// SPDX-License-Identifier: GPL-2.0+
|
/*
|
* Driver for Realtek PCI-Express card reader
|
*
|
* Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
|
*
|
* Author:
|
* Wei WANG (wei_wang@realsil.com.cn)
|
* Micky Ching (micky_ching@realsil.com.cn)
|
*/
|
|
#include <linux/blkdev.h>
|
#include <linux/kthread.h>
|
#include <linux/sched.h>
|
|
#include "rtsx.h"
|
|
/***********************************************************************
|
* Scatter-gather transfer buffer access routines
|
***********************************************************************/
|
|
/*
|
* Copy a buffer of length buflen to/from the srb's transfer buffer.
|
* (Note: for scatter-gather transfers (srb->use_sg > 0), srb->request_buffer
|
* points to a list of s-g entries and we ignore srb->request_bufflen.
|
* For non-scatter-gather transfers, srb->request_buffer points to the
|
* transfer buffer itself and srb->request_bufflen is the buffer's length.)
|
* Update the *index and *offset variables so that the next copy will
|
* pick up from where this one left off.
|
*/
|
|
unsigned int rtsx_stor_access_xfer_buf(unsigned char *buffer,
|
unsigned int buflen,
|
struct scsi_cmnd *srb,
|
unsigned int *index,
|
unsigned int *offset,
|
enum xfer_buf_dir dir)
|
{
|
unsigned int cnt;
|
|
/* If not using scatter-gather, just transfer the data directly. */
|
if (scsi_sg_count(srb) == 0) {
|
unsigned char *sgbuffer;
|
|
if (*offset >= scsi_bufflen(srb))
|
return 0;
|
cnt = min(buflen, scsi_bufflen(srb) - *offset);
|
|
sgbuffer = (unsigned char *)scsi_sglist(srb) + *offset;
|
|
if (dir == TO_XFER_BUF)
|
memcpy(sgbuffer, buffer, cnt);
|
else
|
memcpy(buffer, sgbuffer, cnt);
|
*offset += cnt;
|
|
/*
|
* Using scatter-gather. We have to go through the list one entry
|
* at a time. Each s-g entry contains some number of pages, and
|
* each page has to be kmap()'ed separately.
|
*/
|
} else {
|
struct scatterlist *sg =
|
(struct scatterlist *)scsi_sglist(srb)
|
+ *index;
|
|
/*
|
* This loop handles a single s-g list entry, which may
|
* include multiple pages. Find the initial page structure
|
* and the starting offset within the page, and update
|
* the *offset and *index values for the next loop.
|
*/
|
cnt = 0;
|
while (cnt < buflen && *index < scsi_sg_count(srb)) {
|
struct page *page = sg_page(sg) +
|
((sg->offset + *offset) >> PAGE_SHIFT);
|
unsigned int poff = (sg->offset + *offset) &
|
(PAGE_SIZE - 1);
|
unsigned int sglen = sg->length - *offset;
|
|
if (sglen > buflen - cnt) {
|
/* Transfer ends within this s-g entry */
|
sglen = buflen - cnt;
|
*offset += sglen;
|
} else {
|
/* Transfer continues to next s-g entry */
|
*offset = 0;
|
++*index;
|
++sg;
|
}
|
|
while (sglen > 0) {
|
unsigned int plen = min(sglen, (unsigned int)
|
PAGE_SIZE - poff);
|
unsigned char *ptr = kmap(page);
|
|
if (dir == TO_XFER_BUF)
|
memcpy(ptr + poff, buffer + cnt, plen);
|
else
|
memcpy(buffer + cnt, ptr + poff, plen);
|
kunmap(page);
|
|
/* Start at the beginning of the next page */
|
poff = 0;
|
++page;
|
cnt += plen;
|
sglen -= plen;
|
}
|
}
|
}
|
|
/* Return the amount actually transferred */
|
return cnt;
|
}
|
|
/*
|
* Store the contents of buffer into srb's transfer buffer and set the
|
* SCSI residue.
|
*/
|
void rtsx_stor_set_xfer_buf(unsigned char *buffer,
|
unsigned int buflen, struct scsi_cmnd *srb)
|
{
|
unsigned int index = 0, offset = 0;
|
|
rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
|
TO_XFER_BUF);
|
if (buflen < scsi_bufflen(srb))
|
scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
|
}
|
|
void rtsx_stor_get_xfer_buf(unsigned char *buffer,
|
unsigned int buflen, struct scsi_cmnd *srb)
|
{
|
unsigned int index = 0, offset = 0;
|
|
rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
|
FROM_XFER_BUF);
|
if (buflen < scsi_bufflen(srb))
|
scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
|
}
|
|
/***********************************************************************
|
* Transport routines
|
***********************************************************************/
|
|
/*
|
* Invoke the transport and basic error-handling/recovery methods
|
*
|
* This is used to send the message to the device and receive the response.
|
*/
|
void rtsx_invoke_transport(struct scsi_cmnd *srb, struct rtsx_chip *chip)
|
{
|
int result;
|
|
result = rtsx_scsi_handler(srb, chip);
|
|
/*
|
* if the command gets aborted by the higher layers, we need to
|
* short-circuit all other processing.
|
*/
|
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
|
dev_dbg(rtsx_dev(chip), "-- command was aborted\n");
|
srb->result = DID_ABORT << 16;
|
goto handle_errors;
|
}
|
|
/* if there is a transport error, reset and don't auto-sense */
|
if (result == TRANSPORT_ERROR) {
|
dev_dbg(rtsx_dev(chip), "-- transport indicates error, resetting\n");
|
srb->result = DID_ERROR << 16;
|
goto handle_errors;
|
}
|
|
srb->result = SAM_STAT_GOOD;
|
|
/*
|
* If we have a failure, we're going to do a REQUEST_SENSE
|
* automatically. Note that we differentiate between a command
|
* "failure" and an "error" in the transport mechanism.
|
*/
|
if (result == TRANSPORT_FAILED) {
|
/* set the result so the higher layers expect this data */
|
srb->result = SAM_STAT_CHECK_CONDITION;
|
memcpy(srb->sense_buffer,
|
(unsigned char *)&chip->sense_buffer[SCSI_LUN(srb)],
|
sizeof(struct sense_data_t));
|
}
|
|
return;
|
|
handle_errors:
|
return;
|
}
|
|
void rtsx_add_cmd(struct rtsx_chip *chip,
|
u8 cmd_type, u16 reg_addr, u8 mask, u8 data)
|
{
|
__le32 *cb = (__le32 *)(chip->host_cmds_ptr);
|
u32 val = 0;
|
|
val |= (u32)(cmd_type & 0x03) << 30;
|
val |= (u32)(reg_addr & 0x3FFF) << 16;
|
val |= (u32)mask << 8;
|
val |= (u32)data;
|
|
spin_lock_irq(&chip->rtsx->reg_lock);
|
if (chip->ci < (HOST_CMDS_BUF_LEN / 4))
|
cb[(chip->ci)++] = cpu_to_le32(val);
|
|
spin_unlock_irq(&chip->rtsx->reg_lock);
|
}
|
|
void rtsx_send_cmd_no_wait(struct rtsx_chip *chip)
|
{
|
u32 val = BIT(31);
|
|
rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
|
|
val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
|
/* Hardware Auto Response */
|
val |= 0x40000000;
|
rtsx_writel(chip, RTSX_HCBCTLR, val);
|
}
|
|
int rtsx_send_cmd(struct rtsx_chip *chip, u8 card, int timeout)
|
{
|
struct rtsx_dev *rtsx = chip->rtsx;
|
struct completion trans_done;
|
u32 val = BIT(31);
|
long timeleft;
|
int err = 0;
|
|
if (card == SD_CARD)
|
rtsx->check_card_cd = SD_EXIST;
|
else if (card == MS_CARD)
|
rtsx->check_card_cd = MS_EXIST;
|
else if (card == XD_CARD)
|
rtsx->check_card_cd = XD_EXIST;
|
else
|
rtsx->check_card_cd = 0;
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
/* set up data structures for the wakeup system */
|
rtsx->done = &trans_done;
|
rtsx->trans_result = TRANS_NOT_READY;
|
init_completion(&trans_done);
|
rtsx->trans_state = STATE_TRANS_CMD;
|
|
rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
|
|
val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
|
/* Hardware Auto Response */
|
val |= 0x40000000;
|
rtsx_writel(chip, RTSX_HCBCTLR, val);
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
/* Wait for TRANS_OK_INT */
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto finish_send_cmd;
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL)
|
err = -EIO;
|
else if (rtsx->trans_result == TRANS_RESULT_OK)
|
err = 0;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
finish_send_cmd:
|
rtsx->done = NULL;
|
rtsx->trans_state = STATE_TRANS_NONE;
|
|
if (err < 0)
|
rtsx_stop_cmd(chip, card);
|
|
return err;
|
}
|
|
static inline void rtsx_add_sg_tbl(struct rtsx_chip *chip,
|
u32 addr, u32 len, u8 option)
|
{
|
__le64 *sgb = (__le64 *)(chip->host_sg_tbl_ptr);
|
u64 val = 0;
|
u32 temp_len = 0;
|
u8 temp_opt = 0;
|
|
do {
|
if (len > 0x80000) {
|
temp_len = 0x80000;
|
temp_opt = option & (~RTSX_SG_END);
|
} else {
|
temp_len = len;
|
temp_opt = option;
|
}
|
val = ((u64)addr << 32) | ((u64)temp_len << 12) | temp_opt;
|
|
if (chip->sgi < (HOST_SG_TBL_BUF_LEN / 8))
|
sgb[(chip->sgi)++] = cpu_to_le64(val);
|
|
len -= temp_len;
|
addr += temp_len;
|
} while (len);
|
}
|
|
static int rtsx_transfer_sglist_adma_partial(struct rtsx_chip *chip, u8 card,
|
struct scatterlist *sg, int num_sg,
|
unsigned int *index,
|
unsigned int *offset, int size,
|
enum dma_data_direction dma_dir,
|
int timeout)
|
{
|
struct rtsx_dev *rtsx = chip->rtsx;
|
struct completion trans_done;
|
u8 dir;
|
int sg_cnt, i, resid;
|
int err = 0;
|
long timeleft;
|
struct scatterlist *sg_ptr;
|
u32 val = TRIG_DMA;
|
|
if (!sg || (num_sg <= 0) || !offset || !index)
|
return -EIO;
|
|
if (dma_dir == DMA_TO_DEVICE)
|
dir = HOST_TO_DEVICE;
|
else if (dma_dir == DMA_FROM_DEVICE)
|
dir = DEVICE_TO_HOST;
|
else
|
return -ENXIO;
|
|
if (card == SD_CARD)
|
rtsx->check_card_cd = SD_EXIST;
|
else if (card == MS_CARD)
|
rtsx->check_card_cd = MS_EXIST;
|
else if (card == XD_CARD)
|
rtsx->check_card_cd = XD_EXIST;
|
else
|
rtsx->check_card_cd = 0;
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
/* set up data structures for the wakeup system */
|
rtsx->done = &trans_done;
|
|
rtsx->trans_state = STATE_TRANS_SG;
|
rtsx->trans_result = TRANS_NOT_READY;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
sg_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
|
|
resid = size;
|
sg_ptr = sg;
|
chip->sgi = 0;
|
/*
|
* Usually the next entry will be @sg@ + 1, but if this sg element
|
* is part of a chained scatterlist, it could jump to the start of
|
* a new scatterlist array. So here we use sg_next to move to
|
* the proper sg.
|
*/
|
for (i = 0; i < *index; i++)
|
sg_ptr = sg_next(sg_ptr);
|
for (i = *index; i < sg_cnt; i++) {
|
dma_addr_t addr;
|
unsigned int len;
|
u8 option;
|
|
addr = sg_dma_address(sg_ptr);
|
len = sg_dma_len(sg_ptr);
|
|
dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
|
(unsigned int)addr, len);
|
dev_dbg(rtsx_dev(chip), "*index = %d, *offset = %d\n",
|
*index, *offset);
|
|
addr += *offset;
|
|
if ((len - *offset) > resid) {
|
*offset += resid;
|
len = resid;
|
resid = 0;
|
} else {
|
resid -= (len - *offset);
|
len -= *offset;
|
*offset = 0;
|
*index = *index + 1;
|
}
|
option = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
|
if ((i == sg_cnt - 1) || !resid)
|
option |= RTSX_SG_END;
|
|
rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
|
|
if (!resid)
|
break;
|
|
sg_ptr = sg_next(sg_ptr);
|
}
|
|
dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
|
|
val |= (u32)(dir & 0x01) << 29;
|
val |= ADMA_MODE;
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
init_completion(&trans_done);
|
|
rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
|
rtsx_writel(chip, RTSX_HDBCTLR, val);
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
|
__func__, __LINE__);
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto out;
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
|
err = -EIO;
|
spin_unlock_irq(&rtsx->reg_lock);
|
goto out;
|
}
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
/* Wait for TRANS_OK_INT */
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_NOT_READY) {
|
init_completion(&trans_done);
|
spin_unlock_irq(&rtsx->reg_lock);
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
|
__func__, __LINE__);
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto out;
|
}
|
} else {
|
spin_unlock_irq(&rtsx->reg_lock);
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL)
|
err = -EIO;
|
else if (rtsx->trans_result == TRANS_RESULT_OK)
|
err = 0;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
out:
|
rtsx->done = NULL;
|
rtsx->trans_state = STATE_TRANS_NONE;
|
dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
|
|
if (err < 0)
|
rtsx_stop_cmd(chip, card);
|
|
return err;
|
}
|
|
static int rtsx_transfer_sglist_adma(struct rtsx_chip *chip, u8 card,
|
struct scatterlist *sg, int num_sg,
|
enum dma_data_direction dma_dir,
|
int timeout)
|
{
|
struct rtsx_dev *rtsx = chip->rtsx;
|
struct completion trans_done;
|
u8 dir;
|
int buf_cnt, i;
|
int err = 0;
|
long timeleft;
|
struct scatterlist *sg_ptr;
|
|
if (!sg || (num_sg <= 0))
|
return -EIO;
|
|
if (dma_dir == DMA_TO_DEVICE)
|
dir = HOST_TO_DEVICE;
|
else if (dma_dir == DMA_FROM_DEVICE)
|
dir = DEVICE_TO_HOST;
|
else
|
return -ENXIO;
|
|
if (card == SD_CARD)
|
rtsx->check_card_cd = SD_EXIST;
|
else if (card == MS_CARD)
|
rtsx->check_card_cd = MS_EXIST;
|
else if (card == XD_CARD)
|
rtsx->check_card_cd = XD_EXIST;
|
else
|
rtsx->check_card_cd = 0;
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
/* set up data structures for the wakeup system */
|
rtsx->done = &trans_done;
|
|
rtsx->trans_state = STATE_TRANS_SG;
|
rtsx->trans_result = TRANS_NOT_READY;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
buf_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
|
|
sg_ptr = sg;
|
|
for (i = 0; i <= buf_cnt / (HOST_SG_TBL_BUF_LEN / 8); i++) {
|
u32 val = TRIG_DMA;
|
int sg_cnt, j;
|
|
if (i == buf_cnt / (HOST_SG_TBL_BUF_LEN / 8))
|
sg_cnt = buf_cnt % (HOST_SG_TBL_BUF_LEN / 8);
|
else
|
sg_cnt = HOST_SG_TBL_BUF_LEN / 8;
|
|
chip->sgi = 0;
|
for (j = 0; j < sg_cnt; j++) {
|
dma_addr_t addr = sg_dma_address(sg_ptr);
|
unsigned int len = sg_dma_len(sg_ptr);
|
u8 option;
|
|
dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
|
(unsigned int)addr, len);
|
|
option = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
|
if (j == (sg_cnt - 1))
|
option |= RTSX_SG_END;
|
|
rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
|
|
sg_ptr = sg_next(sg_ptr);
|
}
|
|
dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
|
|
val |= (u32)(dir & 0x01) << 29;
|
val |= ADMA_MODE;
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
init_completion(&trans_done);
|
|
rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
|
rtsx_writel(chip, RTSX_HDBCTLR, val);
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
|
__func__, __LINE__);
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto out;
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL) {
|
err = -EIO;
|
spin_unlock_irq(&rtsx->reg_lock);
|
goto out;
|
}
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
sg_ptr += sg_cnt;
|
}
|
|
/* Wait for TRANS_OK_INT */
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_NOT_READY) {
|
init_completion(&trans_done);
|
spin_unlock_irq(&rtsx->reg_lock);
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
|
__func__, __LINE__);
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto out;
|
}
|
} else {
|
spin_unlock_irq(&rtsx->reg_lock);
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL)
|
err = -EIO;
|
else if (rtsx->trans_result == TRANS_RESULT_OK)
|
err = 0;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
out:
|
rtsx->done = NULL;
|
rtsx->trans_state = STATE_TRANS_NONE;
|
dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
|
|
if (err < 0)
|
rtsx_stop_cmd(chip, card);
|
|
return err;
|
}
|
|
static int rtsx_transfer_buf(struct rtsx_chip *chip, u8 card, void *buf,
|
size_t len, enum dma_data_direction dma_dir,
|
int timeout)
|
{
|
struct rtsx_dev *rtsx = chip->rtsx;
|
struct completion trans_done;
|
dma_addr_t addr;
|
u8 dir;
|
int err = 0;
|
u32 val = BIT(31);
|
long timeleft;
|
|
if (!buf || (len <= 0))
|
return -EIO;
|
|
if (dma_dir == DMA_TO_DEVICE)
|
dir = HOST_TO_DEVICE;
|
else if (dma_dir == DMA_FROM_DEVICE)
|
dir = DEVICE_TO_HOST;
|
else
|
return -ENXIO;
|
|
addr = dma_map_single(&rtsx->pci->dev, buf, len, dma_dir);
|
if (dma_mapping_error(&rtsx->pci->dev, addr))
|
return -ENOMEM;
|
|
if (card == SD_CARD)
|
rtsx->check_card_cd = SD_EXIST;
|
else if (card == MS_CARD)
|
rtsx->check_card_cd = MS_EXIST;
|
else if (card == XD_CARD)
|
rtsx->check_card_cd = XD_EXIST;
|
else
|
rtsx->check_card_cd = 0;
|
|
val |= (u32)(dir & 0x01) << 29;
|
val |= (u32)(len & 0x00FFFFFF);
|
|
spin_lock_irq(&rtsx->reg_lock);
|
|
/* set up data structures for the wakeup system */
|
rtsx->done = &trans_done;
|
|
init_completion(&trans_done);
|
|
rtsx->trans_state = STATE_TRANS_BUF;
|
rtsx->trans_result = TRANS_NOT_READY;
|
|
rtsx_writel(chip, RTSX_HDBAR, addr);
|
rtsx_writel(chip, RTSX_HDBCTLR, val);
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
/* Wait for TRANS_OK_INT */
|
timeleft = wait_for_completion_interruptible_timeout(&trans_done,
|
msecs_to_jiffies(timeout));
|
if (timeleft <= 0) {
|
dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
|
__func__, __LINE__);
|
dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
|
chip->int_reg);
|
err = -ETIMEDOUT;
|
goto out;
|
}
|
|
spin_lock_irq(&rtsx->reg_lock);
|
if (rtsx->trans_result == TRANS_RESULT_FAIL)
|
err = -EIO;
|
else if (rtsx->trans_result == TRANS_RESULT_OK)
|
err = 0;
|
|
spin_unlock_irq(&rtsx->reg_lock);
|
|
out:
|
rtsx->done = NULL;
|
rtsx->trans_state = STATE_TRANS_NONE;
|
dma_unmap_single(&rtsx->pci->dev, addr, len, dma_dir);
|
|
if (err < 0)
|
rtsx_stop_cmd(chip, card);
|
|
return err;
|
}
|
|
int rtsx_transfer_data_partial(struct rtsx_chip *chip, u8 card,
|
void *buf, size_t len, int use_sg,
|
unsigned int *index, unsigned int *offset,
|
enum dma_data_direction dma_dir, int timeout)
|
{
|
int err = 0;
|
|
/* don't transfer data during abort processing */
|
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
|
return -EIO;
|
|
if (use_sg) {
|
struct scatterlist *sg = buf;
|
|
err = rtsx_transfer_sglist_adma_partial(chip, card, sg, use_sg,
|
index, offset, (int)len,
|
dma_dir, timeout);
|
} else {
|
err = rtsx_transfer_buf(chip, card,
|
buf, len, dma_dir, timeout);
|
}
|
if (err < 0) {
|
if (RTSX_TST_DELINK(chip)) {
|
RTSX_CLR_DELINK(chip);
|
chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
|
rtsx_reinit_cards(chip, 1);
|
}
|
}
|
|
return err;
|
}
|
|
int rtsx_transfer_data(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
|
int use_sg, enum dma_data_direction dma_dir, int timeout)
|
{
|
int err = 0;
|
|
dev_dbg(rtsx_dev(chip), "use_sg = %d\n", use_sg);
|
|
/* don't transfer data during abort processing */
|
if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
|
return -EIO;
|
|
if (use_sg) {
|
err = rtsx_transfer_sglist_adma(chip, card, buf,
|
use_sg, dma_dir, timeout);
|
} else {
|
err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout);
|
}
|
|
if (err < 0) {
|
if (RTSX_TST_DELINK(chip)) {
|
RTSX_CLR_DELINK(chip);
|
chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
|
rtsx_reinit_cards(chip, 1);
|
}
|
}
|
|
return err;
|
}
|