// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
|
/*
|
*
|
* (C) COPYRIGHT 2014-2023 ARM Limited. All rights reserved.
|
*
|
* This program is free software and is provided to you under the terms of the
|
* GNU General Public License version 2 as published by the Free Software
|
* Foundation, and any use by you of this program is subject to the terms
|
* of such GNU license.
|
*
|
* This program is distributed in the hope that it will be useful,
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
* GNU General Public License for more details.
|
*
|
* You should have received a copy of the GNU General Public License
|
* along with this program; if not, you can access it online at
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
*
|
*/
|
|
/*
|
* Register-based HW access backend specific APIs
|
*/
|
|
#include <mali_kbase.h>
|
#include <gpu/mali_kbase_gpu_fault.h>
|
#include <mali_kbase_hwaccess_jm.h>
|
#include <mali_kbase_jm.h>
|
#include <mali_kbase_js.h>
|
#include <tl/mali_kbase_tracepoints.h>
|
#include <hwcnt/mali_kbase_hwcnt_context.h>
|
#include <mali_kbase_reset_gpu.h>
|
#include <mali_kbase_kinstr_jm.h>
|
#include <backend/gpu/mali_kbase_cache_policy_backend.h>
|
#include <device/mali_kbase_device.h>
|
#include <backend/gpu/mali_kbase_jm_internal.h>
|
#include <backend/gpu/mali_kbase_pm_internal.h>
|
|
/**
|
* SLOT_RB_EMPTY - Return whether the specified ringbuffer is empty.
|
*
|
* @rb: ring buffer
|
*
|
* Note: HW access lock must be held
|
*/
|
#define SLOT_RB_EMPTY(rb) (rb->write_idx == rb->read_idx)
|
|
/**
|
* SLOT_RB_ENTRIES - Return number of atoms currently in the specified ringbuffer.
|
*
|
* @rb: ring buffer
|
*
|
* Note: HW access lock must be held
|
*/
|
#define SLOT_RB_ENTRIES(rb) ((int)(s8)(rb->write_idx - rb->read_idx))
|
|
static void kbase_gpu_release_atom(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom,
|
ktime_t *end_timestamp);
|
|
/**
|
* kbase_gpu_enqueue_atom - Enqueue an atom in the HW access ringbuffer
|
* @kbdev: Device pointer
|
* @katom: Atom to enqueue
|
*
|
* Context: Caller must hold the HW access lock
|
*/
|
static void kbase_gpu_enqueue_atom(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom)
|
{
|
struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[katom->slot_nr];
|
|
WARN_ON(SLOT_RB_ENTRIES(rb) >= SLOT_RB_SIZE);
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
rb->entries[rb->write_idx & SLOT_RB_MASK].katom = katom;
|
rb->write_idx++;
|
|
katom->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_BLOCKED;
|
}
|
|
/**
|
* kbase_gpu_dequeue_atom - Remove an atom from the HW access ringbuffer, once
|
* it has been completed
|
* @kbdev: Device pointer
|
* @js: Job slot to remove atom from
|
* @end_timestamp: Pointer to timestamp of atom completion. May be NULL, in
|
* which case current time will be used.
|
*
|
* Context: Caller must hold the HW access lock
|
*
|
* Return: Atom removed from ringbuffer
|
*/
|
static struct kbase_jd_atom *kbase_gpu_dequeue_atom(struct kbase_device *kbdev, unsigned int js,
|
ktime_t *end_timestamp)
|
{
|
struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js];
|
struct kbase_jd_atom *katom;
|
|
if (SLOT_RB_EMPTY(rb)) {
|
WARN(1, "GPU ringbuffer unexpectedly empty\n");
|
return NULL;
|
}
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
katom = rb->entries[rb->read_idx & SLOT_RB_MASK].katom;
|
|
kbase_gpu_release_atom(kbdev, katom, end_timestamp);
|
|
rb->read_idx++;
|
|
katom->gpu_rb_state = KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB;
|
|
return katom;
|
}
|
|
struct kbase_jd_atom *kbase_gpu_inspect(struct kbase_device *kbdev, unsigned int js, int idx)
|
{
|
struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js];
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
if ((SLOT_RB_ENTRIES(rb) - 1) < idx)
|
return NULL; /* idx out of range */
|
|
return rb->entries[(rb->read_idx + idx) & SLOT_RB_MASK].katom;
|
}
|
|
struct kbase_jd_atom *kbase_backend_inspect_tail(struct kbase_device *kbdev, unsigned int js)
|
{
|
struct slot_rb *rb = &kbdev->hwaccess.backend.slot_rb[js];
|
|
if (SLOT_RB_EMPTY(rb))
|
return NULL;
|
|
return rb->entries[(rb->write_idx - 1) & SLOT_RB_MASK].katom;
|
}
|
|
bool kbase_gpu_atoms_submitted_any(struct kbase_device *kbdev)
|
{
|
unsigned int js;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
int i;
|
|
for (i = 0; i < SLOT_RB_SIZE; i++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i);
|
|
if (katom && katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED)
|
return true;
|
}
|
}
|
return false;
|
}
|
|
int kbase_backend_nr_atoms_submitted(struct kbase_device *kbdev, unsigned int js)
|
{
|
int nr = 0;
|
int i;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
for (i = 0; i < SLOT_RB_SIZE; i++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i);
|
|
if (katom && (katom->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_SUBMITTED))
|
nr++;
|
}
|
|
return nr;
|
}
|
|
int kbase_backend_nr_atoms_on_slot(struct kbase_device *kbdev, unsigned int js)
|
{
|
int nr = 0;
|
int i;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
for (i = 0; i < SLOT_RB_SIZE; i++) {
|
if (kbase_gpu_inspect(kbdev, js, i))
|
nr++;
|
}
|
|
return nr;
|
}
|
|
static int kbase_gpu_nr_atoms_on_slot_min(struct kbase_device *kbdev, unsigned int js,
|
enum kbase_atom_gpu_rb_state min_rb_state)
|
{
|
int nr = 0;
|
int i;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
for (i = 0; i < SLOT_RB_SIZE; i++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, i);
|
|
if (katom && (katom->gpu_rb_state >= min_rb_state))
|
nr++;
|
}
|
|
return nr;
|
}
|
|
/**
|
* check_secure_atom - Check if the given atom is in the given secure state and
|
* has a ringbuffer state of at least
|
* KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION
|
* @katom: Atom pointer
|
* @secure: Desired secure state
|
*
|
* Return: true if atom is in the given state, false otherwise
|
*/
|
static bool check_secure_atom(struct kbase_jd_atom *katom, bool secure)
|
{
|
if (katom->gpu_rb_state >=
|
KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION &&
|
((kbase_jd_katom_is_protected(katom) && secure) ||
|
(!kbase_jd_katom_is_protected(katom) && !secure)))
|
return true;
|
|
return false;
|
}
|
|
/**
|
* kbase_gpu_check_secure_atoms - Check if there are any atoms in the given
|
* secure state in the ringbuffers of at least
|
* state
|
* KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE
|
* @kbdev: Device pointer
|
* @secure: Desired secure state
|
*
|
* Return: true if any atoms are in the given state, false otherwise
|
*/
|
static bool kbase_gpu_check_secure_atoms(struct kbase_device *kbdev,
|
bool secure)
|
{
|
unsigned int js;
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
int i;
|
|
for (i = 0; i < SLOT_RB_SIZE; i++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev,
|
js, i);
|
|
if (katom) {
|
if (check_secure_atom(katom, secure))
|
return true;
|
}
|
}
|
}
|
|
return false;
|
}
|
|
int kbase_backend_slot_free(struct kbase_device *kbdev, unsigned int js)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
if (atomic_read(&kbdev->hwaccess.backend.reset_gpu) !=
|
KBASE_RESET_GPU_NOT_PENDING) {
|
/* The GPU is being reset - so prevent submission */
|
return 0;
|
}
|
|
return SLOT_RB_SIZE - kbase_backend_nr_atoms_on_slot(kbdev, js);
|
}
|
|
|
static void kbase_gpu_release_atom(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom,
|
ktime_t *end_timestamp)
|
{
|
struct kbase_context *kctx = katom->kctx;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
switch (katom->gpu_rb_state) {
|
case KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB:
|
/* Should be impossible */
|
WARN(1, "Attempting to release atom not in ringbuffer\n");
|
break;
|
|
case KBASE_ATOM_GPU_RB_SUBMITTED:
|
kbase_kinstr_jm_atom_hw_release(katom);
|
/* Inform power management at start/finish of atom so it can
|
* update its GPU utilisation metrics. Mark atom as not
|
* submitted beforehand.
|
*/
|
katom->gpu_rb_state = KBASE_ATOM_GPU_RB_READY;
|
kbase_pm_metrics_update(kbdev, end_timestamp);
|
|
/* Inform platform at start/finish of atom */
|
kbasep_platform_event_atom_complete(katom);
|
|
if (katom->core_req & BASE_JD_REQ_PERMON)
|
kbase_pm_release_gpu_cycle_counter_nolock(kbdev);
|
|
KBASE_TLSTREAM_TL_NRET_ATOM_LPU(kbdev, katom,
|
&kbdev->gpu_props.props.raw_props.js_features
|
[katom->slot_nr]);
|
KBASE_TLSTREAM_TL_NRET_ATOM_AS(kbdev, katom, &kbdev->as[kctx->as_nr]);
|
KBASE_TLSTREAM_TL_NRET_CTX_LPU(kbdev, kctx,
|
&kbdev->gpu_props.props.raw_props.js_features
|
[katom->slot_nr]);
|
|
/* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_READY:
|
/* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE:
|
break;
|
|
case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION:
|
if (kbase_jd_katom_is_protected(katom) &&
|
(katom->protected_state.enter !=
|
KBASE_ATOM_ENTER_PROTECTED_CHECK) &&
|
(katom->protected_state.enter !=
|
KBASE_ATOM_ENTER_PROTECTED_HWCNT)) {
|
kbase_pm_protected_override_disable(kbdev);
|
kbase_pm_update_cores_state_nolock(kbdev);
|
}
|
if (kbase_jd_katom_is_protected(katom) &&
|
(katom->protected_state.enter ==
|
KBASE_ATOM_ENTER_PROTECTED_IDLE_L2))
|
kbase_pm_protected_entry_override_disable(kbdev);
|
if (!kbase_jd_katom_is_protected(katom) &&
|
(katom->protected_state.exit !=
|
KBASE_ATOM_EXIT_PROTECTED_CHECK) &&
|
(katom->protected_state.exit !=
|
KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT)) {
|
kbase_pm_protected_override_disable(kbdev);
|
kbase_pm_update_cores_state_nolock(kbdev);
|
}
|
|
if (katom->protected_state.enter !=
|
KBASE_ATOM_ENTER_PROTECTED_CHECK ||
|
katom->protected_state.exit !=
|
KBASE_ATOM_EXIT_PROTECTED_CHECK)
|
kbdev->protected_mode_transition = false;
|
|
/* If the atom is at KBASE_ATOM_ENTER_PROTECTED_HWCNT state, it means
|
* one of two events prevented it from progressing to the next state and
|
* ultimately reach protected mode:
|
* - hwcnts were enabled, and the atom had to schedule a worker to
|
* disable them.
|
* - the hwcnts were already disabled, but some other error occurred.
|
* In the first case, if the worker has not yet completed
|
* (kbdev->protected_mode_hwcnt_disabled == false), we need to re-enable
|
* them and signal to the worker they have already been enabled
|
*/
|
if (kbase_jd_katom_is_protected(katom) &&
|
(katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_HWCNT)) {
|
kbdev->protected_mode_hwcnt_desired = true;
|
if (kbdev->protected_mode_hwcnt_disabled) {
|
kbase_hwcnt_context_enable(kbdev->hwcnt_gpu_ctx);
|
kbdev->protected_mode_hwcnt_disabled = false;
|
}
|
}
|
|
/* If the atom has suspended hwcnt but has not yet entered
|
* protected mode, then resume hwcnt now. If the GPU is now in
|
* protected mode then hwcnt will be resumed by GPU reset so
|
* don't resume it here.
|
*/
|
if (kbase_jd_katom_is_protected(katom) &&
|
((katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_IDLE_L2) ||
|
(katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY) ||
|
(katom->protected_state.enter == KBASE_ATOM_ENTER_PROTECTED_FINISHED))) {
|
WARN_ON(!kbdev->protected_mode_hwcnt_disabled);
|
kbdev->protected_mode_hwcnt_desired = true;
|
if (kbdev->protected_mode_hwcnt_disabled) {
|
kbase_hwcnt_context_enable(
|
kbdev->hwcnt_gpu_ctx);
|
kbdev->protected_mode_hwcnt_disabled = false;
|
}
|
}
|
|
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) {
|
if (katom->atom_flags &
|
KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT) {
|
kbase_pm_protected_l2_override(kbdev, false);
|
katom->atom_flags &=
|
~KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT;
|
}
|
}
|
|
/* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV:
|
/* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_BLOCKED:
|
/* ***FALLTHROUGH: TRANSITION TO LOWER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_RETURN_TO_JS:
|
break;
|
}
|
|
katom->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_BLOCKED;
|
katom->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_CHECK;
|
}
|
|
static void kbase_gpu_mark_atom_for_return(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
KBASE_KTRACE_ADD_JM_SLOT_INFO(kbdev, JM_MARK_FOR_RETURN_TO_JS,
|
katom->kctx, katom, katom->jc,
|
katom->slot_nr, katom->event_code);
|
kbase_gpu_release_atom(kbdev, katom, NULL);
|
katom->gpu_rb_state = KBASE_ATOM_GPU_RB_RETURN_TO_JS;
|
}
|
|
/**
|
* other_slots_busy - Determine if any job slots other than @js are currently
|
* running atoms
|
* @kbdev: Device pointer
|
* @js: Job slot
|
*
|
* Return: true if any slots other than @js are busy, false otherwise
|
*/
|
static inline bool other_slots_busy(struct kbase_device *kbdev, unsigned int js)
|
{
|
unsigned int slot;
|
|
for (slot = 0; slot < kbdev->gpu_props.num_job_slots; slot++) {
|
if (slot == js)
|
continue;
|
|
if (kbase_gpu_nr_atoms_on_slot_min(kbdev, slot,
|
KBASE_ATOM_GPU_RB_SUBMITTED))
|
return true;
|
}
|
|
return false;
|
}
|
|
static inline bool kbase_gpu_in_protected_mode(struct kbase_device *kbdev)
|
{
|
return kbdev->protected_mode;
|
}
|
|
static void kbase_gpu_disable_coherent(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
/*
|
* When entering into protected mode, we must ensure that the
|
* GPU is not operating in coherent mode as well. This is to
|
* ensure that no protected memory can be leaked.
|
*/
|
if (kbdev->system_coherency == COHERENCY_ACE)
|
kbase_cache_set_coherency_mode(kbdev, COHERENCY_ACE_LITE);
|
}
|
|
static int kbase_gpu_protected_mode_enter(struct kbase_device *kbdev)
|
{
|
int err = -EINVAL;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
WARN_ONCE(!kbdev->protected_ops,
|
"Cannot enter protected mode: protected callbacks not specified.\n");
|
|
if (kbdev->protected_ops) {
|
/* Switch GPU to protected mode */
|
err = kbdev->protected_ops->protected_mode_enable(
|
kbdev->protected_dev);
|
|
if (err) {
|
dev_warn(kbdev->dev, "Failed to enable protected mode: %d\n",
|
err);
|
} else {
|
kbdev->protected_mode = true;
|
kbase_ipa_protection_mode_switch_event(kbdev);
|
}
|
}
|
|
return err;
|
}
|
|
static int kbase_gpu_protected_mode_reset(struct kbase_device *kbdev)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
WARN_ONCE(!kbdev->protected_ops,
|
"Cannot exit protected mode: protected callbacks not specified.\n");
|
|
if (!kbdev->protected_ops)
|
return -EINVAL;
|
|
/* The protected mode disable callback will be called as part of reset
|
*/
|
return kbase_reset_gpu_silent(kbdev);
|
}
|
|
static int kbase_jm_protected_entry(struct kbase_device *kbdev,
|
struct kbase_jd_atom **katom, int idx, int js)
|
{
|
int err = 0;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
err = kbase_gpu_protected_mode_enter(kbdev);
|
|
/*
|
* Regardless of result before this call, we are no longer
|
* transitioning the GPU.
|
*/
|
|
kbdev->protected_mode_transition = false;
|
kbase_pm_protected_override_disable(kbdev);
|
kbase_pm_update_cores_state_nolock(kbdev);
|
|
KBASE_TLSTREAM_AUX_PROTECTED_ENTER_END(kbdev, kbdev);
|
if (err) {
|
/*
|
* Failed to switch into protected mode.
|
*
|
* At this point we expect:
|
* katom->gpu_rb_state = KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION &&
|
* katom->protected_state.enter = KBASE_ATOM_ENTER_PROTECTED_FINISHED
|
* ==>
|
* kbdev->protected_mode_hwcnt_disabled = false
|
*/
|
katom[idx]->event_code = BASE_JD_EVENT_JOB_INVALID;
|
kbase_gpu_mark_atom_for_return(kbdev, katom[idx]);
|
/*
|
* Only return if head atom or previous atom
|
* already removed - as atoms must be returned
|
* in order.
|
*/
|
if (idx == 0 || katom[0]->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) {
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
kbase_jm_return_atom_to_js(kbdev, katom[idx]);
|
}
|
|
return -EINVAL;
|
}
|
|
/*
|
* Protected mode sanity checks.
|
*/
|
WARN(kbase_jd_katom_is_protected(katom[idx]) != kbase_gpu_in_protected_mode(kbdev),
|
"Protected mode of atom (%d) doesn't match protected mode of GPU (%d)",
|
kbase_jd_katom_is_protected(katom[idx]), kbase_gpu_in_protected_mode(kbdev));
|
katom[idx]->gpu_rb_state =
|
KBASE_ATOM_GPU_RB_READY;
|
|
return err;
|
}
|
|
static int kbase_jm_enter_protected_mode(struct kbase_device *kbdev,
|
struct kbase_jd_atom **katom, int idx, int js)
|
{
|
int err = 0;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
switch (katom[idx]->protected_state.enter) {
|
case KBASE_ATOM_ENTER_PROTECTED_CHECK:
|
KBASE_TLSTREAM_AUX_PROTECTED_ENTER_START(kbdev, kbdev);
|
/* The checks in KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV
|
* should ensure that we are not already transitiong, and that
|
* there are no atoms currently on the GPU.
|
*/
|
WARN_ON(kbdev->protected_mode_transition);
|
WARN_ON(kbase_gpu_atoms_submitted_any(kbdev));
|
/* If hwcnt is disabled, it means we didn't clean up correctly
|
* during last exit from protected mode.
|
*/
|
WARN_ON(kbdev->protected_mode_hwcnt_disabled);
|
|
katom[idx]->protected_state.enter =
|
KBASE_ATOM_ENTER_PROTECTED_HWCNT;
|
|
kbdev->protected_mode_transition = true;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_ENTER_PROTECTED_HWCNT:
|
/* See if we can get away with disabling hwcnt atomically */
|
kbdev->protected_mode_hwcnt_desired = false;
|
if (!kbdev->protected_mode_hwcnt_disabled) {
|
if (kbase_hwcnt_context_disable_atomic(
|
kbdev->hwcnt_gpu_ctx))
|
kbdev->protected_mode_hwcnt_disabled = true;
|
}
|
|
/* We couldn't disable atomically, so kick off a worker */
|
if (!kbdev->protected_mode_hwcnt_disabled) {
|
kbase_hwcnt_context_queue_work(
|
kbdev->hwcnt_gpu_ctx,
|
&kbdev->protected_mode_hwcnt_disable_work);
|
return -EAGAIN;
|
}
|
|
/* Once reaching this point GPU must be switched to protected
|
* mode or hwcnt re-enabled.
|
*/
|
|
if (kbase_pm_protected_entry_override_enable(kbdev))
|
return -EAGAIN;
|
|
/*
|
* Not in correct mode, begin protected mode switch.
|
* Entering protected mode requires us to power down the L2,
|
* and drop out of fully coherent mode.
|
*/
|
katom[idx]->protected_state.enter =
|
KBASE_ATOM_ENTER_PROTECTED_IDLE_L2;
|
|
kbase_pm_protected_override_enable(kbdev);
|
/*
|
* Only if the GPU reset hasn't been initiated, there is a need
|
* to invoke the state machine to explicitly power down the
|
* shader cores and L2.
|
*/
|
if (!kbdev->pm.backend.protected_entry_transition_override)
|
kbase_pm_update_cores_state_nolock(kbdev);
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_ENTER_PROTECTED_IDLE_L2:
|
/* Avoid unnecessary waiting on non-ACE platforms. */
|
if (kbdev->system_coherency == COHERENCY_ACE) {
|
if (kbdev->pm.backend.l2_always_on) {
|
/*
|
* If the GPU reset hasn't completed, then L2
|
* could still be powered up.
|
*/
|
if (kbase_reset_gpu_is_active(kbdev))
|
return -EAGAIN;
|
}
|
|
if (kbase_pm_get_ready_cores(kbdev,
|
KBASE_PM_CORE_L2) ||
|
kbase_pm_get_trans_cores(kbdev,
|
KBASE_PM_CORE_L2) ||
|
kbase_is_gpu_removed(kbdev)) {
|
/*
|
* The L2 is still powered, wait for all
|
* the users to finish with it before doing
|
* the actual reset.
|
*/
|
return -EAGAIN;
|
}
|
}
|
|
katom[idx]->protected_state.enter =
|
KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_ENTER_PROTECTED_SET_COHERENCY:
|
/*
|
* When entering into protected mode, we must ensure that the
|
* GPU is not operating in coherent mode as well. This is to
|
* ensure that no protected memory can be leaked.
|
*/
|
kbase_gpu_disable_coherent(kbdev);
|
|
kbase_pm_protected_entry_override_disable(kbdev);
|
|
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) {
|
/*
|
* Power on L2 caches; this will also result in the
|
* correct value written to coherency enable register.
|
*/
|
kbase_pm_protected_l2_override(kbdev, true);
|
|
/*
|
* Set the flag on the atom that additional
|
* L2 references are taken.
|
*/
|
katom[idx]->atom_flags |=
|
KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT;
|
}
|
|
katom[idx]->protected_state.enter =
|
KBASE_ATOM_ENTER_PROTECTED_FINISHED;
|
|
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234))
|
return -EAGAIN;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_ENTER_PROTECTED_FINISHED:
|
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TGOX_R1_1234)) {
|
/*
|
* Check that L2 caches are powered and, if so,
|
* enter protected mode.
|
*/
|
if (kbdev->pm.backend.l2_state == KBASE_L2_ON) {
|
/*
|
* Remove additional L2 reference and reset
|
* the atom flag which denotes it.
|
*/
|
if (katom[idx]->atom_flags &
|
KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT) {
|
kbase_pm_protected_l2_override(kbdev,
|
false);
|
katom[idx]->atom_flags &=
|
~KBASE_KATOM_FLAG_HOLDING_L2_REF_PROT;
|
}
|
|
err = kbase_jm_protected_entry(kbdev, katom, idx, js);
|
|
if (err)
|
return err;
|
} else {
|
/*
|
* still waiting for L2 caches to power up
|
*/
|
return -EAGAIN;
|
}
|
} else {
|
err = kbase_jm_protected_entry(kbdev, katom, idx, js);
|
|
if (err)
|
return err;
|
}
|
}
|
|
return 0;
|
}
|
|
static int kbase_jm_exit_protected_mode(struct kbase_device *kbdev,
|
struct kbase_jd_atom **katom, int idx, int js)
|
{
|
int err = 0;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
switch (katom[idx]->protected_state.exit) {
|
case KBASE_ATOM_EXIT_PROTECTED_CHECK:
|
KBASE_TLSTREAM_AUX_PROTECTED_LEAVE_START(kbdev, kbdev);
|
/* The checks in KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV
|
* should ensure that we are not already transitiong, and that
|
* there are no atoms currently on the GPU.
|
*/
|
WARN_ON(kbdev->protected_mode_transition);
|
WARN_ON(kbase_gpu_atoms_submitted_any(kbdev));
|
|
/*
|
* Exiting protected mode requires a reset, but first the L2
|
* needs to be powered down to ensure it's not active when the
|
* reset is issued.
|
*/
|
katom[idx]->protected_state.exit =
|
KBASE_ATOM_EXIT_PROTECTED_IDLE_L2;
|
|
kbdev->protected_mode_transition = true;
|
kbase_pm_protected_override_enable(kbdev);
|
kbase_pm_update_cores_state_nolock(kbdev);
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_EXIT_PROTECTED_IDLE_L2:
|
if (kbdev->pm.backend.l2_state != KBASE_L2_OFF) {
|
/*
|
* The L2 is still powered, wait for all the users to
|
* finish with it before doing the actual reset.
|
*/
|
return -EAGAIN;
|
}
|
katom[idx]->protected_state.exit =
|
KBASE_ATOM_EXIT_PROTECTED_RESET;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_EXIT_PROTECTED_RESET:
|
/* L2 cache has been turned off (which is needed prior to the reset of GPU
|
* to exit the protected mode), so the override flag can be safely cleared.
|
* Even if L2 cache is powered up again before the actual reset, it should
|
* not be an issue (there are no jobs running on the GPU).
|
*/
|
kbase_pm_protected_override_disable(kbdev);
|
|
/* Issue the reset to the GPU */
|
err = kbase_gpu_protected_mode_reset(kbdev);
|
|
if (err == -EAGAIN)
|
return -EAGAIN;
|
|
if (err) {
|
kbdev->protected_mode_transition = false;
|
|
/* Failed to exit protected mode, fail atom */
|
katom[idx]->event_code = BASE_JD_EVENT_JOB_INVALID;
|
kbase_gpu_mark_atom_for_return(kbdev, katom[idx]);
|
/* Only return if head atom or previous atom
|
* already removed - as atoms must be returned in order
|
*/
|
if (idx == 0 || katom[0]->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) {
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
kbase_jm_return_atom_to_js(kbdev, katom[idx]);
|
}
|
|
/* If we're exiting from protected mode, hwcnt must have
|
* been disabled during entry.
|
*/
|
WARN_ON(!kbdev->protected_mode_hwcnt_disabled);
|
kbdev->protected_mode_hwcnt_desired = true;
|
if (kbdev->protected_mode_hwcnt_disabled) {
|
kbase_hwcnt_context_enable(
|
kbdev->hwcnt_gpu_ctx);
|
kbdev->protected_mode_hwcnt_disabled = false;
|
}
|
|
return -EINVAL;
|
}
|
|
katom[idx]->protected_state.exit =
|
KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT:
|
/* A GPU reset is issued when exiting protected mode. Once the
|
* reset is done all atoms' state will also be reset. For this
|
* reason, if the atom is still in this state we can safely
|
* say that the reset has not completed i.e., we have not
|
* finished exiting protected mode yet.
|
*/
|
return -EAGAIN;
|
}
|
|
return 0;
|
}
|
|
void kbase_backend_slot_update(struct kbase_device *kbdev)
|
{
|
unsigned int js;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
#ifdef CONFIG_MALI_ARBITER_SUPPORT
|
if (kbase_reset_gpu_is_active(kbdev) ||
|
kbase_is_gpu_removed(kbdev))
|
#else
|
if (kbase_reset_gpu_is_active(kbdev))
|
#endif
|
return;
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
struct kbase_jd_atom *katom[2];
|
int idx;
|
|
katom[0] = kbase_gpu_inspect(kbdev, js, 0);
|
katom[1] = kbase_gpu_inspect(kbdev, js, 1);
|
WARN_ON(katom[1] && !katom[0]);
|
|
for (idx = 0; idx < SLOT_RB_SIZE; idx++) {
|
bool cores_ready;
|
int ret;
|
|
if (!katom[idx])
|
continue;
|
|
switch (katom[idx]->gpu_rb_state) {
|
case KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB:
|
/* Should be impossible */
|
WARN(1, "Attempting to update atom not in ringbuffer\n");
|
break;
|
|
case KBASE_ATOM_GPU_RB_WAITING_BLOCKED:
|
if (kbase_js_atom_blocked_on_x_dep(katom[idx]))
|
break;
|
|
katom[idx]->gpu_rb_state =
|
KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_PREV:
|
if (kbase_gpu_check_secure_atoms(kbdev,
|
!kbase_jd_katom_is_protected(
|
katom[idx])))
|
break;
|
|
if ((idx == 1) && (kbase_jd_katom_is_protected(
|
katom[0]) !=
|
kbase_jd_katom_is_protected(
|
katom[1])))
|
break;
|
|
if (kbdev->protected_mode_transition)
|
break;
|
|
katom[idx]->gpu_rb_state =
|
KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_PROTECTED_MODE_TRANSITION:
|
|
/*
|
* Exiting protected mode must be done before
|
* the references on the cores are taken as
|
* a power down the L2 is required which
|
* can't happen after the references for this
|
* atom are taken.
|
*/
|
|
if (!kbase_gpu_in_protected_mode(kbdev) &&
|
kbase_jd_katom_is_protected(katom[idx])) {
|
/* Atom needs to transition into protected mode. */
|
ret = kbase_jm_enter_protected_mode(kbdev,
|
katom, idx, js);
|
if (ret)
|
break;
|
} else if (kbase_gpu_in_protected_mode(kbdev) &&
|
!kbase_jd_katom_is_protected(katom[idx])) {
|
/* Atom needs to transition out of protected mode. */
|
ret = kbase_jm_exit_protected_mode(kbdev,
|
katom, idx, js);
|
if (ret)
|
break;
|
}
|
katom[idx]->protected_state.exit =
|
KBASE_ATOM_EXIT_PROTECTED_CHECK;
|
|
/* Atom needs no protected mode transition. */
|
|
katom[idx]->gpu_rb_state =
|
KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_WAITING_FOR_CORE_AVAILABLE:
|
if (katom[idx]->will_fail_event_code) {
|
kbase_gpu_mark_atom_for_return(kbdev,
|
katom[idx]);
|
/* Set EVENT_DONE so this atom will be
|
* completed, not unpulled.
|
*/
|
katom[idx]->event_code =
|
BASE_JD_EVENT_DONE;
|
/* Only return if head atom or previous
|
* atom already removed - as atoms must
|
* be returned in order.
|
*/
|
if (idx == 0 || katom[0]->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) {
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
kbase_jm_return_atom_to_js(kbdev, katom[idx]);
|
}
|
break;
|
}
|
|
cores_ready = kbase_pm_cores_requested(kbdev,
|
true);
|
|
if (!cores_ready)
|
break;
|
|
katom[idx]->gpu_rb_state =
|
KBASE_ATOM_GPU_RB_READY;
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_READY:
|
|
if (idx == 1) {
|
/* Only submit if head atom or previous
|
* atom already submitted
|
*/
|
if ((katom[0]->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_SUBMITTED &&
|
katom[0]->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB))
|
break;
|
|
/* If intra-slot serialization in use
|
* then don't submit atom to NEXT slot
|
*/
|
if (kbdev->serialize_jobs &
|
KBASE_SERIALIZE_INTRA_SLOT)
|
break;
|
}
|
|
/* If inter-slot serialization in use then don't
|
* submit atom if any other slots are in use
|
*/
|
if ((kbdev->serialize_jobs &
|
KBASE_SERIALIZE_INTER_SLOT) &&
|
other_slots_busy(kbdev, js))
|
break;
|
|
/* Check if this job needs the cycle counter
|
* enabled before submission
|
*/
|
if (katom[idx]->core_req & BASE_JD_REQ_PERMON)
|
kbase_pm_request_gpu_cycle_counter_l2_is_on(kbdev);
|
|
if (!kbase_job_hw_submit(kbdev, katom[idx], js)) {
|
katom[idx]->gpu_rb_state = KBASE_ATOM_GPU_RB_SUBMITTED;
|
|
/* Inform power management at start/finish of
|
* atom so it can update its GPU utilisation
|
* metrics.
|
*/
|
kbase_pm_metrics_update(kbdev,
|
&katom[idx]->start_timestamp);
|
|
/* Inform platform at start/finish of atom */
|
kbasep_platform_event_atom_submit(katom[idx]);
|
} else {
|
if (katom[idx]->core_req & BASE_JD_REQ_PERMON)
|
kbase_pm_release_gpu_cycle_counter_nolock(kbdev);
|
|
break;
|
}
|
|
/* ***TRANSITION TO HIGHER STATE*** */
|
fallthrough;
|
case KBASE_ATOM_GPU_RB_SUBMITTED:
|
break;
|
|
case KBASE_ATOM_GPU_RB_RETURN_TO_JS:
|
/* Only return if head atom or previous atom
|
* already removed - as atoms must be returned
|
* in order
|
*/
|
if (idx == 0 || katom[0]->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB) {
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
kbase_jm_return_atom_to_js(kbdev,
|
katom[idx]);
|
}
|
break;
|
}
|
}
|
}
|
}
|
|
|
void kbase_backend_run_atom(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom)
|
{
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
dev_dbg(kbdev->dev, "Backend running atom %pK\n", (void *)katom);
|
|
kbase_gpu_enqueue_atom(kbdev, katom);
|
kbase_backend_slot_update(kbdev);
|
}
|
|
/**
|
* kbase_rb_atom_might_depend - determine if one atom in the slot ringbuffer
|
* might depend on another from the same kctx
|
* @katom_a: dependee atom
|
* @katom_b: atom to query
|
*
|
* This can be used on atoms that belong to different slot ringbuffers
|
*
|
* Return: true if @katom_b might depend on @katom_a, false if it cannot depend.
|
*/
|
static inline bool
|
kbase_rb_atom_might_depend(const struct kbase_jd_atom *katom_a,
|
const struct kbase_jd_atom *katom_b)
|
{
|
if (katom_a->kctx != katom_b->kctx)
|
return false;
|
return (katom_b->pre_dep ||
|
(katom_b->atom_flags & (KBASE_KATOM_FLAG_X_DEP_BLOCKED |
|
KBASE_KATOM_FLAG_FAIL_BLOCKER)));
|
}
|
|
/**
|
* kbase_gpu_irq_evict - evict a slot's JSn_HEAD_NEXT atom from the HW if it is
|
* related to a failed JSn_HEAD atom
|
* @kbdev: kbase device
|
* @js: job slot to check
|
* @completion_code: completion code of the failed atom
|
*
|
* Note: 'STOPPED' atoms are considered 'failed', as they are in the HW, but
|
* unlike other failure codes we _can_ re-run them.
|
*
|
* This forms step 1 in a 2-step process of removing any related atoms from a
|
* slot's JSn_HEAD_NEXT (ringbuffer index 1), should there have
|
* been a 'failure' on an atom in JSn_HEAD (ringbuffer index 0).
|
*
|
* This step only removes the atoms from the HW, and marks them as
|
* (potentially) ready to run again.
|
*
|
* Step 2 is on marking the JSn_HEAD atom as complete
|
* (kbase_gpu_complete_hw()), to dequeue said atoms and return them to the JS
|
* as appropriate, or re-submit them.
|
*
|
* Hence, this function must evict at a minimum the atoms related to the atom
|
* in JSn_HEAD that kbase_gpu_complete_hw() will also dequeue. It is acceptable
|
* if this function evicts more atoms than kbase_gpu_complete_hw() dequeues, as
|
* the next kbase_backend_slot_update() will resubmit any remaining.
|
*
|
* Return: true if an atom was evicted, false otherwise.
|
*/
|
bool kbase_gpu_irq_evict(struct kbase_device *kbdev, unsigned int js, u32 completion_code)
|
{
|
struct kbase_jd_atom *katom;
|
struct kbase_jd_atom *next_katom;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
katom = kbase_gpu_inspect(kbdev, js, 0);
|
if (!katom) {
|
dev_err(kbdev->dev, "Can't get a katom from js(%u)\n", js);
|
return false;
|
}
|
next_katom = kbase_gpu_inspect(kbdev, js, 1);
|
|
if (next_katom &&
|
next_katom->gpu_rb_state == KBASE_ATOM_GPU_RB_SUBMITTED &&
|
(kbase_rb_atom_might_depend(katom, next_katom) ||
|
kbase_js_atom_runs_before(kbdev, katom, next_katom, 0u)) &&
|
(kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_LO)) != 0 ||
|
kbase_reg_read(kbdev, JOB_SLOT_REG(js, JS_HEAD_NEXT_HI)) != 0)) {
|
kbase_reg_write(kbdev, JOB_SLOT_REG(js, JS_COMMAND_NEXT),
|
JS_COMMAND_NOP);
|
next_katom->gpu_rb_state = KBASE_ATOM_GPU_RB_READY;
|
|
if (completion_code == BASE_JD_EVENT_STOPPED) {
|
KBASE_TLSTREAM_TL_NRET_ATOM_LPU(kbdev, next_katom,
|
&kbdev->gpu_props.props.raw_props.js_features
|
[next_katom->slot_nr]);
|
KBASE_TLSTREAM_TL_NRET_ATOM_AS(kbdev, next_katom, &kbdev->as
|
[next_katom->kctx->as_nr]);
|
KBASE_TLSTREAM_TL_NRET_CTX_LPU(kbdev, next_katom->kctx,
|
&kbdev->gpu_props.props.raw_props.js_features
|
[next_katom->slot_nr]);
|
}
|
|
if (next_katom->core_req & BASE_JD_REQ_PERMON)
|
kbase_pm_release_gpu_cycle_counter_nolock(kbdev);
|
|
/* On evicting the next_katom, the last submission kctx on the
|
* given job slot then reverts back to the one that owns katom.
|
* The aim is to enable the next submission that can determine
|
* if the read only shader core L1 cache should be invalidated.
|
*/
|
kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged =
|
SLOT_RB_TAG_KCTX(katom->kctx);
|
|
return true;
|
}
|
|
return false;
|
}
|
|
/**
|
* kbase_gpu_complete_hw - complete the atom in a slot's JSn_HEAD
|
* @kbdev: kbase device
|
* @js: job slot to check
|
* @completion_code: completion code of the completed atom
|
* @job_tail: value read from JSn_TAIL, for STOPPED atoms
|
* @end_timestamp: pointer to approximate ktime value when the katom completed
|
*
|
* Among other operations, this also executes step 2 of a 2-step process of
|
* removing any related atoms from a slot's JSn_HEAD_NEXT (ringbuffer index 1),
|
* should there have been a 'failure' on an atom in JSn_HEAD (ringbuffer index
|
* 0). The first step is done in kbase_gpu_irq_evict().
|
*
|
* Note: 'STOPPED' atoms are considered 'failed', as they are in the HW, but
|
* unlike other failure codes we _can_ re-run them.
|
*
|
* When the JSn_HEAD atom is considered to be 'failed', then this will dequeue
|
* and return to the JS some (usually all) of the atoms evicted from the HW
|
* during the kbase_gpu_irq_evict() for that JSn_HEAD atom. If it dequeues an
|
* atom, that atom must not have been running or must already be evicted, as
|
* otherwise we would be in the incorrect state of having an atom both running
|
* on the HW and returned to the JS.
|
*/
|
|
void kbase_gpu_complete_hw(struct kbase_device *kbdev, unsigned int js, u32 completion_code,
|
u64 job_tail, ktime_t *end_timestamp)
|
{
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev, js, 0);
|
struct kbase_context *kctx = NULL;
|
|
if (unlikely(!katom)) {
|
dev_err(kbdev->dev, "Can't get a katom from js(%d)\n", js);
|
return;
|
}
|
|
kctx = katom->kctx;
|
|
dev_dbg(kbdev->dev,
|
"Atom %pK completed on hw with code 0x%x and job_tail 0x%llx (s:%d)\n",
|
(void *)katom, completion_code, job_tail, js);
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
/*
|
* When a hard-stop is followed close after a soft-stop, the completion
|
* code may be set to STOPPED, even though the job is terminated
|
*/
|
if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TMIX_8438)) {
|
if (completion_code == BASE_JD_EVENT_STOPPED &&
|
(katom->atom_flags &
|
KBASE_KATOM_FLAG_BEEN_HARD_STOPPED)) {
|
completion_code = BASE_JD_EVENT_TERMINATED;
|
}
|
}
|
|
if ((katom->core_req & BASE_JD_REQ_SKIP_CACHE_END) &&
|
completion_code != BASE_JD_EVENT_DONE &&
|
!(completion_code & BASE_JD_SW_EVENT)) {
|
/* When a job chain fails, on a T60x or when
|
* BASE_JD_REQ_SKIP_CACHE_END is set, the GPU cache is not
|
* flushed. To prevent future evictions causing possible memory
|
* corruption we need to flush the cache manually before any
|
* affected memory gets reused.
|
*/
|
katom->need_cache_flush_cores_retained = true;
|
}
|
|
katom = kbase_gpu_dequeue_atom(kbdev, js, end_timestamp);
|
|
if (completion_code == BASE_JD_EVENT_STOPPED) {
|
struct kbase_jd_atom *next_katom = kbase_gpu_inspect(kbdev, js,
|
0);
|
|
/*
|
* Dequeue next atom from ringbuffers on same slot if required.
|
* This atom will already have been removed from the NEXT
|
* registers by kbase_gpu_soft_hard_stop_slot(), to ensure that
|
* the atoms on this slot are returned in the correct order.
|
*/
|
if (next_katom &&
|
kbase_js_atom_runs_before(kbdev, katom, next_katom, 0u)) {
|
WARN_ON(next_katom->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_SUBMITTED);
|
kbase_gpu_dequeue_atom(kbdev, js, end_timestamp);
|
kbase_jm_return_atom_to_js(kbdev, next_katom);
|
}
|
} else if (completion_code != BASE_JD_EVENT_DONE) {
|
struct kbasep_js_device_data *js_devdata = &kbdev->js_data;
|
unsigned int i;
|
|
if (!kbase_ctx_flag(katom->kctx, KCTX_DYING)) {
|
dev_warn(kbdev->dev, "error detected from slot %d, job status 0x%08x (%s)",
|
js, completion_code,
|
kbase_gpu_exception_name(
|
completion_code));
|
|
}
|
|
#if KBASE_KTRACE_DUMP_ON_JOB_SLOT_ERROR != 0
|
KBASE_KTRACE_DUMP(kbdev);
|
#endif
|
kbasep_js_clear_submit_allowed(js_devdata, katom->kctx);
|
|
/*
|
* Remove all atoms on the same context from ringbuffers. This
|
* will not remove atoms that are already on the GPU, as these
|
* are guaranteed not to have fail dependencies on the failed
|
* atom.
|
*/
|
for (i = 0; i < kbdev->gpu_props.num_job_slots; i++) {
|
struct kbase_jd_atom *katom_idx0 =
|
kbase_gpu_inspect(kbdev, i, 0);
|
struct kbase_jd_atom *katom_idx1 =
|
kbase_gpu_inspect(kbdev, i, 1);
|
|
if (katom_idx0 &&
|
kbase_rb_atom_might_depend(katom, katom_idx0) &&
|
katom_idx0->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* Dequeue katom_idx0 from ringbuffer */
|
kbase_gpu_dequeue_atom(kbdev, i, end_timestamp);
|
|
if (katom_idx1 && kbase_rb_atom_might_depend(
|
katom, katom_idx1) &&
|
katom_idx0->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* Dequeue katom_idx1 from ringbuffer */
|
kbase_gpu_dequeue_atom(kbdev, i,
|
end_timestamp);
|
|
katom_idx1->event_code =
|
BASE_JD_EVENT_STOPPED;
|
kbase_jm_return_atom_to_js(kbdev,
|
katom_idx1);
|
}
|
katom_idx0->event_code = BASE_JD_EVENT_STOPPED;
|
kbase_jm_return_atom_to_js(kbdev, katom_idx0);
|
|
} else if (katom_idx1 && kbase_rb_atom_might_depend(
|
katom, katom_idx1) &&
|
katom_idx1->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* Can not dequeue this atom yet - will be
|
* dequeued when atom at idx0 completes
|
*/
|
katom_idx1->event_code = BASE_JD_EVENT_STOPPED;
|
kbase_gpu_mark_atom_for_return(kbdev,
|
katom_idx1);
|
}
|
}
|
}
|
|
KBASE_KTRACE_ADD_JM_SLOT_INFO(kbdev, JM_JOB_DONE, kctx, katom, katom->jc, js, completion_code);
|
|
if (job_tail != 0 && job_tail != katom->jc) {
|
/* Some of the job has been executed */
|
dev_dbg(kbdev->dev,
|
"Update job chain address of atom %pK to resume from 0x%llx\n",
|
(void *)katom, job_tail);
|
|
katom->jc = job_tail;
|
KBASE_KTRACE_ADD_JM_SLOT(kbdev, JM_UPDATE_HEAD, katom->kctx,
|
katom, job_tail, js);
|
}
|
|
/* Only update the event code for jobs that weren't cancelled */
|
if (katom->event_code != BASE_JD_EVENT_JOB_CANCELLED)
|
katom->event_code = (enum base_jd_event_code)completion_code;
|
|
/* Complete the job, and start new ones
|
*
|
* Also defer remaining work onto the workqueue:
|
* - Re-queue Soft-stopped jobs
|
* - For any other jobs, queue the job back into the dependency system
|
* - Schedule out the parent context if necessary, and schedule a new
|
* one in.
|
*/
|
#if IS_ENABLED(CONFIG_GPU_TRACEPOINTS)
|
{
|
/* The atom in the HEAD */
|
struct kbase_jd_atom *next_katom = kbase_gpu_inspect(kbdev, js,
|
0);
|
|
if (next_katom && next_katom->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_SUBMITTED) {
|
char js_string[16];
|
|
trace_gpu_sched_switch(kbasep_make_job_slot_string(js,
|
js_string,
|
sizeof(js_string)),
|
ktime_to_ns(*end_timestamp),
|
(u32)next_katom->kctx->id, 0,
|
next_katom->work_id);
|
} else {
|
char js_string[16];
|
|
trace_gpu_sched_switch(kbasep_make_job_slot_string(js, js_string,
|
sizeof(js_string)),
|
ktime_to_ns(ktime_get_raw()), 0, 0, 0);
|
}
|
}
|
#endif
|
|
if (kbdev->serialize_jobs & KBASE_SERIALIZE_RESET)
|
kbase_reset_gpu_silent(kbdev);
|
|
if (completion_code == BASE_JD_EVENT_STOPPED)
|
katom = kbase_jm_return_atom_to_js(kbdev, katom);
|
else
|
katom = kbase_jm_complete(kbdev, katom, end_timestamp);
|
|
if (katom) {
|
dev_dbg(kbdev->dev,
|
"Cross-slot dependency %pK has become runnable.\n",
|
(void *)katom);
|
|
/* Check if there are lower priority jobs to soft stop */
|
kbase_job_slot_ctx_priority_check_locked(kctx, katom);
|
|
kbase_jm_try_kick(kbdev, 1 << katom->slot_nr);
|
}
|
|
/* For partial shader core off L2 cache flush */
|
kbase_pm_update_state(kbdev);
|
|
/* Job completion may have unblocked other atoms. Try to update all job
|
* slots
|
*/
|
kbase_backend_slot_update(kbdev);
|
}
|
|
void kbase_backend_reset(struct kbase_device *kbdev, ktime_t *end_timestamp)
|
{
|
unsigned int js;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
/* Reset should always take the GPU out of protected mode */
|
WARN_ON(kbase_gpu_in_protected_mode(kbdev));
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
int atom_idx = 0;
|
int idx;
|
|
for (idx = 0; idx < SLOT_RB_SIZE; idx++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev,
|
js, atom_idx);
|
bool keep_in_jm_rb = false;
|
|
if (!katom)
|
break;
|
if (katom->protected_state.exit ==
|
KBASE_ATOM_EXIT_PROTECTED_RESET_WAIT) {
|
/* protected mode sanity checks */
|
WARN(kbase_jd_katom_is_protected(katom) !=
|
kbase_gpu_in_protected_mode(kbdev),
|
"Protected mode of atom (%d) doesn't match protected mode of GPU (%d)",
|
kbase_jd_katom_is_protected(katom),
|
kbase_gpu_in_protected_mode(kbdev));
|
WARN(!(kbase_jd_katom_is_protected(katom) && js == 0) &&
|
kbase_jd_katom_is_protected(katom),
|
"Protected atom on JS%u not supported", js);
|
}
|
if ((katom->gpu_rb_state < KBASE_ATOM_GPU_RB_SUBMITTED) &&
|
!kbase_ctx_flag(katom->kctx, KCTX_DYING))
|
keep_in_jm_rb = true;
|
|
kbase_gpu_release_atom(kbdev, katom, NULL);
|
|
/*
|
* If the atom wasn't on HW when the reset was issued
|
* then leave it in the RB and next time we're kicked
|
* it will be processed again from the starting state.
|
*/
|
if (keep_in_jm_rb) {
|
katom->protected_state.exit = KBASE_ATOM_EXIT_PROTECTED_CHECK;
|
/* As the atom was not removed, increment the
|
* index so that we read the correct atom in the
|
* next iteration.
|
*/
|
atom_idx++;
|
continue;
|
}
|
|
/*
|
* The atom was on the HW when the reset was issued
|
* all we can do is fail the atom.
|
*/
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
katom->event_code = BASE_JD_EVENT_JOB_CANCELLED;
|
kbase_jm_complete(kbdev, katom, end_timestamp);
|
}
|
|
/* Clear the slot's last katom submission kctx on reset */
|
kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged = SLOT_RB_NULL_TAG_VAL;
|
}
|
|
/* Re-enable GPU hardware counters if we're resetting from protected
|
* mode.
|
*/
|
kbdev->protected_mode_hwcnt_desired = true;
|
if (kbdev->protected_mode_hwcnt_disabled) {
|
kbase_hwcnt_context_enable(kbdev->hwcnt_gpu_ctx);
|
kbdev->protected_mode_hwcnt_disabled = false;
|
|
KBASE_TLSTREAM_AUX_PROTECTED_LEAVE_END(kbdev, kbdev);
|
}
|
|
kbdev->protected_mode_transition = false;
|
kbase_pm_protected_override_disable(kbdev);
|
}
|
|
/**
|
* should_stop_next_atom - given a soft/hard stop action, determine if the next
|
* atom on a slot should be stopped
|
* @kbdev: kbase devices
|
* @head_katom: atom currently in the JSn_HEAD
|
* @next_katom: atom currently in the JSn_HEAD_NEXT
|
* @action: JS_COMMAND_<...> action for soft/hard-stop
|
*
|
* This is used in cases where @head_katom is the target of the soft/hard-stop.
|
* It only makes sense to call this when @head_katom and @next_katom are from
|
* the same slot.
|
*
|
* Return: true if @next_katom should also be stopped with the given action,
|
* false otherwise
|
*/
|
static bool should_stop_next_atom(struct kbase_device *kbdev,
|
const struct kbase_jd_atom *head_katom,
|
const struct kbase_jd_atom *next_katom,
|
u32 action)
|
{
|
bool ret = false;
|
u32 hw_action = action & JS_COMMAND_MASK;
|
|
switch (hw_action) {
|
case JS_COMMAND_SOFT_STOP:
|
ret = kbase_js_atom_runs_before(kbdev, head_katom, next_katom,
|
0u);
|
break;
|
case JS_COMMAND_HARD_STOP:
|
/* Unlike soft-stop, a hard-stop targeting a particular atom
|
* should not cause atoms from unrelated contexts to be
|
* removed
|
*/
|
ret = (head_katom->kctx == next_katom->kctx);
|
break;
|
default:
|
/* Other stop actions are possible, but the driver should not
|
* be generating them at this point in the call chain
|
*/
|
WARN(1, "Unexpected stop action: 0x%.8x", hw_action);
|
break;
|
}
|
return ret;
|
}
|
|
static inline void kbase_gpu_stop_atom(struct kbase_device *kbdev, unsigned int js,
|
struct kbase_jd_atom *katom, u32 action)
|
{
|
struct kbase_context *kctx = katom->kctx;
|
u32 hw_action = action & JS_COMMAND_MASK;
|
|
kbase_job_check_enter_disjoint(kbdev, action, katom->core_req, katom);
|
kbasep_job_slot_soft_or_hard_stop_do_action(kbdev, js, hw_action,
|
katom->core_req, katom);
|
kbase_jsctx_slot_prio_blocked_set(kctx, js, katom->sched_priority);
|
}
|
|
static inline void kbase_gpu_remove_atom(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom,
|
u32 action,
|
bool disjoint)
|
{
|
struct kbase_context *kctx = katom->kctx;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
katom->event_code = BASE_JD_EVENT_REMOVED_FROM_NEXT;
|
kbase_gpu_mark_atom_for_return(kbdev, katom);
|
kbase_jsctx_slot_prio_blocked_set(kctx, katom->slot_nr,
|
katom->sched_priority);
|
|
if (disjoint)
|
kbase_job_check_enter_disjoint(kbdev, action, katom->core_req,
|
katom);
|
}
|
|
static int should_stop_x_dep_slot(struct kbase_jd_atom *katom)
|
{
|
if (katom->x_post_dep) {
|
struct kbase_jd_atom *dep_atom = katom->x_post_dep;
|
|
if (dep_atom->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_NOT_IN_SLOT_RB &&
|
dep_atom->gpu_rb_state !=
|
KBASE_ATOM_GPU_RB_RETURN_TO_JS)
|
return dep_atom->slot_nr;
|
}
|
return -1;
|
}
|
|
bool kbase_backend_soft_hard_stop_slot(struct kbase_device *kbdev, struct kbase_context *kctx,
|
unsigned int js, struct kbase_jd_atom *katom, u32 action)
|
{
|
struct kbase_jd_atom *katom_idx0;
|
struct kbase_context *kctx_idx0 = NULL;
|
struct kbase_jd_atom *katom_idx1;
|
struct kbase_context *kctx_idx1 = NULL;
|
|
bool katom_idx0_valid, katom_idx1_valid;
|
|
bool ret = false;
|
|
int stop_x_dep_idx0 = -1, stop_x_dep_idx1 = -1;
|
int prio_idx0 = 0, prio_idx1 = 0;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
katom_idx0 = kbase_gpu_inspect(kbdev, js, 0);
|
katom_idx1 = kbase_gpu_inspect(kbdev, js, 1);
|
|
if (katom_idx0) {
|
kctx_idx0 = katom_idx0->kctx;
|
prio_idx0 = katom_idx0->sched_priority;
|
}
|
if (katom_idx1) {
|
kctx_idx1 = katom_idx1->kctx;
|
prio_idx1 = katom_idx1->sched_priority;
|
}
|
|
if (katom) {
|
katom_idx0_valid = (katom_idx0 == katom);
|
if (katom_idx1)
|
katom_idx1_valid = (katom_idx1 == katom);
|
else
|
katom_idx1_valid = false;
|
} else {
|
katom_idx0_valid = (katom_idx0 && (!kctx || kctx_idx0 == kctx));
|
katom_idx1_valid = (katom_idx1 && (!kctx || kctx_idx1 == kctx));
|
}
|
/* If there's an atom in JSn_HEAD_NEXT that we haven't already decided
|
* to stop, but we're stopping the JSn_HEAD atom, see if they are
|
* related/ordered in some way that would require the same stop action
|
*/
|
if (!katom_idx1_valid && katom_idx0_valid && katom_idx1)
|
katom_idx1_valid = should_stop_next_atom(kbdev, katom_idx0,
|
katom_idx1, action);
|
|
if (katom_idx0_valid)
|
stop_x_dep_idx0 = should_stop_x_dep_slot(katom_idx0);
|
if (katom_idx1_valid)
|
stop_x_dep_idx1 = should_stop_x_dep_slot(katom_idx1);
|
|
if (katom_idx0_valid) {
|
if (katom_idx0->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* Simple case - just dequeue and return */
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
if (katom_idx1_valid) {
|
kbase_gpu_dequeue_atom(kbdev, js, NULL);
|
katom_idx1->event_code =
|
BASE_JD_EVENT_REMOVED_FROM_NEXT;
|
kbase_jm_return_atom_to_js(kbdev, katom_idx1);
|
kbase_jsctx_slot_prio_blocked_set(kctx_idx1, js,
|
prio_idx1);
|
}
|
|
katom_idx0->event_code =
|
BASE_JD_EVENT_REMOVED_FROM_NEXT;
|
kbase_jm_return_atom_to_js(kbdev, katom_idx0);
|
kbase_jsctx_slot_prio_blocked_set(kctx_idx0, js,
|
prio_idx0);
|
} else {
|
/* katom_idx0 is on GPU */
|
if (katom_idx1_valid && katom_idx1->gpu_rb_state ==
|
KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* katom_idx0 and katom_idx1 are on GPU */
|
|
if (kbase_reg_read(kbdev, JOB_SLOT_REG(js,
|
JS_COMMAND_NEXT)) == 0) {
|
/* idx0 has already completed - stop
|
* idx1 if needed
|
*/
|
if (katom_idx1_valid) {
|
kbase_gpu_stop_atom(kbdev, js,
|
katom_idx1,
|
action);
|
ret = true;
|
}
|
} else {
|
/* idx1 is in NEXT registers - attempt
|
* to remove
|
*/
|
kbase_reg_write(kbdev,
|
JOB_SLOT_REG(js,
|
JS_COMMAND_NEXT),
|
JS_COMMAND_NOP);
|
|
if (kbase_reg_read(kbdev,
|
JOB_SLOT_REG(js,
|
JS_HEAD_NEXT_LO))
|
!= 0 ||
|
kbase_reg_read(kbdev,
|
JOB_SLOT_REG(js,
|
JS_HEAD_NEXT_HI))
|
!= 0) {
|
/* idx1 removed successfully,
|
* will be handled in IRQ
|
*/
|
kbase_gpu_remove_atom(kbdev,
|
katom_idx1,
|
action, true);
|
/* Revert the last_context. */
|
kbdev->hwaccess.backend.slot_rb[js]
|
.last_kctx_tagged =
|
SLOT_RB_TAG_KCTX(katom_idx0->kctx);
|
|
stop_x_dep_idx1 =
|
should_stop_x_dep_slot(katom_idx1);
|
|
/* stop idx0 if still on GPU */
|
kbase_gpu_stop_atom(kbdev, js,
|
katom_idx0,
|
action);
|
ret = true;
|
} else if (katom_idx1_valid) {
|
/* idx0 has already completed,
|
* stop idx1 if needed
|
*/
|
kbase_gpu_stop_atom(kbdev, js,
|
katom_idx1,
|
action);
|
ret = true;
|
}
|
}
|
} else if (katom_idx1_valid) {
|
/* idx1 not on GPU but must be dequeued*/
|
|
/* idx1 will be handled in IRQ */
|
kbase_gpu_remove_atom(kbdev, katom_idx1, action,
|
false);
|
/* stop idx0 */
|
/* This will be repeated for anything removed
|
* from the next registers, since their normal
|
* flow was also interrupted, and this function
|
* might not enter disjoint state e.g. if we
|
* don't actually do a hard stop on the head
|
* atom
|
*/
|
kbase_gpu_stop_atom(kbdev, js, katom_idx0,
|
action);
|
ret = true;
|
} else {
|
/* no atom in idx1 */
|
/* just stop idx0 */
|
kbase_gpu_stop_atom(kbdev, js, katom_idx0,
|
action);
|
ret = true;
|
}
|
}
|
} else if (katom_idx1_valid) {
|
if (katom_idx1->gpu_rb_state != KBASE_ATOM_GPU_RB_SUBMITTED) {
|
/* Mark for return */
|
/* idx1 will be returned once idx0 completes */
|
kbase_gpu_remove_atom(kbdev, katom_idx1, action,
|
false);
|
} else {
|
/* idx1 is on GPU */
|
if (kbase_reg_read(kbdev, JOB_SLOT_REG(js,
|
JS_COMMAND_NEXT)) == 0) {
|
/* idx0 has already completed - stop idx1 */
|
kbase_gpu_stop_atom(kbdev, js, katom_idx1,
|
action);
|
ret = true;
|
} else {
|
/* idx1 is in NEXT registers - attempt to
|
* remove
|
*/
|
kbase_reg_write(kbdev, JOB_SLOT_REG(js,
|
JS_COMMAND_NEXT),
|
JS_COMMAND_NOP);
|
|
if (kbase_reg_read(kbdev, JOB_SLOT_REG(js,
|
JS_HEAD_NEXT_LO)) != 0 ||
|
kbase_reg_read(kbdev, JOB_SLOT_REG(js,
|
JS_HEAD_NEXT_HI)) != 0) {
|
/* idx1 removed successfully, will be
|
* handled in IRQ once idx0 completes
|
*/
|
kbase_gpu_remove_atom(kbdev, katom_idx1,
|
action,
|
false);
|
/* Revert the last_context, or mark as purged */
|
kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged =
|
kctx_idx0 ? SLOT_RB_TAG_KCTX(katom_idx0->kctx) :
|
SLOT_RB_TAG_PURGED;
|
} else {
|
/* idx0 has already completed - stop
|
* idx1
|
*/
|
kbase_gpu_stop_atom(kbdev, js,
|
katom_idx1,
|
action);
|
ret = true;
|
}
|
}
|
}
|
}
|
|
|
if (stop_x_dep_idx0 != -1)
|
kbase_backend_soft_hard_stop_slot(kbdev, kctx, stop_x_dep_idx0,
|
NULL, action);
|
|
if (stop_x_dep_idx1 != -1)
|
kbase_backend_soft_hard_stop_slot(kbdev, kctx, stop_x_dep_idx1,
|
NULL, action);
|
|
return ret;
|
}
|
|
void kbase_backend_cache_clean(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom)
|
{
|
if (katom->need_cache_flush_cores_retained) {
|
kbase_gpu_start_cache_clean(kbdev,
|
GPU_COMMAND_CACHE_CLN_INV_FULL);
|
kbase_gpu_wait_cache_clean(kbdev);
|
|
katom->need_cache_flush_cores_retained = false;
|
}
|
}
|
|
void kbase_backend_complete_wq(struct kbase_device *kbdev,
|
struct kbase_jd_atom *katom)
|
{
|
/*
|
* If cache flush required due to HW workaround then perform the flush
|
* now
|
*/
|
kbase_backend_cache_clean(kbdev, katom);
|
}
|
|
void kbase_backend_complete_wq_post_sched(struct kbase_device *kbdev,
|
base_jd_core_req core_req)
|
{
|
if (!kbdev->pm.active_count) {
|
kbase_pm_lock(kbdev);
|
kbase_pm_update_active(kbdev);
|
kbase_pm_unlock(kbdev);
|
}
|
}
|
|
void kbase_gpu_dump_slots(struct kbase_device *kbdev)
|
{
|
unsigned long flags;
|
unsigned int js;
|
|
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
|
|
dev_info(kbdev->dev, "%s:\n", __func__);
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
int idx;
|
|
for (idx = 0; idx < SLOT_RB_SIZE; idx++) {
|
struct kbase_jd_atom *katom = kbase_gpu_inspect(kbdev,
|
js,
|
idx);
|
|
if (katom)
|
dev_info(kbdev->dev, " js%u idx%d : katom=%pK gpu_rb_state=%d\n",
|
js, idx, katom, katom->gpu_rb_state);
|
else
|
dev_info(kbdev->dev, " js%u idx%d : empty\n", js, idx);
|
}
|
}
|
|
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
|
}
|
|
void kbase_backend_slot_kctx_purge_locked(struct kbase_device *kbdev, struct kbase_context *kctx)
|
{
|
unsigned int js;
|
bool tracked = false;
|
|
lockdep_assert_held(&kbdev->hwaccess_lock);
|
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
u64 tagged_kctx = kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged;
|
|
if (tagged_kctx == SLOT_RB_TAG_KCTX(kctx)) {
|
/* Marking the slot kctx tracking field is purged */
|
kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged = SLOT_RB_TAG_PURGED;
|
tracked = true;
|
}
|
}
|
|
if (tracked) {
|
/* The context had run some jobs before the purge, other slots
|
* in SLOT_RB_NULL_TAG_VAL condition needs to be marked as
|
* purged as well.
|
*/
|
for (js = 0; js < kbdev->gpu_props.num_job_slots; js++) {
|
if (kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged ==
|
SLOT_RB_NULL_TAG_VAL)
|
kbdev->hwaccess.backend.slot_rb[js].last_kctx_tagged =
|
SLOT_RB_TAG_PURGED;
|
}
|
}
|
}
|