE_EXPORT_TEST_API(kbase_free_phy_pages_helper_locked);
|
|
#if MALI_USE_CSF
|
/**
|
* kbase_jd_user_buf_unpin_pages - Release the pinned pages of a user buffer.
|
* @alloc: The allocation for the imported user buffer.
|
*
|
* This must only be called when terminating an alloc, when its refcount
|
* (number of users) has become 0. This also ensures it is only called once all
|
* CPU mappings have been closed.
|
*
|
* Instead call kbase_jd_user_buf_unmap() if you need to unpin pages on active
|
* allocations
|
*/
|
static void kbase_jd_user_buf_unpin_pages(struct kbase_mem_phy_alloc *alloc);
|
#endif
|
|
void kbase_mem_kref_free(struct kref *kref)
|
{
|
struct kbase_mem_phy_alloc *alloc;
|
|
alloc = container_of(kref, struct kbase_mem_phy_alloc, kref);
|
|
switch (alloc->type) {
|
case KBASE_MEM_TYPE_NATIVE: {
|
|
if (!WARN_ON(!alloc->imported.native.kctx)) {
|
if (alloc->permanent_map)
|
kbase_phy_alloc_mapping_term(
|
alloc->imported.native.kctx,
|
alloc);
|
|
/*
|
* The physical allocation must have been removed from
|
* the eviction list before trying to free it.
|
*/
|
mutex_lock(
|
&alloc->imported.native.kctx->jit_evict_lock);
|
WARN_ON(!list_empty(&alloc->evict_node));
|
mutex_unlock(
|
&alloc->imported.native.kctx->jit_evict_lock);
|
|
kbase_process_page_usage_dec(
|
alloc->imported.native.kctx,
|
alloc->imported.native.nr_struct_pages);
|
}
|
kbase_free_phy_pages_helper(alloc, alloc->nents);
|
break;
|
}
|
case KBASE_MEM_TYPE_ALIAS: {
|
/* just call put on the underlying phy allocs */
|
size_t i;
|
struct kbase_aliased *aliased;
|
|
aliased = alloc->imported.alias.aliased;
|
if (aliased) {
|
for (i = 0; i < alloc->imported.alias.nents; i++)
|
if (aliased[i].alloc) {
|
kbase_mem_phy_alloc_gpu_unmapped(aliased[i].alloc);
|
kbase_mem_phy_alloc_put(aliased[i].alloc);
|
}
|
vfree(aliased);
|
}
|
break;
|
}
|
case KBASE_MEM_TYPE_RAW:
|
/* raw pages, external cleanup */
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_UMM:
|
if (!IS_ENABLED(CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND)) {
|
WARN_ONCE(alloc->imported.umm.current_mapping_usage_count != 1,
|
"WARNING: expected excatly 1 mapping, got %d",
|
alloc->imported.umm.current_mapping_usage_count);
|
dma_buf_unmap_attachment(
|
alloc->imported.umm.dma_attachment,
|
alloc->imported.umm.sgt,
|
DMA_BIDIRECTIONAL);
|
kbase_remove_dma_buf_usage(alloc->imported.umm.kctx,
|
alloc);
|
}
|
dma_buf_detach(alloc->imported.umm.dma_buf,
|
alloc->imported.umm.dma_attachment);
|
dma_buf_put(alloc->imported.umm.dma_buf);
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF:
|
#if MALI_USE_CSF
|
kbase_jd_user_buf_unpin_pages(alloc);
|
#endif
|
if (alloc->imported.user_buf.mm)
|
mmdrop(alloc->imported.user_buf.mm);
|
if (alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
|
vfree(alloc->imported.user_buf.pages);
|
else
|
kfree(alloc->imported.user_buf.pages);
|
break;
|
default:
|
WARN(1, "Unexecpted free of type %d\n", alloc->type);
|
break;
|
}
|
|
/* Free based on allocation type */
|
if (alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
|
vfree(alloc);
|
else
|
kfree(alloc);
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_mem_kref_free);
|
|
int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size)
|
{
|
KBASE_DEBUG_ASSERT(reg != NULL);
|
KBASE_DEBUG_ASSERT(vsize > 0);
|
|
/* validate user provided arguments */
|
if (size > vsize || vsize > reg->nr_pages)
|
goto out_term;
|
|
/* Prevent vsize*sizeof from wrapping around.
|
* For instance, if vsize is 2**29+1, we'll allocate 1 byte and the alloc won't fail.
|
*/
|
if ((size_t) vsize > ((size_t) -1 / sizeof(*reg->cpu_alloc->pages)))
|
goto out_term;
|
|
KBASE_DEBUG_ASSERT(vsize != 0);
|
|
if (kbase_alloc_phy_pages_helper(reg->cpu_alloc, size) != 0)
|
goto out_term;
|
|
reg->cpu_alloc->reg = reg;
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
if (kbase_alloc_phy_pages_helper(reg->gpu_alloc, size) != 0)
|
goto out_rollback;
|
reg->gpu_alloc->reg = reg;
|
}
|
|
return 0;
|
|
out_rollback:
|
kbase_free_phy_pages_helper(reg->cpu_alloc, size);
|
out_term:
|
return -1;
|
}
|
KBASE_EXPORT_TEST_API(kbase_alloc_phy_pages);
|
|
void kbase_set_phy_alloc_page_status(struct kbase_mem_phy_alloc *alloc,
|
enum kbase_page_status status)
|
{
|
u32 i = 0;
|
|
for (; i < alloc->nents; i++) {
|
struct tagged_addr phys = alloc->pages[i];
|
struct kbase_page_metadata *page_md = kbase_page_private(as_page(phys));
|
|
/* Skip the 4KB page that is part of a large page, as the large page is
|
* excluded from the migration process.
|
*/
|
if (is_huge(phys) || is_partial(phys))
|
continue;
|
|
if (!page_md)
|
continue;
|
|
spin_lock(&page_md->migrate_lock);
|
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)status);
|
spin_unlock(&page_md->migrate_lock);
|
}
|
}
|
|
bool kbase_check_alloc_flags(unsigned long flags)
|
{
|
/* Only known input flags should be set. */
|
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
|
return false;
|
|
/* At least one flag should be set */
|
if (flags == 0)
|
return false;
|
|
/* Either the GPU or CPU must be reading from the allocated memory */
|
if ((flags & (BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_GPU_RD)) == 0)
|
return false;
|
|
/* Either the GPU or CPU must be writing to the allocated memory */
|
if ((flags & (BASE_MEM_PROT_CPU_WR | BASE_MEM_PROT_GPU_WR)) == 0)
|
return false;
|
|
/* GPU executable memory cannot:
|
* - Be written by the GPU
|
* - Be grown on GPU page fault
|
*/
|
if ((flags & BASE_MEM_PROT_GPU_EX) && (flags &
|
(BASE_MEM_PROT_GPU_WR | BASE_MEM_GROW_ON_GPF)))
|
return false;
|
|
#if !MALI_USE_CSF
|
/* GPU executable memory also cannot have the top of its initial
|
* commit aligned to 'extension'
|
*/
|
if ((flags & BASE_MEM_PROT_GPU_EX) && (flags &
|
BASE_MEM_TILER_ALIGN_TOP))
|
return false;
|
#endif /* !MALI_USE_CSF */
|
|
/* To have an allocation lie within a 4GB chunk is required only for
|
* TLS memory, which will never be used to contain executable code.
|
*/
|
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) && (flags &
|
BASE_MEM_PROT_GPU_EX))
|
return false;
|
|
#if !MALI_USE_CSF
|
/* TLS memory should also not be used for tiler heap */
|
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) && (flags &
|
BASE_MEM_TILER_ALIGN_TOP))
|
return false;
|
#endif /* !MALI_USE_CSF */
|
|
/* GPU should have at least read or write access otherwise there is no
|
* reason for allocating.
|
*/
|
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
|
return false;
|
|
/* BASE_MEM_IMPORT_SHARED is only valid for imported memory */
|
if ((flags & BASE_MEM_IMPORT_SHARED) == BASE_MEM_IMPORT_SHARED)
|
return false;
|
|
/* BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP is only valid for imported memory
|
*/
|
if ((flags & BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP) ==
|
BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP)
|
return false;
|
|
/* Should not combine BASE_MEM_COHERENT_LOCAL with
|
* BASE_MEM_COHERENT_SYSTEM
|
*/
|
if ((flags & (BASE_MEM_COHERENT_LOCAL | BASE_MEM_COHERENT_SYSTEM)) ==
|
(BASE_MEM_COHERENT_LOCAL | BASE_MEM_COHERENT_SYSTEM))
|
return false;
|
|
#if MALI_USE_CSF
|
if ((flags & BASE_MEM_SAME_VA) && (flags & (BASE_MEM_FIXABLE | BASE_MEM_FIXED)))
|
return false;
|
|
if ((flags & BASE_MEM_FIXABLE) && (flags & BASE_MEM_FIXED))
|
return false;
|
#endif
|
|
return true;
|
}
|
|
bool kbase_check_import_flags(unsigned long flags)
|
{
|
/* Only known input flags should be set. */
|
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
|
return false;
|
|
/* At least one flag should be set */
|
if (flags == 0)
|
return false;
|
|
/* Imported memory cannot be GPU executable */
|
if (flags & BASE_MEM_PROT_GPU_EX)
|
return false;
|
|
/* Imported memory cannot grow on page fault */
|
if (flags & BASE_MEM_GROW_ON_GPF)
|
return false;
|
|
#if MALI_USE_CSF
|
/* Imported memory cannot be fixed */
|
if ((flags & (BASE_MEM_FIXED | BASE_MEM_FIXABLE)))
|
return false;
|
#else
|
/* Imported memory cannot be aligned to the end of its initial commit */
|
if (flags & BASE_MEM_TILER_ALIGN_TOP)
|
return false;
|
#endif /* !MALI_USE_CSF */
|
|
/* GPU should have at least read or write access otherwise there is no
|
* reason for importing.
|
*/
|
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
|
return false;
|
|
/* Protected memory cannot be read by the CPU */
|
if ((flags & BASE_MEM_PROTECTED) && (flags & BASE_MEM_PROT_CPU_RD))
|
return false;
|
|
return true;
|
}
|
|
int kbase_check_alloc_sizes(struct kbase_context *kctx, unsigned long flags,
|
u64 va_pages, u64 commit_pages, u64 large_extension)
|
{
|
struct device *dev = kctx->kbdev->dev;
|
int gpu_pc_bits = kctx->kbdev->gpu_props.props.core_props.log2_program_counter_size;
|
u64 gpu_pc_pages_max = 1ULL << gpu_pc_bits >> PAGE_SHIFT;
|
struct kbase_va_region test_reg;
|
|
/* kbase_va_region's extension member can be of variable size, so check against that type */
|
test_reg.extension = large_extension;
|
|
#define KBASE_MSG_PRE "GPU allocation attempted with "
|
|
if (va_pages == 0) {
|
dev_warn(dev, KBASE_MSG_PRE "0 va_pages!");
|
return -EINVAL;
|
}
|
|
if (va_pages > KBASE_MEM_ALLOC_MAX_SIZE) {
|
dev_warn(dev, KBASE_MSG_PRE "va_pages==%lld larger than KBASE_MEM_ALLOC_MAX_SIZE!",
|
(unsigned long long)va_pages);
|
return -ENOMEM;
|
}
|
|
/* Note: commit_pages is checked against va_pages during
|
* kbase_alloc_phy_pages()
|
*/
|
|
/* Limit GPU executable allocs to GPU PC size */
|
if ((flags & BASE_MEM_PROT_GPU_EX) && (va_pages > gpu_pc_pages_max)) {
|
dev_warn(dev, KBASE_MSG_PRE "BASE_MEM_PROT_GPU_EX and va_pages==%lld larger than GPU PC range %lld",
|
(unsigned long long)va_pages,
|
(unsigned long long)gpu_pc_pages_max);
|
|
return -EINVAL;
|
}
|
|
if ((flags & BASE_MEM_GROW_ON_GPF) && (test_reg.extension == 0)) {
|
dev_warn(dev, KBASE_MSG_PRE
|
"BASE_MEM_GROW_ON_GPF but extension == 0\n");
|
return -EINVAL;
|
}
|
|
#if !MALI_USE_CSF
|
if ((flags & BASE_MEM_TILER_ALIGN_TOP) && (test_reg.extension == 0)) {
|
dev_warn(dev, KBASE_MSG_PRE
|
"BASE_MEM_TILER_ALIGN_TOP but extension == 0\n");
|
return -EINVAL;
|
}
|
|
if (!(flags & (BASE_MEM_GROW_ON_GPF | BASE_MEM_TILER_ALIGN_TOP)) &&
|
test_reg.extension != 0) {
|
dev_warn(
|
dev, KBASE_MSG_PRE
|
"neither BASE_MEM_GROW_ON_GPF nor BASE_MEM_TILER_ALIGN_TOP set but extension != 0\n");
|
return -EINVAL;
|
}
|
#else
|
if (!(flags & BASE_MEM_GROW_ON_GPF) && test_reg.extension != 0) {
|
dev_warn(dev, KBASE_MSG_PRE
|
"BASE_MEM_GROW_ON_GPF not set but extension != 0\n");
|
return -EINVAL;
|
}
|
#endif /* !MALI_USE_CSF */
|
|
#if !MALI_USE_CSF
|
/* BASE_MEM_TILER_ALIGN_TOP memory has a number of restrictions */
|
if (flags & BASE_MEM_TILER_ALIGN_TOP) {
|
#define KBASE_MSG_PRE_FLAG KBASE_MSG_PRE "BASE_MEM_TILER_ALIGN_TOP and "
|
unsigned long small_extension;
|
|
if (large_extension >
|
BASE_MEM_TILER_ALIGN_TOP_EXTENSION_MAX_PAGES) {
|
dev_warn(dev,
|
KBASE_MSG_PRE_FLAG
|
"extension==%lld pages exceeds limit %lld",
|
(unsigned long long)large_extension,
|
BASE_MEM_TILER_ALIGN_TOP_EXTENSION_MAX_PAGES);
|
return -EINVAL;
|
}
|
/* For use with is_power_of_2, which takes unsigned long, so
|
* must ensure e.g. on 32-bit kernel it'll fit in that type
|
*/
|
small_extension = (unsigned long)large_extension;
|
|
if (!is_power_of_2(small_extension)) {
|
dev_warn(dev,
|
KBASE_MSG_PRE_FLAG
|
"extension==%ld not a non-zero power of 2",
|
small_extension);
|
return -EINVAL;
|
}
|
|
if (commit_pages > large_extension) {
|
dev_warn(dev,
|
KBASE_MSG_PRE_FLAG
|
"commit_pages==%ld exceeds extension==%ld",
|
(unsigned long)commit_pages,
|
(unsigned long)large_extension);
|
return -EINVAL;
|
}
|
#undef KBASE_MSG_PRE_FLAG
|
}
|
#endif /* !MALI_USE_CSF */
|
|
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) &&
|
(va_pages > (BASE_MEM_PFN_MASK_4GB + 1))) {
|
dev_warn(dev, KBASE_MSG_PRE "BASE_MEM_GPU_VA_SAME_4GB_PAGE and va_pages==%lld greater than that needed for 4GB space",
|
(unsigned long long)va_pages);
|
return -EINVAL;
|
}
|
|
return 0;
|
#undef KBASE_MSG_PRE
|
}
|
|
void kbase_gpu_vm_lock(struct kbase_context *kctx)
|
{
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
mutex_lock(&kctx->reg_lock);
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_vm_lock);
|
|
void kbase_gpu_vm_unlock(struct kbase_context *kctx)
|
{
|
KBASE_DEBUG_ASSERT(kctx != NULL);
|
mutex_unlock(&kctx->reg_lock);
|
}
|
|
KBASE_EXPORT_TEST_API(kbase_gpu_vm_unlock);
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
struct kbase_jit_debugfs_data {
|
int (*func)(struct kbase_jit_debugfs_data *data);
|
struct mutex lock;
|
struct kbase_context *kctx;
|
u64 active_value;
|
u64 pool_value;
|
u64 destroy_value;
|
char buffer[50];
|
};
|
|
static int kbase_jit_debugfs_common_open(struct inode *inode,
|
struct file *file, int (*func)(struct kbase_jit_debugfs_data *))
|
{
|
struct kbase_jit_debugfs_data *data;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
if (!data)
|
return -ENOMEM;
|
|
data->func = func;
|
mutex_init(&data->lock);
|
data->kctx = (struct kbase_context *) inode->i_private;
|
|
file->private_data = data;
|
|
return nonseekable_open(inode, file);
|
}
|
|
static ssize_t kbase_jit_debugfs_common_read(struct file *file,
|
char __user *buf, size_t len, loff_t *ppos)
|
{
|
struct kbase_jit_debugfs_data *data;
|
size_t size;
|
int ret;
|
|
data = (struct kbase_jit_debugfs_data *) file->private_data;
|
mutex_lock(&data->lock);
|
|
if (*ppos) {
|
size = strnlen(data->buffer, sizeof(data->buffer));
|
} else {
|
if (!data->func) {
|
ret = -EACCES;
|
goto out_unlock;
|
}
|
|
if (data->func(data)) {
|
ret = -EACCES;
|
goto out_unlock;
|
}
|
|
size = scnprintf(data->buffer, sizeof(data->buffer),
|
"%llu,%llu,%llu\n", data->active_value,
|
data->pool_value, data->destroy_value);
|
}
|
|
ret = simple_read_from_buffer(buf, len, ppos, data->buffer, size);
|
|
out_unlock:
|
mutex_unlock(&data->lock);
|
return ret;
|
}
|
|
static int kbase_jit_debugfs_common_release(struct inode *inode,
|
struct file *file)
|
{
|
kfree(file->private_data);
|
return 0;
|
}
|
|
#define KBASE_JIT_DEBUGFS_DECLARE(__fops, __func) \
|
static int __fops ## _open(struct inode *inode, struct file *file) \
|
{ \
|
return kbase_jit_debugfs_common_open(inode, file, __func); \
|
} \
|
static const struct file_operations __fops = { \
|
.owner = THIS_MODULE, \
|
.open = __fops ## _open, \
|
.release = kbase_jit_debugfs_common_release, \
|
.read = kbase_jit_debugfs_common_read, \
|
.write = NULL, \
|
.llseek = generic_file_llseek, \
|
}
|
|
static int kbase_jit_debugfs_count_get(struct kbase_jit_debugfs_data *data)
|
{
|
struct kbase_context *kctx = data->kctx;
|
struct list_head *tmp;
|
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each(tmp, &kctx->jit_active_head) {
|
data->active_value++;
|
}
|
|
list_for_each(tmp, &kctx->jit_pool_head) {
|
data->pool_value++;
|
}
|
|
list_for_each(tmp, &kctx->jit_destroy_head) {
|
data->destroy_value++;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
return 0;
|
}
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_count_fops,
|
kbase_jit_debugfs_count_get);
|
|
static int kbase_jit_debugfs_vm_get(struct kbase_jit_debugfs_data *data)
|
{
|
struct kbase_context *kctx = data->kctx;
|
struct kbase_va_region *reg;
|
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
data->active_value += reg->nr_pages;
|
}
|
|
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
|
data->pool_value += reg->nr_pages;
|
}
|
|
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
|
data->destroy_value += reg->nr_pages;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
return 0;
|
}
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_vm_fops,
|
kbase_jit_debugfs_vm_get);
|
|
static int kbase_jit_debugfs_phys_get(struct kbase_jit_debugfs_data *data)
|
{
|
struct kbase_context *kctx = data->kctx;
|
struct kbase_va_region *reg;
|
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
data->active_value += reg->gpu_alloc->nents;
|
}
|
|
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
|
data->pool_value += reg->gpu_alloc->nents;
|
}
|
|
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
|
data->destroy_value += reg->gpu_alloc->nents;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
return 0;
|
}
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_phys_fops,
|
kbase_jit_debugfs_phys_get);
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
static int kbase_jit_debugfs_used_get(struct kbase_jit_debugfs_data *data)
|
{
|
struct kbase_context *kctx = data->kctx;
|
struct kbase_va_region *reg;
|
|
#if !MALI_USE_CSF
|
mutex_lock(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
data->active_value += reg->used_pages;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
#if !MALI_USE_CSF
|
mutex_unlock(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
|
return 0;
|
}
|
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_used_fops,
|
kbase_jit_debugfs_used_get);
|
|
static int kbase_mem_jit_trim_pages_from_region(struct kbase_context *kctx,
|
struct kbase_va_region *reg, size_t pages_needed,
|
size_t *freed, bool shrink);
|
|
static int kbase_jit_debugfs_trim_get(struct kbase_jit_debugfs_data *data)
|
{
|
struct kbase_context *kctx = data->kctx;
|
struct kbase_va_region *reg;
|
|
#if !MALI_USE_CSF
|
mutex_lock(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
kbase_gpu_vm_lock(kctx);
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
|
int err;
|
size_t freed = 0u;
|
|
err = kbase_mem_jit_trim_pages_from_region(kctx, reg,
|
SIZE_MAX, &freed, false);
|
|
if (err) {
|
/* Failed to calculate, try the next region */
|
continue;
|
}
|
|
data->active_value += freed;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_gpu_vm_unlock(kctx);
|
#if !MALI_USE_CSF
|
mutex_unlock(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
|
return 0;
|
}
|
|
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_trim_fops,
|
kbase_jit_debugfs_trim_get);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
void kbase_jit_debugfs_init(struct kbase_context *kctx)
|
{
|
/* prevent unprivileged use of debug file system
|
* in old kernel version
|
*/
|
const mode_t mode = 0444;
|
|
/* Caller already ensures this, but we keep the pattern for
|
* maintenance safety.
|
*/
|
if (WARN_ON(!kctx) ||
|
WARN_ON(IS_ERR_OR_NULL(kctx->kctx_dentry)))
|
return;
|
|
|
|
/* Debugfs entry for getting the number of JIT allocations. */
|
debugfs_create_file("mem_jit_count", mode, kctx->kctx_dentry,
|
kctx, &kbase_jit_debugfs_count_fops);
|
|
/*
|
* Debugfs entry for getting the total number of virtual pages
|
* used by JIT allocations.
|
*/
|
debugfs_create_file("mem_jit_vm", mode, kctx->kctx_dentry,
|
kctx, &kbase_jit_debugfs_vm_fops);
|
|
/*
|
* Debugfs entry for getting the number of physical pages used
|
* by JIT allocations.
|
*/
|
debugfs_create_file("mem_jit_phys", mode, kctx->kctx_dentry,
|
kctx, &kbase_jit_debugfs_phys_fops);
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
/*
|
* Debugfs entry for getting the number of pages used
|
* by JIT allocations for estimating the physical pressure
|
* limit.
|
*/
|
debugfs_create_file("mem_jit_used", mode, kctx->kctx_dentry,
|
kctx, &kbase_jit_debugfs_used_fops);
|
|
/*
|
* Debugfs entry for getting the number of pages that could
|
* be trimmed to free space for more JIT allocations.
|
*/
|
debugfs_create_file("mem_jit_trim", mode, kctx->kctx_dentry,
|
kctx, &kbase_jit_debugfs_trim_fops);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
}
|
#endif /* CONFIG_DEBUG_FS */
|
|
/**
|
* kbase_jit_destroy_worker - Deferred worker which frees JIT allocations
|
* @work: Work item
|
*
|
* This function does the work of freeing JIT allocations whose physical
|
* backing has been released.
|
*/
|
static void kbase_jit_destroy_worker(struct work_struct *work)
|
{
|
struct kbase_context *kctx;
|
struct kbase_va_region *reg;
|
|
kctx = container_of(work, struct kbase_context, jit_work);
|
do {
|
mutex_lock(&kctx->jit_evict_lock);
|
if (list_empty(&kctx->jit_destroy_head)) {
|
mutex_unlock(&kctx->jit_evict_lock);
|
break;
|
}
|
|
reg = list_first_entry(&kctx->jit_destroy_head,
|
struct kbase_va_region, jit_node);
|
|
list_del(®->jit_node);
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kbase_gpu_vm_lock(kctx);
|
|
/*
|
* Incrementing the refcount is prevented on JIT regions.
|
* If/when this ever changes we would need to compensate
|
* by implementing "free on putting the last reference",
|
* but only for JIT regions.
|
*/
|
WARN_ON(atomic_read(®->no_user_free_count) > 1);
|
kbase_va_region_no_user_free_dec(reg);
|
kbase_mem_free_region(kctx, reg);
|
kbase_gpu_vm_unlock(kctx);
|
} while (1);
|
}
|
|
int kbase_jit_init(struct kbase_context *kctx)
|
{
|
mutex_lock(&kctx->jit_evict_lock);
|
INIT_LIST_HEAD(&kctx->jit_active_head);
|
INIT_LIST_HEAD(&kctx->jit_pool_head);
|
INIT_LIST_HEAD(&kctx->jit_destroy_head);
|
INIT_WORK(&kctx->jit_work, kbase_jit_destroy_worker);
|
|
#if MALI_USE_CSF
|
mutex_init(&kctx->csf.kcpu_queues.jit_lock);
|
INIT_LIST_HEAD(&kctx->csf.kcpu_queues.jit_cmds_head);
|
INIT_LIST_HEAD(&kctx->csf.kcpu_queues.jit_blocked_queues);
|
#else /* !MALI_USE_CSF */
|
INIT_LIST_HEAD(&kctx->jctx.jit_atoms_head);
|
INIT_LIST_HEAD(&kctx->jctx.jit_pending_alloc);
|
#endif /* MALI_USE_CSF */
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
kctx->jit_max_allocations = 0;
|
kctx->jit_current_allocations = 0;
|
kctx->trim_level = 0;
|
|
return 0;
|
}
|
|
/* Check if the allocation from JIT pool is of the same size as the new JIT
|
* allocation and also, if BASE_JIT_ALLOC_MEM_TILER_ALIGN_TOP is set, meets
|
* the alignment requirements.
|
*/
|
static bool meet_size_and_tiler_align_top_requirements(
|
const struct kbase_va_region *walker,
|
const struct base_jit_alloc_info *info)
|
{
|
bool meet_reqs = true;
|
|
if (walker->nr_pages != info->va_pages)
|
meet_reqs = false;
|
|
#if !MALI_USE_CSF
|
if (meet_reqs && (info->flags & BASE_JIT_ALLOC_MEM_TILER_ALIGN_TOP)) {
|
size_t align = info->extension;
|
size_t align_mask = align - 1;
|
|
if ((walker->start_pfn + info->commit_pages) & align_mask)
|
meet_reqs = false;
|
}
|
#endif /* !MALI_USE_CSF */
|
|
return meet_reqs;
|
}
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
/* Function will guarantee *@freed will not exceed @pages_needed
|
*/
|
static int kbase_mem_jit_trim_pages_from_region(struct kbase_context *kctx,
|
struct kbase_va_region *reg, size_t pages_needed,
|
size_t *freed, bool shrink)
|
{
|
int err = 0;
|
size_t available_pages = 0u;
|
const size_t old_pages = kbase_reg_current_backed_size(reg);
|
size_t new_pages = old_pages;
|
size_t to_free = 0u;
|
size_t max_allowed_pages = old_pages;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Is this a JIT allocation that has been reported on? */
|
if (reg->used_pages == reg->nr_pages)
|
goto out;
|
|
if (!(reg->flags & KBASE_REG_HEAP_INFO_IS_SIZE)) {
|
/* For address based memory usage calculation, the GPU
|
* allocates objects of up to size 's', but aligns every object
|
* to alignment 'a', with a < s.
|
*
|
* It also doesn't have to write to all bytes in an object of
|
* size 's'.
|
*
|
* Hence, we can observe the GPU's address for the end of used
|
* memory being up to (s - a) bytes into the first unallocated
|
* page.
|
*
|
* We allow for this and only warn when it exceeds this bound
|
* (rounded up to page sized units). Note, this is allowed to
|
* exceed reg->nr_pages.
|
*/
|
max_allowed_pages += PFN_UP(
|
KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES -
|
KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES);
|
} else if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
|
/* The GPU could report being ready to write to the next
|
* 'extension' sized chunk, but didn't actually write to it, so we
|
* can report up to 'extension' size pages more than the backed
|
* size.
|
*
|
* Note, this is allowed to exceed reg->nr_pages.
|
*/
|
max_allowed_pages += reg->extension;
|
|
/* Also note that in these GPUs, the GPU may make a large (>1
|
* page) initial allocation but not actually write out to all
|
* of it. Hence it might report that a much higher amount of
|
* memory was used than actually was written to. This does not
|
* result in a real warning because on growing this memory we
|
* round up the size of the allocation up to an 'extension' sized
|
* chunk, hence automatically bringing the backed size up to
|
* the reported size.
|
*/
|
}
|
|
if (old_pages < reg->used_pages) {
|
/* Prevent overflow on available_pages, but only report the
|
* problem if it's in a scenario where used_pages should have
|
* been consistent with the backed size
|
*
|
* Note: In case of a size-based report, this legitimately
|
* happens in common use-cases: we allow for up to this size of
|
* memory being used, but depending on the content it doesn't
|
* have to use all of it.
|
*
|
* Hence, we're much more quiet about that in the size-based
|
* report case - it's not indicating a real problem, it's just
|
* for information
|
*/
|
if (max_allowed_pages < reg->used_pages) {
|
if (!(reg->flags & KBASE_REG_HEAP_INFO_IS_SIZE))
|
dev_warn(kctx->kbdev->dev,
|
"%s: current backed pages %zu < reported used pages %zu (allowed to be up to %zu) on JIT 0x%llx vapages %zu\n",
|
__func__,
|
old_pages, reg->used_pages,
|
max_allowed_pages,
|
reg->start_pfn << PAGE_SHIFT,
|
reg->nr_pages);
|
else
|
dev_dbg(kctx->kbdev->dev,
|
"%s: no need to trim, current backed pages %zu < reported used pages %zu on size-report for JIT 0x%llx vapages %zu\n",
|
__func__,
|
old_pages, reg->used_pages,
|
reg->start_pfn << PAGE_SHIFT,
|
reg->nr_pages);
|
}
|
/* In any case, no error condition to report here, caller can
|
* try other regions
|
*/
|
|
goto out;
|
}
|
available_pages = old_pages - reg->used_pages;
|
to_free = min(available_pages, pages_needed);
|
|
if (shrink) {
|
new_pages -= to_free;
|
|
err = kbase_mem_shrink(kctx, reg, new_pages);
|
}
|
out:
|
trace_mali_jit_trim_from_region(reg, to_free, old_pages,
|
available_pages, new_pages);
|
*freed = to_free;
|
return err;
|
}
|
|
|
/**
|
* kbase_mem_jit_trim_pages - Trim JIT regions until sufficient pages have been
|
* freed
|
* @kctx: Pointer to the kbase context whose active JIT allocations will be
|
* checked.
|
* @pages_needed: The maximum number of pages to trim.
|
*
|
* This functions checks all active JIT allocations in @kctx for unused pages
|
* at the end, and trim the backed memory regions of those allocations down to
|
* the used portion and free the unused pages into the page pool.
|
*
|
* Specifying @pages_needed allows us to stop early when there's enough
|
* physical memory freed to sufficiently bring down the total JIT physical page
|
* usage (e.g. to below the pressure limit)
|
*
|
* Return: Total number of successfully freed pages
|
*/
|
static size_t kbase_mem_jit_trim_pages(struct kbase_context *kctx,
|
size_t pages_needed)
|
{
|
struct kbase_va_region *reg, *tmp;
|
size_t total_freed = 0;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
lockdep_assert_held(&kctx->reg_lock);
|
lockdep_assert_held(&kctx->jit_evict_lock);
|
|
list_for_each_entry_safe(reg, tmp, &kctx->jit_active_head, jit_node) {
|
int err;
|
size_t freed = 0u;
|
|
err = kbase_mem_jit_trim_pages_from_region(kctx, reg,
|
pages_needed, &freed, true);
|
|
if (err) {
|
/* Failed to trim, try the next region */
|
continue;
|
}
|
|
total_freed += freed;
|
WARN_ON(freed > pages_needed);
|
pages_needed -= freed;
|
if (!pages_needed)
|
break;
|
}
|
|
trace_mali_jit_trim(total_freed);
|
|
return total_freed;
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
static int kbase_jit_grow(struct kbase_context *kctx,
|
const struct base_jit_alloc_info *info,
|
struct kbase_va_region *reg,
|
struct kbase_sub_alloc **prealloc_sas,
|
enum kbase_caller_mmu_sync_info mmu_sync_info)
|
{
|
size_t delta;
|
size_t pages_required;
|
size_t old_size;
|
struct kbase_mem_pool *pool;
|
int ret = -ENOMEM;
|
struct tagged_addr *gpu_pages;
|
|
if (info->commit_pages > reg->nr_pages) {
|
/* Attempted to grow larger than maximum size */
|
return -EINVAL;
|
}
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Make the physical backing no longer reclaimable */
|
if (!kbase_mem_evictable_unmake(reg->gpu_alloc))
|
goto update_failed;
|
|
if (reg->gpu_alloc->nents >= info->commit_pages)
|
goto done;
|
|
/* Grow the backing */
|
old_size = reg->gpu_alloc->nents;
|
|
/* Allocate some more pages */
|
delta = info->commit_pages - reg->gpu_alloc->nents;
|
pages_required = delta;
|
|
if (kctx->kbdev->pagesize_2mb && pages_required >= (SZ_2M / SZ_4K)) {
|
pool = &kctx->mem_pools.large[kctx->jit_group_id];
|
/* Round up to number of 2 MB pages required */
|
pages_required += ((SZ_2M / SZ_4K) - 1);
|
pages_required /= (SZ_2M / SZ_4K);
|
} else {
|
pool = &kctx->mem_pools.small[kctx->jit_group_id];
|
}
|
|
if (reg->cpu_alloc != reg->gpu_alloc)
|
pages_required *= 2;
|
|
spin_lock(&kctx->mem_partials_lock);
|
kbase_mem_pool_lock(pool);
|
|
/* As we can not allocate memory from the kernel with the vm_lock held,
|
* grow the pool to the required size with the lock dropped. We hold the
|
* pool lock to prevent another thread from allocating from the pool
|
* between the grow and allocation.
|
*/
|
while (kbase_mem_pool_size(pool) < pages_required) {
|
int pool_delta = pages_required - kbase_mem_pool_size(pool);
|
int ret;
|
|
kbase_mem_pool_unlock(pool);
|
spin_unlock(&kctx->mem_partials_lock);
|
|
kbase_gpu_vm_unlock(kctx);
|
ret = kbase_mem_pool_grow(pool, pool_delta, kctx->task);
|
kbase_gpu_vm_lock(kctx);
|
|
if (ret)
|
goto update_failed;
|
|
spin_lock(&kctx->mem_partials_lock);
|
kbase_mem_pool_lock(pool);
|
}
|
|
gpu_pages = kbase_alloc_phy_pages_helper_locked(reg->gpu_alloc, pool,
|
delta, &prealloc_sas[0]);
|
if (!gpu_pages) {
|
kbase_mem_pool_unlock(pool);
|
spin_unlock(&kctx->mem_partials_lock);
|
goto update_failed;
|
}
|
|
if (reg->cpu_alloc != reg->gpu_alloc) {
|
struct tagged_addr *cpu_pages;
|
|
cpu_pages = kbase_alloc_phy_pages_helper_locked(reg->cpu_alloc,
|
pool, delta, &prealloc_sas[1]);
|
if (!cpu_pages) {
|
kbase_free_phy_pages_helper_locked(reg->gpu_alloc,
|
pool, gpu_pages, delta);
|
kbase_mem_pool_unlock(pool);
|
spin_unlock(&kctx->mem_partials_lock);
|
goto update_failed;
|
}
|
}
|
kbase_mem_pool_unlock(pool);
|
spin_unlock(&kctx->mem_partials_lock);
|
|
ret = kbase_mem_grow_gpu_mapping(kctx, reg, info->commit_pages,
|
old_size, mmu_sync_info);
|
/*
|
* The grow failed so put the allocation back in the
|
* pool and return failure.
|
*/
|
if (ret)
|
goto update_failed;
|
|
done:
|
ret = 0;
|
|
/* Update attributes of JIT allocation taken from the pool */
|
reg->initial_commit = info->commit_pages;
|
reg->extension = info->extension;
|
|
update_failed:
|
return ret;
|
}
|
|
static void trace_jit_stats(struct kbase_context *kctx,
|
u32 bin_id, u32 max_allocations)
|
{
|
const u32 alloc_count =
|
kctx->jit_current_allocations_per_bin[bin_id];
|
struct kbase_device *kbdev = kctx->kbdev;
|
|
struct kbase_va_region *walker;
|
u32 va_pages = 0;
|
u32 ph_pages = 0;
|
|
mutex_lock(&kctx->jit_evict_lock);
|
list_for_each_entry(walker, &kctx->jit_active_head, jit_node) {
|
if (walker->jit_bin_id != bin_id)
|
continue;
|
|
va_pages += walker->nr_pages;
|
ph_pages += walker->gpu_alloc->nents;
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
KBASE_TLSTREAM_AUX_JIT_STATS(kbdev, kctx->id, bin_id,
|
max_allocations, alloc_count, va_pages, ph_pages);
|
}
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
/**
|
* get_jit_phys_backing() - calculate the physical backing of all JIT
|
* allocations
|
*
|
* @kctx: Pointer to the kbase context whose active JIT allocations will be
|
* checked
|
*
|
* Return: number of pages that are committed by JIT allocations
|
*/
|
static size_t get_jit_phys_backing(struct kbase_context *kctx)
|
{
|
struct kbase_va_region *walker;
|
size_t backing = 0;
|
|
lockdep_assert_held(&kctx->jit_evict_lock);
|
|
list_for_each_entry(walker, &kctx->jit_active_head, jit_node) {
|
backing += kbase_reg_current_backed_size(walker);
|
}
|
|
return backing;
|
}
|
|
void kbase_jit_trim_necessary_pages(struct kbase_context *kctx,
|
size_t needed_pages)
|
{
|
size_t jit_backing = 0;
|
size_t pages_to_trim = 0;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
lockdep_assert_held(&kctx->reg_lock);
|
lockdep_assert_held(&kctx->jit_evict_lock);
|
|
jit_backing = get_jit_phys_backing(kctx);
|
|
/* It is possible that this is the case - if this is the first
|
* allocation after "ignore_pressure_limit" allocation.
|
*/
|
if (jit_backing > kctx->jit_phys_pages_limit) {
|
pages_to_trim += (jit_backing - kctx->jit_phys_pages_limit) +
|
needed_pages;
|
} else {
|
size_t backed_diff = kctx->jit_phys_pages_limit - jit_backing;
|
|
if (needed_pages > backed_diff)
|
pages_to_trim += needed_pages - backed_diff;
|
}
|
|
if (pages_to_trim) {
|
size_t trimmed_pages =
|
kbase_mem_jit_trim_pages(kctx, pages_to_trim);
|
|
/* This should never happen - we already asserted that
|
* we are not violating JIT pressure limit in earlier
|
* checks, which means that in-flight JIT allocations
|
* must have enough unused pages to satisfy the new
|
* allocation
|
*/
|
WARN_ON(trimmed_pages < pages_to_trim);
|
}
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
/**
|
* jit_allow_allocate() - check whether basic conditions are satisfied to allow
|
* a new JIT allocation
|
*
|
* @kctx: Pointer to the kbase context
|
* @info: Pointer to JIT allocation information for the new allocation
|
* @ignore_pressure_limit: Flag to indicate whether JIT pressure limit check
|
* should be ignored
|
*
|
* Return: true if allocation can be executed, false otherwise
|
*/
|
static bool jit_allow_allocate(struct kbase_context *kctx,
|
const struct base_jit_alloc_info *info,
|
bool ignore_pressure_limit)
|
{
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#else /* MALI_USE_CSF */
|
lockdep_assert_held(&kctx->csf.kcpu_queues.jit_lock);
|
#endif /* !MALI_USE_CSF */
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (!ignore_pressure_limit &&
|
((kctx->jit_phys_pages_limit <= kctx->jit_current_phys_pressure) ||
|
(info->va_pages > (kctx->jit_phys_pages_limit - kctx->jit_current_phys_pressure)))) {
|
dev_dbg(kctx->kbdev->dev,
|
"Max JIT page allocations limit reached: active pages %llu, max pages %llu\n",
|
kctx->jit_current_phys_pressure + info->va_pages,
|
kctx->jit_phys_pages_limit);
|
return false;
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
if (kctx->jit_current_allocations >= kctx->jit_max_allocations) {
|
/* Too many current allocations */
|
dev_dbg(kctx->kbdev->dev,
|
"Max JIT allocations limit reached: active allocations %d, max allocations %d\n",
|
kctx->jit_current_allocations,
|
kctx->jit_max_allocations);
|
return false;
|
}
|
|
if (info->max_allocations > 0 &&
|
kctx->jit_current_allocations_per_bin[info->bin_id] >=
|
info->max_allocations) {
|
/* Too many current allocations in this bin */
|
dev_dbg(kctx->kbdev->dev,
|
"Per bin limit of max JIT allocations reached: bin_id %d, active allocations %d, max allocations %d\n",
|
info->bin_id,
|
kctx->jit_current_allocations_per_bin[info->bin_id],
|
info->max_allocations);
|
return false;
|
}
|
|
return true;
|
}
|
|
static struct kbase_va_region *
|
find_reasonable_region(const struct base_jit_alloc_info *info,
|
struct list_head *pool_head, bool ignore_usage_id)
|
{
|
struct kbase_va_region *closest_reg = NULL;
|
struct kbase_va_region *walker;
|
size_t current_diff = SIZE_MAX;
|
|
list_for_each_entry(walker, pool_head, jit_node) {
|
if ((ignore_usage_id ||
|
walker->jit_usage_id == info->usage_id) &&
|
walker->jit_bin_id == info->bin_id &&
|
meet_size_and_tiler_align_top_requirements(walker, info)) {
|
size_t min_size, max_size, diff;
|
|
/*
|
* The JIT allocations VA requirements have been met,
|
* it's suitable but other allocations might be a
|
* better fit.
|
*/
|
min_size = min_t(size_t, walker->gpu_alloc->nents,
|
info->commit_pages);
|
max_size = max_t(size_t, walker->gpu_alloc->nents,
|
info->commit_pages);
|
diff = max_size - min_size;
|
|
if (current_diff > diff) {
|
current_diff = diff;
|
closest_reg = walker;
|
}
|
|
/* The allocation is an exact match */
|
if (current_diff == 0)
|
break;
|
}
|
}
|
|
return closest_reg;
|
}
|
|
struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx,
|
const struct base_jit_alloc_info *info,
|
bool ignore_pressure_limit)
|
{
|
struct kbase_va_region *reg = NULL;
|
struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
|
int i;
|
|
/* Calls to this function are inherently synchronous, with respect to
|
* MMU operations.
|
*/
|
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#else /* MALI_USE_CSF */
|
lockdep_assert_held(&kctx->csf.kcpu_queues.jit_lock);
|
#endif /* !MALI_USE_CSF */
|
|
if (!jit_allow_allocate(kctx, info, ignore_pressure_limit))
|
return NULL;
|
|
if (kctx->kbdev->pagesize_2mb) {
|
/* Preallocate memory for the sub-allocation structs */
|
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
|
prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);
|
if (!prealloc_sas[i])
|
goto end;
|
}
|
}
|
|
kbase_gpu_vm_lock(kctx);
|
mutex_lock(&kctx->jit_evict_lock);
|
|
/*
|
* Scan the pool for an existing allocation which meets our
|
* requirements and remove it.
|
*/
|
if (info->usage_id != 0)
|
/* First scan for an allocation with the same usage ID */
|
reg = find_reasonable_region(info, &kctx->jit_pool_head, false);
|
|
if (!reg)
|
/* No allocation with the same usage ID, or usage IDs not in
|
* use. Search for an allocation we can reuse.
|
*/
|
reg = find_reasonable_region(info, &kctx->jit_pool_head, true);
|
|
if (reg) {
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
size_t needed_pages = 0;
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
int ret;
|
|
/*
|
* Remove the found region from the pool and add it to the
|
* active list.
|
*/
|
list_move(®->jit_node, &kctx->jit_active_head);
|
|
WARN_ON(reg->gpu_alloc->evicted);
|
|
/*
|
* Remove the allocation from the eviction list as it's no
|
* longer eligible for eviction. This must be done before
|
* dropping the jit_evict_lock
|
*/
|
list_del_init(®->gpu_alloc->evict_node);
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (!ignore_pressure_limit) {
|
if (info->commit_pages > reg->gpu_alloc->nents)
|
needed_pages = info->commit_pages -
|
reg->gpu_alloc->nents;
|
|
/* Update early the recycled JIT region's estimate of
|
* used_pages to ensure it doesn't get trimmed
|
* undesirably. This is needed as the recycled JIT
|
* region has been added to the active list but the
|
* number of used pages for it would be zero, so it
|
* could get trimmed instead of other allocations only
|
* to be regrown later resulting in a breach of the JIT
|
* physical pressure limit.
|
* Also that trimming would disturb the accounting of
|
* physical pages, i.e. the VM stats, as the number of
|
* backing pages would have changed when the call to
|
* kbase_mem_evictable_unmark_reclaim is made.
|
*
|
* The second call to update pressure at the end of
|
* this function would effectively be a nop.
|
*/
|
kbase_jit_report_update_pressure(
|
kctx, reg, info->va_pages,
|
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE);
|
|
kbase_jit_request_phys_increase_locked(kctx,
|
needed_pages);
|
}
|
#endif
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
/* kbase_jit_grow() can release & reacquire 'kctx->reg_lock',
|
* so any state protected by that lock might need to be
|
* re-evaluated if more code is added here in future.
|
*/
|
ret = kbase_jit_grow(kctx, info, reg, prealloc_sas,
|
mmu_sync_info);
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (!ignore_pressure_limit)
|
kbase_jit_done_phys_increase(kctx, needed_pages);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
kbase_gpu_vm_unlock(kctx);
|
|
if (ret < 0) {
|
/*
|
* An update to an allocation from the pool failed,
|
* chances are slim a new allocation would fare any
|
* better so return the allocation to the pool and
|
* return the function with failure.
|
*/
|
dev_dbg(kctx->kbdev->dev,
|
"JIT allocation resize failed: va_pages 0x%llx, commit_pages 0x%llx\n",
|
info->va_pages, info->commit_pages);
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
/* Undo the early change made to the recycled JIT
|
* region's estimate of used_pages.
|
*/
|
if (!ignore_pressure_limit) {
|
kbase_jit_report_update_pressure(
|
kctx, reg, 0,
|
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE);
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
mutex_lock(&kctx->jit_evict_lock);
|
list_move(®->jit_node, &kctx->jit_pool_head);
|
mutex_unlock(&kctx->jit_evict_lock);
|
reg = NULL;
|
goto end;
|
} else {
|
/* A suitable JIT allocation existed on the evict list, so we need
|
* to make sure that the NOT_MOVABLE property is cleared.
|
*/
|
if (kbase_page_migration_enabled) {
|
kbase_gpu_vm_lock(kctx);
|
mutex_lock(&kctx->jit_evict_lock);
|
kbase_set_phy_alloc_page_status(reg->gpu_alloc, ALLOCATED_MAPPED);
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_gpu_vm_unlock(kctx);
|
}
|
}
|
} else {
|
/* No suitable JIT allocation was found so create a new one */
|
u64 flags = BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_GPU_RD |
|
BASE_MEM_PROT_GPU_WR | BASE_MEM_GROW_ON_GPF |
|
BASE_MEM_COHERENT_LOCAL |
|
BASEP_MEM_NO_USER_FREE;
|
u64 gpu_addr;
|
|
#if !MALI_USE_CSF
|
if (info->flags & BASE_JIT_ALLOC_MEM_TILER_ALIGN_TOP)
|
flags |= BASE_MEM_TILER_ALIGN_TOP;
|
#endif /* !MALI_USE_CSF */
|
|
flags |= kbase_mem_group_id_set(kctx->jit_group_id);
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (!ignore_pressure_limit) {
|
flags |= BASEP_MEM_PERFORM_JIT_TRIM;
|
/* The corresponding call to 'done_phys_increase' would
|
* be made inside the kbase_mem_alloc().
|
*/
|
kbase_jit_request_phys_increase_locked(
|
kctx, info->commit_pages);
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_gpu_vm_unlock(kctx);
|
|
reg = kbase_mem_alloc(kctx, info->va_pages, info->commit_pages, info->extension,
|
&flags, &gpu_addr, mmu_sync_info);
|
if (!reg) {
|
/* Most likely not enough GPU virtual space left for
|
* the new JIT allocation.
|
*/
|
dev_dbg(kctx->kbdev->dev,
|
"Failed to allocate JIT memory: va_pages 0x%llx, commit_pages 0x%llx\n",
|
info->va_pages, info->commit_pages);
|
goto end;
|
}
|
|
if (!ignore_pressure_limit) {
|
/* Due to enforcing of pressure limit, kbase_mem_alloc
|
* was instructed to perform the trimming which in turn
|
* would have ensured that the new JIT allocation is
|
* already in the jit_active_head list, so nothing to
|
* do here.
|
*/
|
WARN_ON(list_empty(®->jit_node));
|
} else {
|
mutex_lock(&kctx->jit_evict_lock);
|
list_add(®->jit_node, &kctx->jit_active_head);
|
mutex_unlock(&kctx->jit_evict_lock);
|
}
|
}
|
|
/* Similarly to tiler heap init, there is a short window of time
|
* where the (either recycled or newly allocated, in our case) region has
|
* "no user free" count incremented but is still missing the DONT_NEED flag, and
|
* doesn't yet have the ACTIVE_JIT_ALLOC flag either. Temporarily leaking the
|
* allocation is the least bad option that doesn't lead to a security issue down the
|
* line (it will eventually be cleaned up during context termination).
|
*
|
* We also need to call kbase_gpu_vm_lock regardless, as we're updating the region
|
* flags.
|
*/
|
kbase_gpu_vm_lock(kctx);
|
if (unlikely(atomic_read(®->no_user_free_count) > 1)) {
|
kbase_gpu_vm_unlock(kctx);
|
dev_err(kctx->kbdev->dev, "JIT region has no_user_free_count > 1!\n");
|
|
mutex_lock(&kctx->jit_evict_lock);
|
list_move(®->jit_node, &kctx->jit_pool_head);
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
reg = NULL;
|
goto end;
|
}
|
|
trace_mali_jit_alloc(reg, info->id);
|
|
kctx->jit_current_allocations++;
|
kctx->jit_current_allocations_per_bin[info->bin_id]++;
|
|
trace_jit_stats(kctx, info->bin_id, info->max_allocations);
|
|
reg->jit_usage_id = info->usage_id;
|
reg->jit_bin_id = info->bin_id;
|
reg->flags |= KBASE_REG_ACTIVE_JIT_ALLOC;
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
if (info->flags & BASE_JIT_ALLOC_HEAP_INFO_IS_SIZE)
|
reg->flags = reg->flags | KBASE_REG_HEAP_INFO_IS_SIZE;
|
reg->heap_info_gpu_addr = info->heap_info_gpu_addr;
|
kbase_jit_report_update_pressure(kctx, reg, info->va_pages,
|
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
kbase_gpu_vm_unlock(kctx);
|
|
end:
|
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i)
|
kfree(prealloc_sas[i]);
|
|
return reg;
|
}
|
|
void kbase_jit_free(struct kbase_context *kctx, struct kbase_va_region *reg)
|
{
|
u64 old_pages;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#else /* MALI_USE_CSF */
|
lockdep_assert_held(&kctx->csf.kcpu_queues.jit_lock);
|
#endif /* !MALI_USE_CSF */
|
|
/* JIT id not immediately available here, so use 0u */
|
trace_mali_jit_free(reg, 0u);
|
|
/* Get current size of JIT region */
|
old_pages = kbase_reg_current_backed_size(reg);
|
if (reg->initial_commit < old_pages) {
|
/* Free trim_level % of region, but don't go below initial
|
* commit size
|
*/
|
u64 new_size = MAX(reg->initial_commit,
|
div_u64(old_pages * (100 - kctx->trim_level), 100));
|
u64 delta = old_pages - new_size;
|
|
if (delta) {
|
mutex_lock(&kctx->reg_lock);
|
kbase_mem_shrink(kctx, reg, old_pages - delta);
|
mutex_unlock(&kctx->reg_lock);
|
}
|
}
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
reg->heap_info_gpu_addr = 0;
|
kbase_jit_report_update_pressure(kctx, reg, 0,
|
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE);
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
kctx->jit_current_allocations--;
|
kctx->jit_current_allocations_per_bin[reg->jit_bin_id]--;
|
|
trace_jit_stats(kctx, reg->jit_bin_id, UINT_MAX);
|
|
kbase_mem_evictable_mark_reclaim(reg->gpu_alloc);
|
|
kbase_gpu_vm_lock(kctx);
|
reg->flags |= KBASE_REG_DONT_NEED;
|
reg->flags &= ~KBASE_REG_ACTIVE_JIT_ALLOC;
|
kbase_mem_shrink_cpu_mapping(kctx, reg, 0, reg->gpu_alloc->nents);
|
kbase_gpu_vm_unlock(kctx);
|
|
/*
|
* Add the allocation to the eviction list and the jit pool, after this
|
* point the shrink can reclaim it, or it may be reused.
|
*/
|
mutex_lock(&kctx->jit_evict_lock);
|
|
/* This allocation can't already be on a list. */
|
WARN_ON(!list_empty(®->gpu_alloc->evict_node));
|
list_add(®->gpu_alloc->evict_node, &kctx->evict_list);
|
atomic_add(reg->gpu_alloc->nents, &kctx->evict_nents);
|
|
list_move(®->jit_node, &kctx->jit_pool_head);
|
|
/* Inactive JIT regions should be freed by the shrinker and not impacted
|
* by page migration. Once freed, they will enter into the page migration
|
* state machine via the mempools.
|
*/
|
if (kbase_page_migration_enabled)
|
kbase_set_phy_alloc_page_status(reg->gpu_alloc, NOT_MOVABLE);
|
mutex_unlock(&kctx->jit_evict_lock);
|
}
|
|
void kbase_jit_backing_lost(struct kbase_va_region *reg)
|
{
|
struct kbase_context *kctx = kbase_reg_flags_to_kctx(reg);
|
|
if (WARN_ON(!kctx))
|
return;
|
|
lockdep_assert_held(&kctx->jit_evict_lock);
|
|
/*
|
* JIT allocations will always be on a list, if the region
|
* is not on a list then it's not a JIT allocation.
|
*/
|
if (list_empty(®->jit_node))
|
return;
|
|
/*
|
* Freeing the allocation requires locks we might not be able
|
* to take now, so move the allocation to the free list and kick
|
* the worker which will do the freeing.
|
*/
|
list_move(®->jit_node, &kctx->jit_destroy_head);
|
|
schedule_work(&kctx->jit_work);
|
}
|
|
bool kbase_jit_evict(struct kbase_context *kctx)
|
{
|
struct kbase_va_region *reg = NULL;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Free the oldest allocation from the pool */
|
mutex_lock(&kctx->jit_evict_lock);
|
if (!list_empty(&kctx->jit_pool_head)) {
|
reg = list_entry(kctx->jit_pool_head.prev,
|
struct kbase_va_region, jit_node);
|
list_del(®->jit_node);
|
list_del_init(®->gpu_alloc->evict_node);
|
}
|
mutex_unlock(&kctx->jit_evict_lock);
|
|
if (reg) {
|
/*
|
* Incrementing the refcount is prevented on JIT regions.
|
* If/when this ever changes we would need to compensate
|
* by implementing "free on putting the last reference",
|
* but only for JIT regions.
|
*/
|
WARN_ON(atomic_read(®->no_user_free_count) > 1);
|
kbase_va_region_no_user_free_dec(reg);
|
kbase_mem_free_region(kctx, reg);
|
}
|
|
return (reg != NULL);
|
}
|
|
void kbase_jit_term(struct kbase_context *kctx)
|
{
|
struct kbase_va_region *walker;
|
|
/* Free all allocations for this context */
|
|
kbase_gpu_vm_lock(kctx);
|
mutex_lock(&kctx->jit_evict_lock);
|
/* Free all allocations from the pool */
|
while (!list_empty(&kctx->jit_pool_head)) {
|
walker = list_first_entry(&kctx->jit_pool_head,
|
struct kbase_va_region, jit_node);
|
list_del(&walker->jit_node);
|
list_del_init(&walker->gpu_alloc->evict_node);
|
mutex_unlock(&kctx->jit_evict_lock);
|
/*
|
* Incrementing the refcount is prevented on JIT regions.
|
* If/when this ever changes we would need to compensate
|
* by implementing "free on putting the last reference",
|
* but only for JIT regions.
|
*/
|
WARN_ON(atomic_read(&walker->no_user_free_count) > 1);
|
kbase_va_region_no_user_free_dec(walker);
|
kbase_mem_free_region(kctx, walker);
|
mutex_lock(&kctx->jit_evict_lock);
|
}
|
|
/* Free all allocations from active list */
|
while (!list_empty(&kctx->jit_active_head)) {
|
walker = list_first_entry(&kctx->jit_active_head,
|
struct kbase_va_region, jit_node);
|
list_del(&walker->jit_node);
|
list_del_init(&walker->gpu_alloc->evict_node);
|
mutex_unlock(&kctx->jit_evict_lock);
|
/*
|
* Incrementing the refcount is prevented on JIT regions.
|
* If/when this ever changes we would need to compensate
|
* by implementing "free on putting the last reference",
|
* but only for JIT regions.
|
*/
|
WARN_ON(atomic_read(&walker->no_user_free_count) > 1);
|
kbase_va_region_no_user_free_dec(walker);
|
kbase_mem_free_region(kctx, walker);
|
mutex_lock(&kctx->jit_evict_lock);
|
}
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
WARN_ON(kctx->jit_phys_pages_to_be_allocated);
|
#endif
|
mutex_unlock(&kctx->jit_evict_lock);
|
kbase_gpu_vm_unlock(kctx);
|
|
/*
|
* Flush the freeing of allocations whose backing has been freed
|
* (i.e. everything in jit_destroy_head).
|
*/
|
cancel_work_sync(&kctx->jit_work);
|
}
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
void kbase_trace_jit_report_gpu_mem_trace_enabled(struct kbase_context *kctx,
|
struct kbase_va_region *reg, unsigned int flags)
|
{
|
/* Offset to the location used for a JIT report within the GPU memory
|
*
|
* This constants only used for this debugging function - not useful
|
* anywhere else in kbase
|
*/
|
const u64 jit_report_gpu_mem_offset = sizeof(u64)*2;
|
|
u64 addr_start;
|
struct kbase_vmap_struct mapping;
|
u64 *ptr;
|
|
if (reg->heap_info_gpu_addr == 0ull)
|
goto out;
|
|
/* Nothing else to trace in the case the memory just contains the
|
* size. Other tracepoints already record the relevant area of memory.
|
*/
|
if (reg->flags & KBASE_REG_HEAP_INFO_IS_SIZE)
|
goto out;
|
|
addr_start = reg->heap_info_gpu_addr - jit_report_gpu_mem_offset;
|
|
ptr = kbase_vmap_prot(kctx, addr_start, KBASE_JIT_REPORT_GPU_MEM_SIZE,
|
KBASE_REG_CPU_RD, &mapping);
|
if (!ptr) {
|
dev_warn(kctx->kbdev->dev,
|
"%s: JIT start=0x%llx unable to map memory near end pointer %llx\n",
|
__func__, reg->start_pfn << PAGE_SHIFT,
|
addr_start);
|
goto out;
|
}
|
|
trace_mali_jit_report_gpu_mem(addr_start, reg->start_pfn << PAGE_SHIFT,
|
ptr, flags);
|
|
kbase_vunmap(kctx, &mapping);
|
out:
|
return;
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
#if MALI_JIT_PRESSURE_LIMIT_BASE
|
void kbase_jit_report_update_pressure(struct kbase_context *kctx,
|
struct kbase_va_region *reg, u64 new_used_pages,
|
unsigned int flags)
|
{
|
u64 diff;
|
|
#if !MALI_USE_CSF
|
lockdep_assert_held(&kctx->jctx.lock);
|
#endif /* !MALI_USE_CSF */
|
|
trace_mali_jit_report_pressure(reg, new_used_pages,
|
kctx->jit_current_phys_pressure + new_used_pages -
|
reg->used_pages,
|
flags);
|
|
if (WARN_ON(new_used_pages > reg->nr_pages))
|
return;
|
|
if (reg->used_pages > new_used_pages) {
|
/* We reduced the number of used pages */
|
diff = reg->used_pages - new_used_pages;
|
|
if (!WARN_ON(diff > kctx->jit_current_phys_pressure))
|
kctx->jit_current_phys_pressure -= diff;
|
|
reg->used_pages = new_used_pages;
|
} else {
|
/* We increased the number of used pages */
|
diff = new_used_pages - reg->used_pages;
|
|
if (!WARN_ON(diff > U64_MAX - kctx->jit_current_phys_pressure))
|
kctx->jit_current_phys_pressure += diff;
|
|
reg->used_pages = new_used_pages;
|
}
|
|
}
|
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
|
|
void kbase_unpin_user_buf_page(struct page *page)
|
{
|
#if KERNEL_VERSION(5, 9, 0) > LINUX_VERSION_CODE
|
put_page(page);
|
#else
|
unpin_user_page(page);
|
#endif
|
}
|
|
#if MALI_USE_CSF
|
static void kbase_jd_user_buf_unpin_pages(struct kbase_mem_phy_alloc *alloc)
|
{
|
/* In CSF builds, we keep pages pinned until the last reference is
|
* released on the alloc. A refcount of 0 also means we can be sure
|
* that all CPU mappings have been closed on this alloc, and no more
|
* mappings of it will be created.
|
*
|
* Further, the WARN() below captures the restriction that this
|
* function will not handle anything other than the alloc termination
|
* path, because the caller of kbase_mem_phy_alloc_put() is not
|
* required to hold the kctx's reg_lock, and so we could not handle
|
* removing an existing CPU mapping here.
|
*
|
* Refer to this function's kernel-doc comments for alternatives for
|
* unpinning a User buffer.
|
*/
|
|
if (alloc->nents && !WARN(kref_read(&alloc->kref) != 0,
|
"must only be called on terminating an allocation")) {
|
struct page **pages = alloc->imported.user_buf.pages;
|
long i;
|
|
WARN_ON(alloc->nents != alloc->imported.user_buf.nr_pages);
|
|
for (i = 0; i < alloc->nents; i++)
|
kbase_unpin_user_buf_page(pages[i]);
|
|
alloc->nents = 0;
|
}
|
}
|
#endif
|
|
int kbase_jd_user_buf_pin_pages(struct kbase_context *kctx,
|
struct kbase_va_region *reg)
|
{
|
struct kbase_mem_phy_alloc *alloc = reg->gpu_alloc;
|
struct page **pages = alloc->imported.user_buf.pages;
|
unsigned long address = alloc->imported.user_buf.address;
|
struct mm_struct *mm = alloc->imported.user_buf.mm;
|
long pinned_pages;
|
long i;
|
int write;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
if (WARN_ON(alloc->type != KBASE_MEM_TYPE_IMPORTED_USER_BUF))
|
return -EINVAL;
|
|
if (alloc->nents) {
|
if (WARN_ON(alloc->nents != alloc->imported.user_buf.nr_pages))
|
return -EINVAL;
|
else
|
return 0;
|
}
|
|
if (WARN_ON(reg->gpu_alloc->imported.user_buf.mm != current->mm))
|
return -EINVAL;
|
|
write = reg->flags & (KBASE_REG_CPU_WR | KBASE_REG_GPU_WR);
|
|
#if KERNEL_VERSION(4, 10, 0) > LINUX_VERSION_CODE
|
pinned_pages = get_user_pages_remote(NULL, mm, address, alloc->imported.user_buf.nr_pages,
|
write ? FOLL_WRITE : 0, pages, NULL);
|
#elif KERNEL_VERSION(5, 9, 0) > LINUX_VERSION_CODE
|
pinned_pages = get_user_pages_remote(NULL, mm, address, alloc->imported.user_buf.nr_pages,
|
write ? FOLL_WRITE : 0, pages, NULL, NULL);
|
#else
|
pinned_pages = pin_user_pages_remote(mm, address, alloc->imported.user_buf.nr_pages,
|
write ? FOLL_WRITE : 0, pages, NULL, NULL);
|
#endif
|
|
if (pinned_pages <= 0)
|
return pinned_pages;
|
|
if (pinned_pages != alloc->imported.user_buf.nr_pages) {
|
/* Above code already ensures there will not have been a CPU
|
* mapping by ensuring alloc->nents is 0
|
*/
|
for (i = 0; i < pinned_pages; i++)
|
kbase_unpin_user_buf_page(pages[i]);
|
return -ENOMEM;
|
}
|
|
alloc->nents = pinned_pages;
|
|
return 0;
|
}
|
|
static int kbase_jd_user_buf_map(struct kbase_context *kctx,
|
struct kbase_va_region *reg)
|
{
|
int err;
|
long pinned_pages = 0;
|
struct kbase_mem_phy_alloc *alloc;
|
struct page **pages;
|
struct tagged_addr *pa;
|
long i, dma_mapped_pages;
|
struct device *dev;
|
unsigned long gwt_mask = ~0;
|
/* Calls to this function are inherently asynchronous, with respect to
|
* MMU operations.
|
*/
|
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_ASYNC;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
err = kbase_jd_user_buf_pin_pages(kctx, reg);
|
|
if (err)
|
return err;
|
|
alloc = reg->gpu_alloc;
|
pa = kbase_get_gpu_phy_pages(reg);
|
pinned_pages = alloc->nents;
|
pages = alloc->imported.user_buf.pages;
|
dev = kctx->kbdev->dev;
|
|
/* Manual CPU cache synchronization.
|
*
|
* The driver disables automatic CPU cache synchronization because the
|
* memory pages that enclose the imported region may also contain
|
* sub-regions which are not imported and that are allocated and used
|
* by the user process. This may be the case of memory at the beginning
|
* of the first page and at the end of the last page. Automatic CPU cache
|
* synchronization would force some operations on those memory allocations,
|
* unbeknown to the user process: in particular, a CPU cache invalidate
|
* upon unmapping would destroy the content of dirty CPU caches and cause
|
* the user process to lose CPU writes to the non-imported sub-regions.
|
*
|
* When the GPU claims ownership of the imported memory buffer, it shall
|
* commit CPU writes for the whole of all pages that enclose the imported
|
* region, otherwise the initial content of memory would be wrong.
|
*/
|
for (i = 0; i < pinned_pages; i++) {
|
dma_addr_t dma_addr;
|
#if (KERNEL_VERSION(4, 10, 0) > LINUX_VERSION_CODE)
|
dma_addr = dma_map_page(dev, pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
#else
|
dma_addr = dma_map_page_attrs(dev, pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL,
|
DMA_ATTR_SKIP_CPU_SYNC);
|
#endif
|
err = dma_mapping_error(dev, dma_addr);
|
if (err)
|
goto unwind;
|
|
alloc->imported.user_buf.dma_addrs[i] = dma_addr;
|
pa[i] = as_tagged(page_to_phys(pages[i]));
|
|
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
}
|
|
#ifdef CONFIG_MALI_CINSTR_GWT
|
if (kctx->gwt_enabled)
|
gwt_mask = ~KBASE_REG_GPU_WR;
|
#endif
|
|
err = kbase_mmu_insert_imported_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn, pa,
|
kbase_reg_current_backed_size(reg),
|
reg->flags & gwt_mask, kctx->as_nr, alloc->group_id,
|
mmu_sync_info, NULL);
|
if (err == 0)
|
return 0;
|
|
/* fall down */
|
unwind:
|
alloc->nents = 0;
|
dma_mapped_pages = i;
|
/* Run the unmap loop in the same order as map loop, and perform again
|
* CPU cache synchronization to re-write the content of dirty CPU caches
|
* to memory. This is precautionary measure in case a GPU job has taken
|
* advantage of a partially GPU-mapped range to write and corrupt the
|
* content of memory, either inside or outside the imported region.
|
*
|
* Notice that this error recovery path doesn't try to be optimal and just
|
* flushes the entire page range.
|
*/
|
for (i = 0; i < dma_mapped_pages; i++) {
|
dma_addr_t dma_addr = alloc->imported.user_buf.dma_addrs[i];
|
|
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
#if (KERNEL_VERSION(4, 10, 0) > LINUX_VERSION_CODE)
|
dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
#else
|
dma_unmap_page_attrs(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL,
|
DMA_ATTR_SKIP_CPU_SYNC);
|
#endif
|
}
|
|
/* The user buffer could already have been previously pinned before
|
* entering this function, and hence there could potentially be CPU
|
* mappings of it
|
*/
|
kbase_mem_shrink_cpu_mapping(kctx, reg, 0, pinned_pages);
|
|
for (i = 0; i < pinned_pages; i++) {
|
kbase_unpin_user_buf_page(pages[i]);
|
pages[i] = NULL;
|
}
|
|
return err;
|
}
|
|
/* This function would also perform the work of unpinning pages on Job Manager
|
* GPUs, which implies that a call to kbase_jd_user_buf_pin_pages() will NOT
|
* have a corresponding call to kbase_jd_user_buf_unpin_pages().
|
*/
|
static void kbase_jd_user_buf_unmap(struct kbase_context *kctx, struct kbase_mem_phy_alloc *alloc,
|
struct kbase_va_region *reg, bool writeable)
|
{
|
long i;
|
struct page **pages;
|
unsigned long offset_within_page = alloc->imported.user_buf.address & ~PAGE_MASK;
|
unsigned long remaining_size = alloc->imported.user_buf.size;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_IMPORTED_USER_BUF);
|
pages = alloc->imported.user_buf.pages;
|
|
#if !MALI_USE_CSF
|
kbase_mem_shrink_cpu_mapping(kctx, reg, 0, alloc->nents);
|
#else
|
CSTD_UNUSED(reg);
|
#endif
|
|
for (i = 0; i < alloc->imported.user_buf.nr_pages; i++) {
|
unsigned long imported_size = MIN(remaining_size, PAGE_SIZE - offset_within_page);
|
/* Notice: this is a temporary variable that is used for DMA sync
|
* operations, and that could be incremented by an offset if the
|
* current page contains both imported and non-imported memory
|
* sub-regions.
|
*
|
* It is valid to add an offset to this value, because the offset
|
* is always kept within the physically contiguous dma-mapped range
|
* and there's no need to translate to physical address to offset it.
|
*
|
* This variable is not going to be used for the actual DMA unmap
|
* operation, that shall always use the original DMA address of the
|
* whole memory page.
|
*/
|
dma_addr_t dma_addr = alloc->imported.user_buf.dma_addrs[i];
|
|
/* Manual CPU cache synchronization.
|
*
|
* When the GPU returns ownership of the buffer to the CPU, the driver
|
* needs to treat imported and non-imported memory differently.
|
*
|
* The first case to consider is non-imported sub-regions at the
|
* beginning of the first page and at the end of last page. For these
|
* sub-regions: CPU cache shall be committed with a clean+invalidate,
|
* in order to keep the last CPU write.
|
*
|
* Imported region prefers the opposite treatment: this memory has been
|
* legitimately mapped and used by the GPU, hence GPU writes shall be
|
* committed to memory, while CPU cache shall be invalidated to make
|
* sure that CPU reads the correct memory content.
|
*
|
* The following diagram shows the expect value of the variables
|
* used in this loop in the corner case of an imported region encloed
|
* by a single memory page:
|
*
|
* page boundary ->|---------- | <- dma_addr (initial value)
|
* | |
|
* | - - - - - | <- offset_within_page
|
* |XXXXXXXXXXX|\
|
* |XXXXXXXXXXX| \
|
* |XXXXXXXXXXX| }- imported_size
|
* |XXXXXXXXXXX| /
|
* |XXXXXXXXXXX|/
|
* | - - - - - | <- offset_within_page + imported_size
|
* | |\
|
* | | }- PAGE_SIZE - imported_size - offset_within_page
|
* | |/
|
* page boundary ->|-----------|
|
*
|
* If the imported region is enclosed by more than one page, then
|
* offset_within_page = 0 for any page after the first.
|
*/
|
|
/* Only for first page: handle non-imported range at the beginning. */
|
if (offset_within_page > 0) {
|
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr, offset_within_page,
|
DMA_BIDIRECTIONAL);
|
dma_addr += offset_within_page;
|
}
|
|
/* For every page: handle imported range. */
|
if (imported_size > 0)
|
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr, imported_size,
|
DMA_BIDIRECTIONAL);
|
|
/* Only for last page (that may coincide with first page):
|
* handle non-imported range at the end.
|
*/
|
if ((imported_size + offset_within_page) < PAGE_SIZE) {
|
dma_addr += imported_size;
|
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr,
|
PAGE_SIZE - imported_size - offset_within_page,
|
DMA_BIDIRECTIONAL);
|
}
|
|
/* Notice: use the original DMA address to unmap the whole memory page. */
|
#if (KERNEL_VERSION(4, 10, 0) > LINUX_VERSION_CODE)
|
dma_unmap_page(kctx->kbdev->dev, alloc->imported.user_buf.dma_addrs[i], PAGE_SIZE,
|
DMA_BIDIRECTIONAL);
|
#else
|
dma_unmap_page_attrs(kctx->kbdev->dev, alloc->imported.user_buf.dma_addrs[i],
|
PAGE_SIZE, DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
|
#endif
|
if (writeable)
|
set_page_dirty_lock(pages[i]);
|
#if !MALI_USE_CSF
|
kbase_unpin_user_buf_page(pages[i]);
|
pages[i] = NULL;
|
#endif
|
|
remaining_size -= imported_size;
|
offset_within_page = 0;
|
}
|
#if !MALI_USE_CSF
|
alloc->nents = 0;
|
#endif
|
}
|
|
int kbase_mem_copy_to_pinned_user_pages(struct page **dest_pages,
|
void *src_page, size_t *to_copy, unsigned int nr_pages,
|
unsigned int *target_page_nr, size_t offset)
|
{
|
void *target_page = kmap(dest_pages[*target_page_nr]);
|
size_t chunk = PAGE_SIZE-offset;
|
|
if (!target_page) {
|
pr_err("%s: kmap failure", __func__);
|
return -ENOMEM;
|
}
|
|
chunk = min(chunk, *to_copy);
|
|
memcpy(target_page + offset, src_page, chunk);
|
*to_copy -= chunk;
|
|
kunmap(dest_pages[*target_page_nr]);
|
|
*target_page_nr += 1;
|
if (*target_page_nr >= nr_pages || *to_copy == 0)
|
return 0;
|
|
target_page = kmap(dest_pages[*target_page_nr]);
|
if (!target_page) {
|
pr_err("%s: kmap failure", __func__);
|
return -ENOMEM;
|
}
|
|
KBASE_DEBUG_ASSERT(target_page);
|
|
chunk = min(offset, *to_copy);
|
memcpy(target_page, src_page + PAGE_SIZE-offset, chunk);
|
*to_copy -= chunk;
|
|
kunmap(dest_pages[*target_page_nr]);
|
|
return 0;
|
}
|
|
int kbase_map_external_resource(struct kbase_context *kctx, struct kbase_va_region *reg,
|
struct mm_struct *locked_mm)
|
{
|
int err = 0;
|
struct kbase_mem_phy_alloc *alloc = reg->gpu_alloc;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* decide what needs to happen for this resource */
|
switch (reg->gpu_alloc->type) {
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
if ((reg->gpu_alloc->imported.user_buf.mm != locked_mm) &&
|
(!reg->gpu_alloc->nents))
|
return -EINVAL;
|
|
reg->gpu_alloc->imported.user_buf.current_mapping_usage_count++;
|
if (reg->gpu_alloc->imported.user_buf
|
.current_mapping_usage_count == 1) {
|
err = kbase_jd_user_buf_map(kctx, reg);
|
if (err) {
|
reg->gpu_alloc->imported.user_buf.current_mapping_usage_count--;
|
return err;
|
}
|
}
|
}
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_UMM: {
|
err = kbase_mem_umm_map(kctx, reg);
|
if (err)
|
return err;
|
break;
|
}
|
default:
|
dev_dbg(kctx->kbdev->dev,
|
"Invalid external resource GPU allocation type (%x) on mapping",
|
alloc->type);
|
return -EINVAL;
|
}
|
|
kbase_va_region_alloc_get(kctx, reg);
|
kbase_mem_phy_alloc_get(alloc);
|
return err;
|
}
|
|
void kbase_unmap_external_resource(struct kbase_context *kctx, struct kbase_va_region *reg)
|
{
|
/* gpu_alloc was used in kbase_map_external_resources, so we need to use it for the
|
* unmapping operation.
|
*/
|
struct kbase_mem_phy_alloc *alloc = reg->gpu_alloc;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
switch (alloc->type) {
|
case KBASE_MEM_TYPE_IMPORTED_UMM: {
|
kbase_mem_umm_unmap(kctx, reg, alloc);
|
}
|
break;
|
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
|
alloc->imported.user_buf.current_mapping_usage_count--;
|
|
if (alloc->imported.user_buf.current_mapping_usage_count == 0) {
|
bool writeable = true;
|
|
if (!kbase_is_region_invalid_or_free(reg)) {
|
kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
|
alloc->pages,
|
kbase_reg_current_backed_size(reg),
|
kbase_reg_current_backed_size(reg),
|
kctx->as_nr, true);
|
}
|
|
if ((reg->flags & (KBASE_REG_CPU_WR | KBASE_REG_GPU_WR)) == 0)
|
writeable = false;
|
|
kbase_jd_user_buf_unmap(kctx, alloc, reg, writeable);
|
}
|
}
|
break;
|
default:
|
WARN(1, "Invalid external resource GPU allocation type (%x) on unmapping",
|
alloc->type);
|
return;
|
}
|
kbase_mem_phy_alloc_put(alloc);
|
kbase_va_region_alloc_put(kctx, reg);
|
}
|
|
static inline u64 kbasep_get_va_gpu_addr(struct kbase_va_region *reg)
|
{
|
return reg->start_pfn << PAGE_SHIFT;
|
}
|
|
struct kbase_ctx_ext_res_meta *kbase_sticky_resource_acquire(
|
struct kbase_context *kctx, u64 gpu_addr)
|
{
|
struct kbase_ctx_ext_res_meta *meta = NULL;
|
struct kbase_ctx_ext_res_meta *walker;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/*
|
* Walk the per context external resource metadata list for the
|
* metadata which matches the region which is being acquired.
|
*/
|
list_for_each_entry(walker, &kctx->ext_res_meta_head, ext_res_node) {
|
if (kbasep_get_va_gpu_addr(walker->reg) == gpu_addr) {
|
meta = walker;
|
meta->ref++;
|
break;
|
}
|
}
|
|
/* No metadata exists so create one. */
|
if (!meta) {
|
struct kbase_va_region *reg;
|
|
/* Find the region */
|
reg = kbase_region_tracker_find_region_enclosing_address(kctx, gpu_addr);
|
if (kbase_is_region_invalid_or_free(reg))
|
goto failed;
|
|
/* Allocate the metadata object */
|
meta = kzalloc(sizeof(*meta), GFP_KERNEL);
|
if (!meta)
|
goto failed;
|
/*
|
* Fill in the metadata object and acquire a reference
|
* for the physical resource.
|
*/
|
meta->reg = reg;
|
|
/* Map the external resource to the GPU allocation of the region
|
* and acquire the reference to the VA region
|
*/
|
if (kbase_map_external_resource(kctx, meta->reg, NULL))
|
goto fail_map;
|
meta->ref = 1;
|
|
list_add(&meta->ext_res_node, &kctx->ext_res_meta_head);
|
}
|
|
return meta;
|
|
fail_map:
|
kfree(meta);
|
failed:
|
return NULL;
|
}
|
|
static struct kbase_ctx_ext_res_meta *
|
find_sticky_resource_meta(struct kbase_context *kctx, u64 gpu_addr)
|
{
|
struct kbase_ctx_ext_res_meta *walker;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/*
|
* Walk the per context external resource metadata list for the
|
* metadata which matches the region which is being released.
|
*/
|
list_for_each_entry(walker, &kctx->ext_res_meta_head, ext_res_node)
|
if (kbasep_get_va_gpu_addr(walker->reg) == gpu_addr)
|
return walker;
|
|
return NULL;
|
}
|
|
static void release_sticky_resource_meta(struct kbase_context *kctx,
|
struct kbase_ctx_ext_res_meta *meta)
|
{
|
kbase_unmap_external_resource(kctx, meta->reg);
|
list_del(&meta->ext_res_node);
|
kfree(meta);
|
}
|
|
bool kbase_sticky_resource_release(struct kbase_context *kctx,
|
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr)
|
{
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Search of the metadata if one isn't provided. */
|
if (!meta)
|
meta = find_sticky_resource_meta(kctx, gpu_addr);
|
|
/* No metadata so just return. */
|
if (!meta)
|
return false;
|
|
if (--meta->ref != 0)
|
return true;
|
|
release_sticky_resource_meta(kctx, meta);
|
|
return true;
|
}
|
|
bool kbase_sticky_resource_release_force(struct kbase_context *kctx,
|
struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr)
|
{
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/* Search of the metadata if one isn't provided. */
|
if (!meta)
|
meta = find_sticky_resource_meta(kctx, gpu_addr);
|
|
/* No metadata so just return. */
|
if (!meta)
|
return false;
|
|
release_sticky_resource_meta(kctx, meta);
|
|
return true;
|
}
|
|
int kbase_sticky_resource_init(struct kbase_context *kctx)
|
{
|
INIT_LIST_HEAD(&kctx->ext_res_meta_head);
|
|
return 0;
|
}
|
|
void kbase_sticky_resource_term(struct kbase_context *kctx)
|
{
|
struct kbase_ctx_ext_res_meta *walker;
|
|
lockdep_assert_held(&kctx->reg_lock);
|
|
/*
|
* Free any sticky resources which haven't been unmapped.
|
*
|
* Note:
|
* We don't care about refcounts at this point as no future
|
* references to the meta data will be made.
|
* Region termination would find these if we didn't free them
|
* here, but it's more efficient if we do the clean up here.
|
*/
|
while (!list_empty(&kctx->ext_res_meta_head)) {
|
walker = list_first_entry(&kctx->ext_res_meta_head,
|
struct kbase_ctx_ext_res_meta, ext_res_node);
|
|
kbase_sticky_resource_release_force(kctx, walker, 0);
|
}
|
}
|