/*
|
* Copyright 2012-15 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice shall be included in
|
* all copies or substantial portions of the Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
* OTHER DEALINGS IN THE SOFTWARE.
|
*
|
* Authors: AMD
|
*
|
*/
|
|
#include <linux/slab.h>
|
|
#include "dm_services.h"
|
|
#include "resource.h"
|
#include "include/irq_service_interface.h"
|
#include "link_encoder.h"
|
#include "stream_encoder.h"
|
#include "opp.h"
|
#include "timing_generator.h"
|
#include "transform.h"
|
#include "dccg.h"
|
#include "dchubbub.h"
|
#include "dpp.h"
|
#include "core_types.h"
|
#include "set_mode_types.h"
|
#include "virtual/virtual_stream_encoder.h"
|
#include "dpcd_defs.h"
|
|
#if defined(CONFIG_DRM_AMD_DC_SI)
|
#include "dce60/dce60_resource.h"
|
#endif
|
#include "dce80/dce80_resource.h"
|
#include "dce100/dce100_resource.h"
|
#include "dce110/dce110_resource.h"
|
#include "dce112/dce112_resource.h"
|
#include "dce120/dce120_resource.h"
|
#if defined(CONFIG_DRM_AMD_DC_DCN)
|
#include "dcn10/dcn10_resource.h"
|
#include "dcn20/dcn20_resource.h"
|
#include "dcn21/dcn21_resource.h"
|
#endif
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
#include "../dcn30/dcn30_resource.h"
|
#endif
|
|
#define DC_LOGGER_INIT(logger)
|
|
enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
|
{
|
enum dce_version dc_version = DCE_VERSION_UNKNOWN;
|
switch (asic_id.chip_family) {
|
|
#if defined(CONFIG_DRM_AMD_DC_SI)
|
case FAMILY_SI:
|
if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
|
dc_version = DCE_VERSION_6_0;
|
else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
|
dc_version = DCE_VERSION_6_4;
|
else
|
dc_version = DCE_VERSION_6_1;
|
break;
|
#endif
|
case FAMILY_CI:
|
dc_version = DCE_VERSION_8_0;
|
break;
|
case FAMILY_KV:
|
if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
|
dc_version = DCE_VERSION_8_3;
|
else
|
dc_version = DCE_VERSION_8_1;
|
break;
|
case FAMILY_CZ:
|
dc_version = DCE_VERSION_11_0;
|
break;
|
|
case FAMILY_VI:
|
if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
|
dc_version = DCE_VERSION_10_0;
|
break;
|
}
|
if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
|
ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
|
dc_version = DCE_VERSION_11_2;
|
}
|
if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
|
dc_version = DCE_VERSION_11_22;
|
break;
|
case FAMILY_AI:
|
if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
|
dc_version = DCE_VERSION_12_1;
|
else
|
dc_version = DCE_VERSION_12_0;
|
break;
|
#if defined(CONFIG_DRM_AMD_DC_DCN)
|
case FAMILY_RV:
|
dc_version = DCN_VERSION_1_0;
|
if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
|
dc_version = DCN_VERSION_1_01;
|
if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
|
dc_version = DCN_VERSION_2_1;
|
if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
|
dc_version = DCN_VERSION_2_1;
|
break;
|
#endif
|
|
case FAMILY_NV:
|
dc_version = DCN_VERSION_2_0;
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
|
dc_version = DCN_VERSION_3_0;
|
#endif
|
break;
|
default:
|
dc_version = DCE_VERSION_UNKNOWN;
|
break;
|
}
|
return dc_version;
|
}
|
|
struct resource_pool *dc_create_resource_pool(struct dc *dc,
|
const struct dc_init_data *init_data,
|
enum dce_version dc_version)
|
{
|
struct resource_pool *res_pool = NULL;
|
|
switch (dc_version) {
|
#if defined(CONFIG_DRM_AMD_DC_SI)
|
case DCE_VERSION_6_0:
|
res_pool = dce60_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_6_1:
|
res_pool = dce61_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_6_4:
|
res_pool = dce64_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
#endif
|
case DCE_VERSION_8_0:
|
res_pool = dce80_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_8_1:
|
res_pool = dce81_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_8_3:
|
res_pool = dce83_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_10_0:
|
res_pool = dce100_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_11_0:
|
res_pool = dce110_create_resource_pool(
|
init_data->num_virtual_links, dc,
|
init_data->asic_id);
|
break;
|
case DCE_VERSION_11_2:
|
case DCE_VERSION_11_22:
|
res_pool = dce112_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
case DCE_VERSION_12_0:
|
case DCE_VERSION_12_1:
|
res_pool = dce120_create_resource_pool(
|
init_data->num_virtual_links, dc);
|
break;
|
|
#if defined(CONFIG_DRM_AMD_DC_DCN)
|
case DCN_VERSION_1_0:
|
case DCN_VERSION_1_01:
|
res_pool = dcn10_create_resource_pool(init_data, dc);
|
break;
|
|
|
case DCN_VERSION_2_0:
|
res_pool = dcn20_create_resource_pool(init_data, dc);
|
break;
|
case DCN_VERSION_2_1:
|
res_pool = dcn21_create_resource_pool(init_data, dc);
|
break;
|
#endif
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
case DCN_VERSION_3_0:
|
res_pool = dcn30_create_resource_pool(init_data, dc);
|
break;
|
#endif
|
|
default:
|
break;
|
}
|
|
if (res_pool != NULL) {
|
if (dc->ctx->dc_bios->fw_info_valid) {
|
res_pool->ref_clocks.xtalin_clock_inKhz =
|
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
|
/* initialize with firmware data first, no all
|
* ASIC have DCCG SW component. FPGA or
|
* simulation need initialization of
|
* dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
|
* with xtalin_clock_inKhz
|
*/
|
res_pool->ref_clocks.dccg_ref_clock_inKhz =
|
res_pool->ref_clocks.xtalin_clock_inKhz;
|
res_pool->ref_clocks.dchub_ref_clock_inKhz =
|
res_pool->ref_clocks.xtalin_clock_inKhz;
|
} else
|
ASSERT_CRITICAL(false);
|
}
|
|
return res_pool;
|
}
|
|
void dc_destroy_resource_pool(struct dc *dc)
|
{
|
if (dc) {
|
if (dc->res_pool)
|
dc->res_pool->funcs->destroy(&dc->res_pool);
|
|
kfree(dc->hwseq);
|
}
|
}
|
|
static void update_num_audio(
|
const struct resource_straps *straps,
|
unsigned int *num_audio,
|
struct audio_support *aud_support)
|
{
|
aud_support->dp_audio = true;
|
aud_support->hdmi_audio_native = false;
|
aud_support->hdmi_audio_on_dongle = false;
|
|
if (straps->hdmi_disable == 0) {
|
if (straps->dc_pinstraps_audio & 0x2) {
|
aud_support->hdmi_audio_on_dongle = true;
|
aud_support->hdmi_audio_native = true;
|
}
|
}
|
|
switch (straps->audio_stream_number) {
|
case 0: /* multi streams supported */
|
break;
|
case 1: /* multi streams not supported */
|
*num_audio = 1;
|
break;
|
default:
|
DC_ERR("DC: unexpected audio fuse!\n");
|
}
|
}
|
|
bool resource_construct(
|
unsigned int num_virtual_links,
|
struct dc *dc,
|
struct resource_pool *pool,
|
const struct resource_create_funcs *create_funcs)
|
{
|
struct dc_context *ctx = dc->ctx;
|
const struct resource_caps *caps = pool->res_cap;
|
int i;
|
unsigned int num_audio = caps->num_audio;
|
struct resource_straps straps = {0};
|
|
if (create_funcs->read_dce_straps)
|
create_funcs->read_dce_straps(dc->ctx, &straps);
|
|
pool->audio_count = 0;
|
if (create_funcs->create_audio) {
|
/* find the total number of streams available via the
|
* AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
|
* registers (one for each pin) starting from pin 1
|
* up to the max number of audio pins.
|
* We stop on the first pin where
|
* PORT_CONNECTIVITY == 1 (as instructed by HW team).
|
*/
|
update_num_audio(&straps, &num_audio, &pool->audio_support);
|
for (i = 0; i < caps->num_audio; i++) {
|
struct audio *aud = create_funcs->create_audio(ctx, i);
|
|
if (aud == NULL) {
|
DC_ERR("DC: failed to create audio!\n");
|
return false;
|
}
|
if (!aud->funcs->endpoint_valid(aud)) {
|
aud->funcs->destroy(&aud);
|
break;
|
}
|
pool->audios[i] = aud;
|
pool->audio_count++;
|
}
|
}
|
|
pool->stream_enc_count = 0;
|
if (create_funcs->create_stream_encoder) {
|
for (i = 0; i < caps->num_stream_encoder; i++) {
|
pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
|
if (pool->stream_enc[i] == NULL)
|
DC_ERR("DC: failed to create stream_encoder!\n");
|
pool->stream_enc_count++;
|
}
|
}
|
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
for (i = 0; i < caps->num_mpc_3dlut; i++) {
|
pool->mpc_lut[i] = dc_create_3dlut_func();
|
if (pool->mpc_lut[i] == NULL)
|
DC_ERR("DC: failed to create MPC 3dlut!\n");
|
pool->mpc_shaper[i] = dc_create_transfer_func();
|
if (pool->mpc_shaper[i] == NULL)
|
DC_ERR("DC: failed to create MPC shaper!\n");
|
}
|
#endif
|
dc->caps.dynamic_audio = false;
|
if (pool->audio_count < pool->stream_enc_count) {
|
dc->caps.dynamic_audio = true;
|
}
|
for (i = 0; i < num_virtual_links; i++) {
|
pool->stream_enc[pool->stream_enc_count] =
|
virtual_stream_encoder_create(
|
ctx, ctx->dc_bios);
|
if (pool->stream_enc[pool->stream_enc_count] == NULL) {
|
DC_ERR("DC: failed to create stream_encoder!\n");
|
return false;
|
}
|
pool->stream_enc_count++;
|
}
|
|
dc->hwseq = create_funcs->create_hwseq(ctx);
|
|
return true;
|
}
|
static int find_matching_clock_source(
|
const struct resource_pool *pool,
|
struct clock_source *clock_source)
|
{
|
|
int i;
|
|
for (i = 0; i < pool->clk_src_count; i++) {
|
if (pool->clock_sources[i] == clock_source)
|
return i;
|
}
|
return -1;
|
}
|
|
void resource_unreference_clock_source(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct clock_source *clock_source)
|
{
|
int i = find_matching_clock_source(pool, clock_source);
|
|
if (i > -1)
|
res_ctx->clock_source_ref_count[i]--;
|
|
if (pool->dp_clock_source == clock_source)
|
res_ctx->dp_clock_source_ref_count--;
|
}
|
|
void resource_reference_clock_source(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct clock_source *clock_source)
|
{
|
int i = find_matching_clock_source(pool, clock_source);
|
|
if (i > -1)
|
res_ctx->clock_source_ref_count[i]++;
|
|
if (pool->dp_clock_source == clock_source)
|
res_ctx->dp_clock_source_ref_count++;
|
}
|
|
int resource_get_clock_source_reference(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct clock_source *clock_source)
|
{
|
int i = find_matching_clock_source(pool, clock_source);
|
|
if (i > -1)
|
return res_ctx->clock_source_ref_count[i];
|
|
if (pool->dp_clock_source == clock_source)
|
return res_ctx->dp_clock_source_ref_count;
|
|
return -1;
|
}
|
|
bool resource_are_streams_timing_synchronizable(
|
struct dc_stream_state *stream1,
|
struct dc_stream_state *stream2)
|
{
|
if (stream1->timing.h_total != stream2->timing.h_total)
|
return false;
|
|
if (stream1->timing.v_total != stream2->timing.v_total)
|
return false;
|
|
if (stream1->timing.h_addressable
|
!= stream2->timing.h_addressable)
|
return false;
|
|
if (stream1->timing.v_addressable
|
!= stream2->timing.v_addressable)
|
return false;
|
|
if (stream1->timing.v_front_porch
|
!= stream2->timing.v_front_porch)
|
return false;
|
|
if (stream1->timing.pix_clk_100hz
|
!= stream2->timing.pix_clk_100hz)
|
return false;
|
|
if (stream1->clamping.c_depth != stream2->clamping.c_depth)
|
return false;
|
|
if (stream1->phy_pix_clk != stream2->phy_pix_clk
|
&& (!dc_is_dp_signal(stream1->signal)
|
|| !dc_is_dp_signal(stream2->signal)))
|
return false;
|
|
if (stream1->view_format != stream2->view_format)
|
return false;
|
|
if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
|
return false;
|
|
return true;
|
}
|
static bool is_dp_and_hdmi_sharable(
|
struct dc_stream_state *stream1,
|
struct dc_stream_state *stream2)
|
{
|
if (stream1->ctx->dc->caps.disable_dp_clk_share)
|
return false;
|
|
if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
|
stream2->clamping.c_depth != COLOR_DEPTH_888)
|
return false;
|
|
return true;
|
|
}
|
|
static bool is_sharable_clk_src(
|
const struct pipe_ctx *pipe_with_clk_src,
|
const struct pipe_ctx *pipe)
|
{
|
if (pipe_with_clk_src->clock_source == NULL)
|
return false;
|
|
if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
|
return false;
|
|
if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
|
(dc_is_dp_signal(pipe->stream->signal) &&
|
!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
|
pipe->stream)))
|
return false;
|
|
if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
|
&& dc_is_dual_link_signal(pipe->stream->signal))
|
return false;
|
|
if (dc_is_hdmi_signal(pipe->stream->signal)
|
&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
|
return false;
|
|
if (!resource_are_streams_timing_synchronizable(
|
pipe_with_clk_src->stream, pipe->stream))
|
return false;
|
|
return true;
|
}
|
|
struct clock_source *resource_find_used_clk_src_for_sharing(
|
struct resource_context *res_ctx,
|
struct pipe_ctx *pipe_ctx)
|
{
|
int i;
|
|
for (i = 0; i < MAX_PIPES; i++) {
|
if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
|
return res_ctx->pipe_ctx[i].clock_source;
|
}
|
|
return NULL;
|
}
|
|
static enum pixel_format convert_pixel_format_to_dalsurface(
|
enum surface_pixel_format surface_pixel_format)
|
{
|
enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
|
|
switch (surface_pixel_format) {
|
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
|
dal_pixel_format = PIXEL_FORMAT_INDEX8;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
|
dal_pixel_format = PIXEL_FORMAT_RGB565;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
|
dal_pixel_format = PIXEL_FORMAT_RGB565;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
|
dal_pixel_format = PIXEL_FORMAT_ARGB8888;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
|
dal_pixel_format = PIXEL_FORMAT_ARGB8888;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
|
dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
|
dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
|
dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
|
dal_pixel_format = PIXEL_FORMAT_FP16;
|
break;
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
|
dal_pixel_format = PIXEL_FORMAT_420BPP8;
|
break;
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
|
dal_pixel_format = PIXEL_FORMAT_420BPP10;
|
break;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
|
default:
|
dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
|
break;
|
}
|
return dal_pixel_format;
|
}
|
|
static inline void get_vp_scan_direction(
|
enum dc_rotation_angle rotation,
|
bool horizontal_mirror,
|
bool *orthogonal_rotation,
|
bool *flip_vert_scan_dir,
|
bool *flip_horz_scan_dir)
|
{
|
*orthogonal_rotation = false;
|
*flip_vert_scan_dir = false;
|
*flip_horz_scan_dir = false;
|
if (rotation == ROTATION_ANGLE_180) {
|
*flip_vert_scan_dir = true;
|
*flip_horz_scan_dir = true;
|
} else if (rotation == ROTATION_ANGLE_90) {
|
*orthogonal_rotation = true;
|
*flip_horz_scan_dir = true;
|
} else if (rotation == ROTATION_ANGLE_270) {
|
*orthogonal_rotation = true;
|
*flip_vert_scan_dir = true;
|
}
|
|
if (horizontal_mirror)
|
*flip_horz_scan_dir = !*flip_horz_scan_dir;
|
}
|
|
int get_num_mpc_splits(struct pipe_ctx *pipe)
|
{
|
int mpc_split_count = 0;
|
struct pipe_ctx *other_pipe = pipe->bottom_pipe;
|
|
while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
|
mpc_split_count++;
|
other_pipe = other_pipe->bottom_pipe;
|
}
|
other_pipe = pipe->top_pipe;
|
while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
|
mpc_split_count++;
|
other_pipe = other_pipe->top_pipe;
|
}
|
|
return mpc_split_count;
|
}
|
|
int get_num_odm_splits(struct pipe_ctx *pipe)
|
{
|
int odm_split_count = 0;
|
struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
|
while (next_pipe) {
|
odm_split_count++;
|
next_pipe = next_pipe->next_odm_pipe;
|
}
|
pipe = pipe->prev_odm_pipe;
|
while (pipe) {
|
odm_split_count++;
|
pipe = pipe->prev_odm_pipe;
|
}
|
return odm_split_count;
|
}
|
|
static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
|
{
|
*split_count = get_num_odm_splits(pipe_ctx);
|
*split_idx = 0;
|
if (*split_count == 0) {
|
/*Check for mpc split*/
|
struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
|
|
*split_count = get_num_mpc_splits(pipe_ctx);
|
while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
|
(*split_idx)++;
|
split_pipe = split_pipe->top_pipe;
|
}
|
} else {
|
/*Get odm split index*/
|
struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
|
|
while (split_pipe) {
|
(*split_idx)++;
|
split_pipe = split_pipe->prev_odm_pipe;
|
}
|
}
|
}
|
|
static void calculate_viewport(struct pipe_ctx *pipe_ctx)
|
{
|
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
|
const struct dc_stream_state *stream = pipe_ctx->stream;
|
struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
|
struct rect surf_src = plane_state->src_rect;
|
struct rect clip, dest;
|
int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
|
|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
|
int split_count = 0;
|
int split_idx = 0;
|
bool orthogonal_rotation, flip_y_start, flip_x_start;
|
|
calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
|
|
if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
|
stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
|
split_count = 0;
|
split_idx = 0;
|
}
|
|
/* The actual clip is an intersection between stream
|
* source and surface clip
|
*/
|
dest = plane_state->dst_rect;
|
clip.x = stream->src.x > plane_state->clip_rect.x ?
|
stream->src.x : plane_state->clip_rect.x;
|
|
clip.width = stream->src.x + stream->src.width <
|
plane_state->clip_rect.x + plane_state->clip_rect.width ?
|
stream->src.x + stream->src.width - clip.x :
|
plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
|
|
clip.y = stream->src.y > plane_state->clip_rect.y ?
|
stream->src.y : plane_state->clip_rect.y;
|
|
clip.height = stream->src.y + stream->src.height <
|
plane_state->clip_rect.y + plane_state->clip_rect.height ?
|
stream->src.y + stream->src.height - clip.y :
|
plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
|
|
/*
|
* Need to calculate how scan origin is shifted in vp space
|
* to correctly rotate clip and dst
|
*/
|
get_vp_scan_direction(
|
plane_state->rotation,
|
plane_state->horizontal_mirror,
|
&orthogonal_rotation,
|
&flip_y_start,
|
&flip_x_start);
|
|
if (orthogonal_rotation) {
|
swap(clip.x, clip.y);
|
swap(clip.width, clip.height);
|
swap(dest.x, dest.y);
|
swap(dest.width, dest.height);
|
}
|
if (flip_x_start) {
|
clip.x = dest.x + dest.width - clip.x - clip.width;
|
dest.x = 0;
|
}
|
if (flip_y_start) {
|
clip.y = dest.y + dest.height - clip.y - clip.height;
|
dest.y = 0;
|
}
|
|
/* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
|
* num_pixels = clip.num_pix * scl_ratio
|
*/
|
data->viewport.x = surf_src.x + (clip.x - dest.x) * surf_src.width / dest.width;
|
data->viewport.width = clip.width * surf_src.width / dest.width;
|
|
data->viewport.y = surf_src.y + (clip.y - dest.y) * surf_src.height / dest.height;
|
data->viewport.height = clip.height * surf_src.height / dest.height;
|
|
/* Handle split */
|
if (split_count) {
|
/* extra pixels in the division remainder need to go to pipes after
|
* the extra pixel index minus one(epimo) defined here as:
|
*/
|
int epimo = 0;
|
|
if (orthogonal_rotation) {
|
if (flip_y_start)
|
split_idx = split_count - split_idx;
|
|
epimo = split_count - data->viewport.height % (split_count + 1);
|
|
data->viewport.y += (data->viewport.height / (split_count + 1)) * split_idx;
|
if (split_idx > epimo)
|
data->viewport.y += split_idx - epimo - 1;
|
data->viewport.height = data->viewport.height / (split_count + 1) + (split_idx > epimo ? 1 : 0);
|
} else {
|
if (flip_x_start)
|
split_idx = split_count - split_idx;
|
|
epimo = split_count - data->viewport.width % (split_count + 1);
|
|
data->viewport.x += (data->viewport.width / (split_count + 1)) * split_idx;
|
if (split_idx > epimo)
|
data->viewport.x += split_idx - epimo - 1;
|
data->viewport.width = data->viewport.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
|
}
|
}
|
|
/* Round down, compensate in init */
|
data->viewport_c.x = data->viewport.x / vpc_div;
|
data->viewport_c.y = data->viewport.y / vpc_div;
|
data->inits.h_c = (data->viewport.x % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
|
data->inits.v_c = (data->viewport.y % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
|
|
/* Round up, assume original video size always even dimensions */
|
data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
|
data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
|
|
data->viewport_unadjusted = data->viewport;
|
data->viewport_c_unadjusted = data->viewport_c;
|
}
|
|
static void calculate_recout(struct pipe_ctx *pipe_ctx)
|
{
|
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
|
const struct dc_stream_state *stream = pipe_ctx->stream;
|
struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
|
struct rect surf_clip = plane_state->clip_rect;
|
bool pri_split_tb = pipe_ctx->bottom_pipe &&
|
pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state &&
|
stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
|
bool sec_split_tb = pipe_ctx->top_pipe &&
|
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state &&
|
stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
|
int split_count = 0;
|
int split_idx = 0;
|
|
calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
|
|
/*
|
* Only the leftmost ODM pipe should be offset by a nonzero distance
|
*/
|
if (!pipe_ctx->prev_odm_pipe) {
|
data->recout.x = stream->dst.x;
|
if (stream->src.x < surf_clip.x)
|
data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
|
/ stream->src.width;
|
|
} else
|
data->recout.x = 0;
|
|
data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
|
if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
|
data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
|
|
data->recout.y = stream->dst.y;
|
if (stream->src.y < surf_clip.y)
|
data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
|
/ stream->src.height;
|
|
data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
|
if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
|
data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
|
|
/* Handle h & v split, handle rotation using viewport */
|
if (sec_split_tb) {
|
data->recout.y += data->recout.height / 2;
|
/* Floor primary pipe, ceil 2ndary pipe */
|
data->recout.height = (data->recout.height + 1) / 2;
|
} else if (pri_split_tb)
|
data->recout.height /= 2;
|
else if (split_count) {
|
/* extra pixels in the division remainder need to go to pipes after
|
* the extra pixel index minus one(epimo) defined here as:
|
*/
|
int epimo = split_count - data->recout.width % (split_count + 1);
|
|
/*no recout offset due to odm */
|
if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
|
data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
|
if (split_idx > epimo)
|
data->recout.x += split_idx - epimo - 1;
|
}
|
data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
|
}
|
}
|
|
static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
|
{
|
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
|
const struct dc_stream_state *stream = pipe_ctx->stream;
|
struct rect surf_src = plane_state->src_rect;
|
const int in_w = stream->src.width;
|
const int in_h = stream->src.height;
|
const int out_w = stream->dst.width;
|
const int out_h = stream->dst.height;
|
|
/*Swap surf_src height and width since scaling ratios are in recout rotation*/
|
if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
|
pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
|
swap(surf_src.height, surf_src.width);
|
|
pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
|
surf_src.width,
|
plane_state->dst_rect.width);
|
pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
|
surf_src.height,
|
plane_state->dst_rect.height);
|
|
if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
|
pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
|
else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
|
pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
|
|
pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
|
pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
|
pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
|
pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
|
|
pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
|
pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
|
|
if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
|
|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
|
pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
|
pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
|
}
|
pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
|
pipe_ctx->plane_res.scl_data.ratios.horz, 19);
|
pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
|
pipe_ctx->plane_res.scl_data.ratios.vert, 19);
|
pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
|
pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
|
pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
|
pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
|
}
|
|
static inline void adjust_vp_and_init_for_seamless_clip(
|
bool flip_scan_dir,
|
int recout_skip,
|
int src_size,
|
int taps,
|
struct fixed31_32 ratio,
|
struct fixed31_32 *init,
|
int *vp_offset,
|
int *vp_size)
|
{
|
if (!flip_scan_dir) {
|
/* Adjust for viewport end clip-off */
|
if ((*vp_offset + *vp_size) < src_size) {
|
int vp_clip = src_size - *vp_size - *vp_offset;
|
int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
|
|
int_part = int_part > 0 ? int_part : 0;
|
*vp_size += int_part < vp_clip ? int_part : vp_clip;
|
}
|
|
/* Adjust for non-0 viewport offset */
|
if (*vp_offset) {
|
int int_part;
|
|
*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
|
int_part = dc_fixpt_floor(*init) - *vp_offset;
|
if (int_part < taps) {
|
int int_adj = *vp_offset >= (taps - int_part) ?
|
(taps - int_part) : *vp_offset;
|
*vp_offset -= int_adj;
|
*vp_size += int_adj;
|
int_part += int_adj;
|
} else if (int_part > taps) {
|
*vp_offset += int_part - taps;
|
*vp_size -= int_part - taps;
|
int_part = taps;
|
}
|
init->value &= 0xffffffff;
|
*init = dc_fixpt_add_int(*init, int_part);
|
}
|
} else {
|
/* Adjust for non-0 viewport offset */
|
if (*vp_offset) {
|
int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
|
|
int_part = int_part > 0 ? int_part : 0;
|
*vp_size += int_part < *vp_offset ? int_part : *vp_offset;
|
*vp_offset -= int_part < *vp_offset ? int_part : *vp_offset;
|
}
|
|
/* Adjust for viewport end clip-off */
|
if ((*vp_offset + *vp_size) < src_size) {
|
int int_part;
|
int end_offset = src_size - *vp_offset - *vp_size;
|
|
/*
|
* this is init if vp had no offset, keep in mind this is from the
|
* right side of vp due to scan direction
|
*/
|
*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
|
/*
|
* this is the difference between first pixel of viewport available to read
|
* and init position, takning into account scan direction
|
*/
|
int_part = dc_fixpt_floor(*init) - end_offset;
|
if (int_part < taps) {
|
int int_adj = end_offset >= (taps - int_part) ?
|
(taps - int_part) : end_offset;
|
*vp_size += int_adj;
|
int_part += int_adj;
|
} else if (int_part > taps) {
|
*vp_size += int_part - taps;
|
int_part = taps;
|
}
|
init->value &= 0xffffffff;
|
*init = dc_fixpt_add_int(*init, int_part);
|
}
|
}
|
}
|
|
static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx)
|
{
|
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
|
const struct dc_stream_state *stream = pipe_ctx->stream;
|
struct pipe_ctx *odm_pipe = pipe_ctx;
|
struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
|
struct rect src = pipe_ctx->plane_state->src_rect;
|
int recout_skip_h, recout_skip_v, surf_size_h, surf_size_v;
|
int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
|
|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
|
bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
|
int odm_idx = 0;
|
|
/*
|
* Need to calculate the scan direction for viewport to make adjustments
|
*/
|
get_vp_scan_direction(
|
plane_state->rotation,
|
plane_state->horizontal_mirror,
|
&orthogonal_rotation,
|
&flip_vert_scan_dir,
|
&flip_horz_scan_dir);
|
|
/* Calculate src rect rotation adjusted to recout space */
|
surf_size_h = src.x + src.width;
|
surf_size_v = src.y + src.height;
|
if (flip_horz_scan_dir)
|
src.x = 0;
|
if (flip_vert_scan_dir)
|
src.y = 0;
|
if (orthogonal_rotation) {
|
swap(src.x, src.y);
|
swap(src.width, src.height);
|
}
|
|
/*modified recout_skip_h calculation due to odm having no recout offset*/
|
while (odm_pipe->prev_odm_pipe) {
|
odm_idx++;
|
odm_pipe = odm_pipe->prev_odm_pipe;
|
}
|
/*odm_pipe is the leftmost pipe in the ODM group*/
|
recout_skip_h = odm_idx * data->recout.width;
|
|
/* Recout matching initial vp offset = recout_offset - (stream dst offset +
|
* ((surf dst offset - stream src offset) * 1/ stream scaling ratio)
|
* - (surf surf_src offset * 1/ full scl ratio))
|
*/
|
recout_skip_h += odm_pipe->plane_res.scl_data.recout.x
|
- (stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
|
* stream->dst.width / stream->src.width -
|
src.x * plane_state->dst_rect.width / src.width
|
* stream->dst.width / stream->src.width);
|
|
|
recout_skip_v = data->recout.y - (stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
|
* stream->dst.height / stream->src.height -
|
src.y * plane_state->dst_rect.height / src.height
|
* stream->dst.height / stream->src.height);
|
if (orthogonal_rotation)
|
swap(recout_skip_h, recout_skip_v);
|
/*
|
* Init calculated according to formula:
|
* init = (scaling_ratio + number_of_taps + 1) / 2
|
* init_bot = init + scaling_ratio
|
* init_c = init + truncated_vp_c_offset(from calculate viewport)
|
*/
|
data->inits.h = dc_fixpt_truncate(dc_fixpt_div_int(
|
dc_fixpt_add_int(data->ratios.horz, data->taps.h_taps + 1), 2), 19);
|
|
data->inits.h_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.h_c, dc_fixpt_div_int(
|
dc_fixpt_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2)), 19);
|
|
data->inits.v = dc_fixpt_truncate(dc_fixpt_div_int(
|
dc_fixpt_add_int(data->ratios.vert, data->taps.v_taps + 1), 2), 19);
|
|
data->inits.v_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.v_c, dc_fixpt_div_int(
|
dc_fixpt_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2)), 19);
|
|
/*
|
* Taps, inits and scaling ratios are in recout space need to rotate
|
* to viewport rotation before adjustment
|
*/
|
adjust_vp_and_init_for_seamless_clip(
|
flip_horz_scan_dir,
|
recout_skip_h,
|
surf_size_h,
|
orthogonal_rotation ? data->taps.v_taps : data->taps.h_taps,
|
orthogonal_rotation ? data->ratios.vert : data->ratios.horz,
|
orthogonal_rotation ? &data->inits.v : &data->inits.h,
|
&data->viewport.x,
|
&data->viewport.width);
|
adjust_vp_and_init_for_seamless_clip(
|
flip_horz_scan_dir,
|
recout_skip_h,
|
surf_size_h / vpc_div,
|
orthogonal_rotation ? data->taps.v_taps_c : data->taps.h_taps_c,
|
orthogonal_rotation ? data->ratios.vert_c : data->ratios.horz_c,
|
orthogonal_rotation ? &data->inits.v_c : &data->inits.h_c,
|
&data->viewport_c.x,
|
&data->viewport_c.width);
|
adjust_vp_and_init_for_seamless_clip(
|
flip_vert_scan_dir,
|
recout_skip_v,
|
surf_size_v,
|
orthogonal_rotation ? data->taps.h_taps : data->taps.v_taps,
|
orthogonal_rotation ? data->ratios.horz : data->ratios.vert,
|
orthogonal_rotation ? &data->inits.h : &data->inits.v,
|
&data->viewport.y,
|
&data->viewport.height);
|
adjust_vp_and_init_for_seamless_clip(
|
flip_vert_scan_dir,
|
recout_skip_v,
|
surf_size_v / vpc_div,
|
orthogonal_rotation ? data->taps.h_taps_c : data->taps.v_taps_c,
|
orthogonal_rotation ? data->ratios.horz_c : data->ratios.vert_c,
|
orthogonal_rotation ? &data->inits.h_c : &data->inits.v_c,
|
&data->viewport_c.y,
|
&data->viewport_c.height);
|
|
/* Interlaced inits based on final vert inits */
|
data->inits.v_bot = dc_fixpt_add(data->inits.v, data->ratios.vert);
|
data->inits.v_c_bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);
|
|
}
|
|
/*
|
* When handling 270 rotation in mixed SLS mode, we have
|
* stream->timing.h_border_left that is non zero. If we are doing
|
* pipe-splitting, this h_border_left value gets added to recout.x and when it
|
* calls calculate_inits_and_adj_vp() and
|
* adjust_vp_and_init_for_seamless_clip(), it can cause viewport.height for a
|
* pipe to be incorrect.
|
*
|
* To fix this, instead of using stream->timing.h_border_left, we can use
|
* stream->dst.x to represent the border instead. So we will set h_border_left
|
* to 0 and shift the appropriate amount in stream->dst.x. We will then
|
* perform all calculations in resource_build_scaling_params() based on this
|
* and then restore the h_border_left and stream->dst.x to their original
|
* values.
|
*
|
* shift_border_left_to_dst() will shift the amount of h_border_left to
|
* stream->dst.x and set h_border_left to 0. restore_border_left_from_dst()
|
* will restore h_border_left and stream->dst.x back to their original values
|
* We also need to make sure pipe_ctx->plane_res.scl_data.h_active uses the
|
* original h_border_left value in its calculation.
|
*/
|
int shift_border_left_to_dst(struct pipe_ctx *pipe_ctx)
|
{
|
int store_h_border_left = pipe_ctx->stream->timing.h_border_left;
|
|
if (store_h_border_left) {
|
pipe_ctx->stream->timing.h_border_left = 0;
|
pipe_ctx->stream->dst.x += store_h_border_left;
|
}
|
return store_h_border_left;
|
}
|
|
void restore_border_left_from_dst(struct pipe_ctx *pipe_ctx,
|
int store_h_border_left)
|
{
|
pipe_ctx->stream->dst.x -= store_h_border_left;
|
pipe_ctx->stream->timing.h_border_left = store_h_border_left;
|
}
|
|
bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
|
{
|
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
|
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
|
bool res = false;
|
int store_h_border_left = shift_border_left_to_dst(pipe_ctx);
|
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
|
/* Important: scaling ratio calculation requires pixel format,
|
* lb depth calculation requires recout and taps require scaling ratios.
|
* Inits require viewport, taps, ratios and recout of split pipe
|
*/
|
pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
|
pipe_ctx->plane_state->format);
|
|
calculate_scaling_ratios(pipe_ctx);
|
|
calculate_viewport(pipe_ctx);
|
|
if (pipe_ctx->plane_res.scl_data.viewport.height < 12 ||
|
pipe_ctx->plane_res.scl_data.viewport.width < 12) {
|
if (store_h_border_left) {
|
restore_border_left_from_dst(pipe_ctx,
|
store_h_border_left);
|
}
|
return false;
|
}
|
|
calculate_recout(pipe_ctx);
|
|
/**
|
* Setting line buffer pixel depth to 24bpp yields banding
|
* on certain displays, such as the Sharp 4k
|
*/
|
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
|
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
|
|
pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
|
pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
|
|
pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
|
store_h_border_left + timing->h_border_right;
|
pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
|
timing->v_border_top + timing->v_border_bottom;
|
if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
|
pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
|
|
/* Taps calculations */
|
if (pipe_ctx->plane_res.xfm != NULL)
|
res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
|
pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
|
|
if (pipe_ctx->plane_res.dpp != NULL)
|
res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
|
pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
|
|
|
if (!res) {
|
/* Try 24 bpp linebuffer */
|
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
|
|
if (pipe_ctx->plane_res.xfm != NULL)
|
res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
|
pipe_ctx->plane_res.xfm,
|
&pipe_ctx->plane_res.scl_data,
|
&plane_state->scaling_quality);
|
|
if (pipe_ctx->plane_res.dpp != NULL)
|
res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
|
pipe_ctx->plane_res.dpp,
|
&pipe_ctx->plane_res.scl_data,
|
&plane_state->scaling_quality);
|
}
|
|
if (res)
|
/* May need to re-check lb size after this in some obscure scenario */
|
calculate_inits_and_adj_vp(pipe_ctx);
|
|
DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
|
"src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
|
__func__,
|
pipe_ctx->pipe_idx,
|
pipe_ctx->plane_res.scl_data.viewport.height,
|
pipe_ctx->plane_res.scl_data.viewport.width,
|
pipe_ctx->plane_res.scl_data.viewport.x,
|
pipe_ctx->plane_res.scl_data.viewport.y,
|
pipe_ctx->plane_res.scl_data.recout.height,
|
pipe_ctx->plane_res.scl_data.recout.width,
|
pipe_ctx->plane_res.scl_data.recout.x,
|
pipe_ctx->plane_res.scl_data.recout.y,
|
pipe_ctx->plane_res.scl_data.h_active,
|
pipe_ctx->plane_res.scl_data.v_active,
|
plane_state->src_rect.height,
|
plane_state->src_rect.width,
|
plane_state->src_rect.x,
|
plane_state->src_rect.y,
|
plane_state->dst_rect.height,
|
plane_state->dst_rect.width,
|
plane_state->dst_rect.x,
|
plane_state->dst_rect.y,
|
plane_state->clip_rect.height,
|
plane_state->clip_rect.width,
|
plane_state->clip_rect.x,
|
plane_state->clip_rect.y);
|
|
if (store_h_border_left)
|
restore_border_left_from_dst(pipe_ctx, store_h_border_left);
|
|
return res;
|
}
|
|
|
enum dc_status resource_build_scaling_params_for_context(
|
const struct dc *dc,
|
struct dc_state *context)
|
{
|
int i;
|
|
for (i = 0; i < MAX_PIPES; i++) {
|
if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
|
context->res_ctx.pipe_ctx[i].stream != NULL)
|
if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
|
return DC_FAIL_SCALING;
|
}
|
|
return DC_OK;
|
}
|
|
struct pipe_ctx *find_idle_secondary_pipe(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
const struct pipe_ctx *primary_pipe)
|
{
|
int i;
|
struct pipe_ctx *secondary_pipe = NULL;
|
|
/*
|
* We add a preferred pipe mapping to avoid the chance that
|
* MPCCs already in use will need to be reassigned to other trees.
|
* For example, if we went with the strict, assign backwards logic:
|
*
|
* (State 1)
|
* Display A on, no surface, top pipe = 0
|
* Display B on, no surface, top pipe = 1
|
*
|
* (State 2)
|
* Display A on, no surface, top pipe = 0
|
* Display B on, surface enable, top pipe = 1, bottom pipe = 5
|
*
|
* (State 3)
|
* Display A on, surface enable, top pipe = 0, bottom pipe = 5
|
* Display B on, surface enable, top pipe = 1, bottom pipe = 4
|
*
|
* The state 2->3 transition requires remapping MPCC 5 from display B
|
* to display A.
|
*
|
* However, with the preferred pipe logic, state 2 would look like:
|
*
|
* (State 2)
|
* Display A on, no surface, top pipe = 0
|
* Display B on, surface enable, top pipe = 1, bottom pipe = 4
|
*
|
* This would then cause 2->3 to not require remapping any MPCCs.
|
*/
|
if (primary_pipe) {
|
int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
|
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
|
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
|
secondary_pipe->pipe_idx = preferred_pipe_idx;
|
}
|
}
|
|
/*
|
* search backwards for the second pipe to keep pipe
|
* assignment more consistent
|
*/
|
if (!secondary_pipe)
|
for (i = pool->pipe_count - 1; i >= 0; i--) {
|
if (res_ctx->pipe_ctx[i].stream == NULL) {
|
secondary_pipe = &res_ctx->pipe_ctx[i];
|
secondary_pipe->pipe_idx = i;
|
break;
|
}
|
}
|
|
return secondary_pipe;
|
}
|
|
struct pipe_ctx *resource_get_head_pipe_for_stream(
|
struct resource_context *res_ctx,
|
struct dc_stream_state *stream)
|
{
|
int i;
|
|
for (i = 0; i < MAX_PIPES; i++) {
|
if (res_ctx->pipe_ctx[i].stream == stream
|
&& !res_ctx->pipe_ctx[i].top_pipe
|
&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
|
return &res_ctx->pipe_ctx[i];
|
}
|
return NULL;
|
}
|
|
static struct pipe_ctx *resource_get_tail_pipe(
|
struct resource_context *res_ctx,
|
struct pipe_ctx *head_pipe)
|
{
|
struct pipe_ctx *tail_pipe;
|
|
tail_pipe = head_pipe->bottom_pipe;
|
|
while (tail_pipe) {
|
head_pipe = tail_pipe;
|
tail_pipe = tail_pipe->bottom_pipe;
|
}
|
|
return head_pipe;
|
}
|
|
/*
|
* A free_pipe for a stream is defined here as a pipe
|
* that has no surface attached yet
|
*/
|
static struct pipe_ctx *acquire_free_pipe_for_head(
|
struct dc_state *context,
|
const struct resource_pool *pool,
|
struct pipe_ctx *head_pipe)
|
{
|
int i;
|
struct resource_context *res_ctx = &context->res_ctx;
|
|
if (!head_pipe->plane_state)
|
return head_pipe;
|
|
/* Re-use pipe already acquired for this stream if available*/
|
for (i = pool->pipe_count - 1; i >= 0; i--) {
|
if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
|
!res_ctx->pipe_ctx[i].plane_state) {
|
return &res_ctx->pipe_ctx[i];
|
}
|
}
|
|
/*
|
* At this point we have no re-useable pipe for this stream and we need
|
* to acquire an idle one to satisfy the request
|
*/
|
|
if (!pool->funcs->acquire_idle_pipe_for_layer)
|
return NULL;
|
|
return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
|
}
|
|
#if defined(CONFIG_DRM_AMD_DC_DCN)
|
static int acquire_first_split_pipe(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct dc_stream_state *stream)
|
{
|
int i;
|
|
for (i = 0; i < pool->pipe_count; i++) {
|
struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
|
|
if (split_pipe->top_pipe &&
|
split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
|
split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
|
if (split_pipe->bottom_pipe)
|
split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
|
|
if (split_pipe->top_pipe->plane_state)
|
resource_build_scaling_params(split_pipe->top_pipe);
|
|
memset(split_pipe, 0, sizeof(*split_pipe));
|
split_pipe->stream_res.tg = pool->timing_generators[i];
|
split_pipe->plane_res.hubp = pool->hubps[i];
|
split_pipe->plane_res.ipp = pool->ipps[i];
|
split_pipe->plane_res.dpp = pool->dpps[i];
|
split_pipe->stream_res.opp = pool->opps[i];
|
split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
|
split_pipe->pipe_idx = i;
|
|
split_pipe->stream = stream;
|
return i;
|
}
|
}
|
return -1;
|
}
|
#endif
|
|
bool dc_add_plane_to_context(
|
const struct dc *dc,
|
struct dc_stream_state *stream,
|
struct dc_plane_state *plane_state,
|
struct dc_state *context)
|
{
|
int i;
|
struct resource_pool *pool = dc->res_pool;
|
struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
|
struct dc_stream_status *stream_status = NULL;
|
|
for (i = 0; i < context->stream_count; i++)
|
if (context->streams[i] == stream) {
|
stream_status = &context->stream_status[i];
|
break;
|
}
|
if (stream_status == NULL) {
|
dm_error("Existing stream not found; failed to attach surface!\n");
|
return false;
|
}
|
|
|
if (stream_status->plane_count == MAX_SURFACE_NUM) {
|
dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
|
plane_state, MAX_SURFACE_NUM);
|
return false;
|
}
|
|
head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
|
|
if (!head_pipe) {
|
dm_error("Head pipe not found for stream_state %p !\n", stream);
|
return false;
|
}
|
|
/* retain new surface, but only once per stream */
|
dc_plane_state_retain(plane_state);
|
|
while (head_pipe) {
|
free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
|
|
#if defined(CONFIG_DRM_AMD_DC_DCN)
|
if (!free_pipe) {
|
int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
|
if (pipe_idx >= 0)
|
free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
|
}
|
#endif
|
if (!free_pipe) {
|
dc_plane_state_release(plane_state);
|
return false;
|
}
|
|
free_pipe->plane_state = plane_state;
|
|
if (head_pipe != free_pipe) {
|
tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
|
ASSERT(tail_pipe);
|
free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
|
free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
|
free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
|
free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
|
free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
|
free_pipe->clock_source = tail_pipe->clock_source;
|
free_pipe->top_pipe = tail_pipe;
|
tail_pipe->bottom_pipe = free_pipe;
|
}
|
head_pipe = head_pipe->next_odm_pipe;
|
}
|
/* assign new surfaces*/
|
stream_status->plane_states[stream_status->plane_count] = plane_state;
|
|
stream_status->plane_count++;
|
|
return true;
|
}
|
|
bool dc_remove_plane_from_context(
|
const struct dc *dc,
|
struct dc_stream_state *stream,
|
struct dc_plane_state *plane_state,
|
struct dc_state *context)
|
{
|
int i;
|
struct dc_stream_status *stream_status = NULL;
|
struct resource_pool *pool = dc->res_pool;
|
|
if (!plane_state)
|
return true;
|
|
for (i = 0; i < context->stream_count; i++)
|
if (context->streams[i] == stream) {
|
stream_status = &context->stream_status[i];
|
break;
|
}
|
|
if (stream_status == NULL) {
|
dm_error("Existing stream not found; failed to remove plane.\n");
|
return false;
|
}
|
|
/* release pipe for plane*/
|
for (i = pool->pipe_count - 1; i >= 0; i--) {
|
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
|
|
if (pipe_ctx->plane_state == plane_state) {
|
if (pipe_ctx->top_pipe)
|
pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
|
|
/* Second condition is to avoid setting NULL to top pipe
|
* of tail pipe making it look like head pipe in subsequent
|
* deletes
|
*/
|
if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
|
pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
|
|
/*
|
* For head pipe detach surfaces from pipe for tail
|
* pipe just zero it out
|
*/
|
if (!pipe_ctx->top_pipe)
|
pipe_ctx->plane_state = NULL;
|
else
|
memset(pipe_ctx, 0, sizeof(*pipe_ctx));
|
}
|
}
|
|
|
for (i = 0; i < stream_status->plane_count; i++) {
|
if (stream_status->plane_states[i] == plane_state) {
|
|
dc_plane_state_release(stream_status->plane_states[i]);
|
break;
|
}
|
}
|
|
if (i == stream_status->plane_count) {
|
dm_error("Existing plane_state not found; failed to detach it!\n");
|
return false;
|
}
|
|
stream_status->plane_count--;
|
|
/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
|
for (; i < stream_status->plane_count; i++)
|
stream_status->plane_states[i] = stream_status->plane_states[i + 1];
|
|
stream_status->plane_states[stream_status->plane_count] = NULL;
|
|
return true;
|
}
|
|
bool dc_rem_all_planes_for_stream(
|
const struct dc *dc,
|
struct dc_stream_state *stream,
|
struct dc_state *context)
|
{
|
int i, old_plane_count;
|
struct dc_stream_status *stream_status = NULL;
|
struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
|
|
for (i = 0; i < context->stream_count; i++)
|
if (context->streams[i] == stream) {
|
stream_status = &context->stream_status[i];
|
break;
|
}
|
|
if (stream_status == NULL) {
|
dm_error("Existing stream %p not found!\n", stream);
|
return false;
|
}
|
|
old_plane_count = stream_status->plane_count;
|
|
for (i = 0; i < old_plane_count; i++)
|
del_planes[i] = stream_status->plane_states[i];
|
|
for (i = 0; i < old_plane_count; i++)
|
if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
|
return false;
|
|
return true;
|
}
|
|
static bool add_all_planes_for_stream(
|
const struct dc *dc,
|
struct dc_stream_state *stream,
|
const struct dc_validation_set set[],
|
int set_count,
|
struct dc_state *context)
|
{
|
int i, j;
|
|
for (i = 0; i < set_count; i++)
|
if (set[i].stream == stream)
|
break;
|
|
if (i == set_count) {
|
dm_error("Stream %p not found in set!\n", stream);
|
return false;
|
}
|
|
for (j = 0; j < set[i].plane_count; j++)
|
if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
|
return false;
|
|
return true;
|
}
|
|
bool dc_add_all_planes_for_stream(
|
const struct dc *dc,
|
struct dc_stream_state *stream,
|
struct dc_plane_state * const *plane_states,
|
int plane_count,
|
struct dc_state *context)
|
{
|
struct dc_validation_set set;
|
int i;
|
|
set.stream = stream;
|
set.plane_count = plane_count;
|
|
for (i = 0; i < plane_count; i++)
|
set.plane_states[i] = plane_states[i];
|
|
return add_all_planes_for_stream(dc, stream, &set, 1, context);
|
}
|
|
static bool is_timing_changed(struct dc_stream_state *cur_stream,
|
struct dc_stream_state *new_stream)
|
{
|
if (cur_stream == NULL)
|
return true;
|
|
/* If sink pointer changed, it means this is a hotplug, we should do
|
* full hw setting.
|
*/
|
if (cur_stream->sink != new_stream->sink)
|
return true;
|
|
/* If output color space is changed, need to reprogram info frames */
|
if (cur_stream->output_color_space != new_stream->output_color_space)
|
return true;
|
|
return memcmp(
|
&cur_stream->timing,
|
&new_stream->timing,
|
sizeof(struct dc_crtc_timing)) != 0;
|
}
|
|
static bool are_stream_backends_same(
|
struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
|
{
|
if (stream_a == stream_b)
|
return true;
|
|
if (stream_a == NULL || stream_b == NULL)
|
return false;
|
|
if (is_timing_changed(stream_a, stream_b))
|
return false;
|
|
if (stream_a->signal != stream_b->signal)
|
return false;
|
|
if (stream_a->dpms_off != stream_b->dpms_off)
|
return false;
|
|
return true;
|
}
|
|
/**
|
* dc_is_stream_unchanged() - Compare two stream states for equivalence.
|
*
|
* Checks if there a difference between the two states
|
* that would require a mode change.
|
*
|
* Does not compare cursor position or attributes.
|
*/
|
bool dc_is_stream_unchanged(
|
struct dc_stream_state *old_stream, struct dc_stream_state *stream)
|
{
|
|
if (!are_stream_backends_same(old_stream, stream))
|
return false;
|
|
if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
|
return false;
|
|
/*compare audio info*/
|
if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
|
return false;
|
|
return true;
|
}
|
|
/**
|
* dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
|
*/
|
bool dc_is_stream_scaling_unchanged(
|
struct dc_stream_state *old_stream, struct dc_stream_state *stream)
|
{
|
if (old_stream == stream)
|
return true;
|
|
if (old_stream == NULL || stream == NULL)
|
return false;
|
|
if (memcmp(&old_stream->src,
|
&stream->src,
|
sizeof(struct rect)) != 0)
|
return false;
|
|
if (memcmp(&old_stream->dst,
|
&stream->dst,
|
sizeof(struct rect)) != 0)
|
return false;
|
|
return true;
|
}
|
|
static void update_stream_engine_usage(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct stream_encoder *stream_enc,
|
bool acquired)
|
{
|
int i;
|
|
for (i = 0; i < pool->stream_enc_count; i++) {
|
if (pool->stream_enc[i] == stream_enc)
|
res_ctx->is_stream_enc_acquired[i] = acquired;
|
}
|
}
|
|
/* TODO: release audio object */
|
void update_audio_usage(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct audio *audio,
|
bool acquired)
|
{
|
int i;
|
for (i = 0; i < pool->audio_count; i++) {
|
if (pool->audios[i] == audio)
|
res_ctx->is_audio_acquired[i] = acquired;
|
}
|
}
|
|
static int acquire_first_free_pipe(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct dc_stream_state *stream)
|
{
|
int i;
|
|
for (i = 0; i < pool->pipe_count; i++) {
|
if (!res_ctx->pipe_ctx[i].stream) {
|
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
|
|
pipe_ctx->stream_res.tg = pool->timing_generators[i];
|
pipe_ctx->plane_res.mi = pool->mis[i];
|
pipe_ctx->plane_res.hubp = pool->hubps[i];
|
pipe_ctx->plane_res.ipp = pool->ipps[i];
|
pipe_ctx->plane_res.xfm = pool->transforms[i];
|
pipe_ctx->plane_res.dpp = pool->dpps[i];
|
pipe_ctx->stream_res.opp = pool->opps[i];
|
if (pool->dpps[i])
|
pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
|
pipe_ctx->pipe_idx = i;
|
|
|
pipe_ctx->stream = stream;
|
return i;
|
}
|
}
|
return -1;
|
}
|
|
static struct audio *find_first_free_audio(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
enum engine_id id,
|
enum dce_version dc_version)
|
{
|
int i, available_audio_count;
|
|
available_audio_count = pool->audio_count;
|
|
for (i = 0; i < available_audio_count; i++) {
|
if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
|
/*we have enough audio endpoint, find the matching inst*/
|
if (id != i)
|
continue;
|
return pool->audios[i];
|
}
|
}
|
|
/* use engine id to find free audio */
|
if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
|
return pool->audios[id];
|
}
|
/*not found the matching one, first come first serve*/
|
for (i = 0; i < available_audio_count; i++) {
|
if (res_ctx->is_audio_acquired[i] == false) {
|
return pool->audios[i];
|
}
|
}
|
return 0;
|
}
|
|
/**
|
* dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
|
*/
|
enum dc_status dc_add_stream_to_ctx(
|
struct dc *dc,
|
struct dc_state *new_ctx,
|
struct dc_stream_state *stream)
|
{
|
enum dc_status res;
|
DC_LOGGER_INIT(dc->ctx->logger);
|
|
if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
|
DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
|
return DC_ERROR_UNEXPECTED;
|
}
|
|
new_ctx->streams[new_ctx->stream_count] = stream;
|
dc_stream_retain(stream);
|
new_ctx->stream_count++;
|
|
res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
|
if (res != DC_OK)
|
DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
|
|
return res;
|
}
|
|
/**
|
* dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
|
*/
|
enum dc_status dc_remove_stream_from_ctx(
|
struct dc *dc,
|
struct dc_state *new_ctx,
|
struct dc_stream_state *stream)
|
{
|
int i;
|
struct dc_context *dc_ctx = dc->ctx;
|
struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
|
struct pipe_ctx *odm_pipe;
|
|
if (!del_pipe) {
|
DC_ERROR("Pipe not found for stream %p !\n", stream);
|
return DC_ERROR_UNEXPECTED;
|
}
|
|
odm_pipe = del_pipe->next_odm_pipe;
|
|
/* Release primary pipe */
|
ASSERT(del_pipe->stream_res.stream_enc);
|
update_stream_engine_usage(
|
&new_ctx->res_ctx,
|
dc->res_pool,
|
del_pipe->stream_res.stream_enc,
|
false);
|
|
if (del_pipe->stream_res.audio)
|
update_audio_usage(
|
&new_ctx->res_ctx,
|
dc->res_pool,
|
del_pipe->stream_res.audio,
|
false);
|
|
resource_unreference_clock_source(&new_ctx->res_ctx,
|
dc->res_pool,
|
del_pipe->clock_source);
|
|
if (dc->res_pool->funcs->remove_stream_from_ctx)
|
dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
|
|
while (odm_pipe) {
|
struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
|
|
memset(odm_pipe, 0, sizeof(*odm_pipe));
|
odm_pipe = next_odm_pipe;
|
}
|
memset(del_pipe, 0, sizeof(*del_pipe));
|
|
for (i = 0; i < new_ctx->stream_count; i++)
|
if (new_ctx->streams[i] == stream)
|
break;
|
|
if (new_ctx->streams[i] != stream) {
|
DC_ERROR("Context doesn't have stream %p !\n", stream);
|
return DC_ERROR_UNEXPECTED;
|
}
|
|
dc_stream_release(new_ctx->streams[i]);
|
new_ctx->stream_count--;
|
|
/* Trim back arrays */
|
for (; i < new_ctx->stream_count; i++) {
|
new_ctx->streams[i] = new_ctx->streams[i + 1];
|
new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
|
}
|
|
new_ctx->streams[new_ctx->stream_count] = NULL;
|
memset(
|
&new_ctx->stream_status[new_ctx->stream_count],
|
0,
|
sizeof(new_ctx->stream_status[0]));
|
|
return DC_OK;
|
}
|
|
static struct dc_stream_state *find_pll_sharable_stream(
|
struct dc_stream_state *stream_needs_pll,
|
struct dc_state *context)
|
{
|
int i;
|
|
for (i = 0; i < context->stream_count; i++) {
|
struct dc_stream_state *stream_has_pll = context->streams[i];
|
|
/* We are looking for non dp, non virtual stream */
|
if (resource_are_streams_timing_synchronizable(
|
stream_needs_pll, stream_has_pll)
|
&& !dc_is_dp_signal(stream_has_pll->signal)
|
&& stream_has_pll->link->connector_signal
|
!= SIGNAL_TYPE_VIRTUAL)
|
return stream_has_pll;
|
|
}
|
|
return NULL;
|
}
|
|
static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
|
{
|
uint32_t pix_clk = timing->pix_clk_100hz;
|
uint32_t normalized_pix_clk = pix_clk;
|
|
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
|
pix_clk /= 2;
|
if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
|
switch (timing->display_color_depth) {
|
case COLOR_DEPTH_666:
|
case COLOR_DEPTH_888:
|
normalized_pix_clk = pix_clk;
|
break;
|
case COLOR_DEPTH_101010:
|
normalized_pix_clk = (pix_clk * 30) / 24;
|
break;
|
case COLOR_DEPTH_121212:
|
normalized_pix_clk = (pix_clk * 36) / 24;
|
break;
|
case COLOR_DEPTH_161616:
|
normalized_pix_clk = (pix_clk * 48) / 24;
|
break;
|
default:
|
ASSERT(0);
|
break;
|
}
|
}
|
return normalized_pix_clk;
|
}
|
|
static void calculate_phy_pix_clks(struct dc_stream_state *stream)
|
{
|
/* update actual pixel clock on all streams */
|
if (dc_is_hdmi_signal(stream->signal))
|
stream->phy_pix_clk = get_norm_pix_clk(
|
&stream->timing) / 10;
|
else
|
stream->phy_pix_clk =
|
stream->timing.pix_clk_100hz / 10;
|
|
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
|
stream->phy_pix_clk *= 2;
|
}
|
|
static int acquire_resource_from_hw_enabled_state(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool,
|
struct dc_stream_state *stream)
|
{
|
struct dc_link *link = stream->link;
|
unsigned int i, inst, tg_inst = 0;
|
|
/* Check for enabled DIG to identify enabled display */
|
if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
|
return -1;
|
|
inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
|
|
if (inst == ENGINE_ID_UNKNOWN)
|
return -1;
|
|
for (i = 0; i < pool->stream_enc_count; i++) {
|
if (pool->stream_enc[i]->id == inst) {
|
tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
|
pool->stream_enc[i]);
|
break;
|
}
|
}
|
|
// tg_inst not found
|
if (i == pool->stream_enc_count)
|
return -1;
|
|
if (tg_inst >= pool->timing_generator_count)
|
return -1;
|
|
if (!res_ctx->pipe_ctx[tg_inst].stream) {
|
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
|
|
pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
|
pipe_ctx->plane_res.mi = pool->mis[tg_inst];
|
pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
|
pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
|
pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
|
pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
|
pipe_ctx->stream_res.opp = pool->opps[tg_inst];
|
|
if (pool->dpps[tg_inst]) {
|
pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
|
|
// Read DPP->MPCC->OPP Pipe from HW State
|
if (pool->mpc->funcs->read_mpcc_state) {
|
struct mpcc_state s = {0};
|
|
pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
|
|
if (s.dpp_id < MAX_MPCC)
|
pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
|
|
if (s.bot_mpcc_id < MAX_MPCC)
|
pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
|
&pool->mpc->mpcc_array[s.bot_mpcc_id];
|
|
if (s.opp_id < MAX_OPP)
|
pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
|
}
|
}
|
pipe_ctx->pipe_idx = tg_inst;
|
|
pipe_ctx->stream = stream;
|
return tg_inst;
|
}
|
|
return -1;
|
}
|
|
enum dc_status resource_map_pool_resources(
|
const struct dc *dc,
|
struct dc_state *context,
|
struct dc_stream_state *stream)
|
{
|
const struct resource_pool *pool = dc->res_pool;
|
int i;
|
struct dc_context *dc_ctx = dc->ctx;
|
struct pipe_ctx *pipe_ctx = NULL;
|
int pipe_idx = -1;
|
struct dc_bios *dcb = dc->ctx->dc_bios;
|
|
calculate_phy_pix_clks(stream);
|
|
/* TODO: Check Linux */
|
if (dc->config.allow_seamless_boot_optimization &&
|
!dcb->funcs->is_accelerated_mode(dcb)) {
|
if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
|
stream->apply_seamless_boot_optimization = true;
|
}
|
|
if (stream->apply_seamless_boot_optimization)
|
pipe_idx = acquire_resource_from_hw_enabled_state(
|
&context->res_ctx,
|
pool,
|
stream);
|
|
if (pipe_idx < 0)
|
/* acquire new resources */
|
pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
|
|
#ifdef CONFIG_DRM_AMD_DC_DCN
|
if (pipe_idx < 0)
|
pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
|
#endif
|
|
if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
|
return DC_NO_CONTROLLER_RESOURCE;
|
|
pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
|
|
pipe_ctx->stream_res.stream_enc =
|
dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
|
&context->res_ctx, pool, stream);
|
|
if (!pipe_ctx->stream_res.stream_enc)
|
return DC_NO_STREAM_ENC_RESOURCE;
|
|
update_stream_engine_usage(
|
&context->res_ctx, pool,
|
pipe_ctx->stream_res.stream_enc,
|
true);
|
|
/* TODO: Add check if ASIC support and EDID audio */
|
if (!stream->converter_disable_audio &&
|
dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
|
stream->audio_info.mode_count && stream->audio_info.flags.all) {
|
pipe_ctx->stream_res.audio = find_first_free_audio(
|
&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
|
|
/*
|
* Audio assigned in order first come first get.
|
* There are asics which has number of audio
|
* resources less then number of pipes
|
*/
|
if (pipe_ctx->stream_res.audio)
|
update_audio_usage(&context->res_ctx, pool,
|
pipe_ctx->stream_res.audio, true);
|
}
|
|
/* Add ABM to the resource if on EDP */
|
if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
if (pool->abm)
|
pipe_ctx->stream_res.abm = pool->abm;
|
else
|
pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
|
#else
|
pipe_ctx->stream_res.abm = pool->abm;
|
#endif
|
}
|
|
for (i = 0; i < context->stream_count; i++)
|
if (context->streams[i] == stream) {
|
context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
|
context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
|
context->stream_status[i].audio_inst =
|
pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
|
|
return DC_OK;
|
}
|
|
DC_ERROR("Stream %p not found in new ctx!\n", stream);
|
return DC_ERROR_UNEXPECTED;
|
}
|
|
/**
|
* dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
|
* Is a shallow copy. Increments refcounts on existing streams and planes.
|
* @dc: copy out of dc->current_state
|
* @dst_ctx: copy into this
|
*/
|
void dc_resource_state_copy_construct_current(
|
const struct dc *dc,
|
struct dc_state *dst_ctx)
|
{
|
dc_resource_state_copy_construct(dc->current_state, dst_ctx);
|
}
|
|
|
void dc_resource_state_construct(
|
const struct dc *dc,
|
struct dc_state *dst_ctx)
|
{
|
dst_ctx->clk_mgr = dc->clk_mgr;
|
}
|
|
|
bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
|
{
|
return dc->res_pool->res_cap->num_dsc > 0;
|
}
|
|
|
/**
|
* dc_validate_global_state() - Determine if HW can support a given state
|
* Checks HW resource availability and bandwidth requirement.
|
* @dc: dc struct for this driver
|
* @new_ctx: state to be validated
|
* @fast_validate: set to true if only yes/no to support matters
|
*
|
* Return: DC_OK if the result can be programmed. Otherwise, an error code.
|
*/
|
enum dc_status dc_validate_global_state(
|
struct dc *dc,
|
struct dc_state *new_ctx,
|
bool fast_validate)
|
{
|
enum dc_status result = DC_ERROR_UNEXPECTED;
|
int i, j;
|
|
if (!new_ctx)
|
return DC_ERROR_UNEXPECTED;
|
|
if (dc->res_pool->funcs->validate_global) {
|
result = dc->res_pool->funcs->validate_global(dc, new_ctx);
|
if (result != DC_OK)
|
return result;
|
}
|
|
for (i = 0; i < new_ctx->stream_count; i++) {
|
struct dc_stream_state *stream = new_ctx->streams[i];
|
|
for (j = 0; j < dc->res_pool->pipe_count; j++) {
|
struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
|
|
if (pipe_ctx->stream != stream)
|
continue;
|
|
if (dc->res_pool->funcs->patch_unknown_plane_state &&
|
pipe_ctx->plane_state &&
|
pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
|
result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
|
if (result != DC_OK)
|
return result;
|
}
|
|
/* Switch to dp clock source only if there is
|
* no non dp stream that shares the same timing
|
* with the dp stream.
|
*/
|
if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
|
!find_pll_sharable_stream(stream, new_ctx)) {
|
|
resource_unreference_clock_source(
|
&new_ctx->res_ctx,
|
dc->res_pool,
|
pipe_ctx->clock_source);
|
|
pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
|
resource_reference_clock_source(
|
&new_ctx->res_ctx,
|
dc->res_pool,
|
pipe_ctx->clock_source);
|
}
|
}
|
}
|
|
result = resource_build_scaling_params_for_context(dc, new_ctx);
|
|
if (result == DC_OK)
|
if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
|
result = DC_FAIL_BANDWIDTH_VALIDATE;
|
|
return result;
|
}
|
|
static void patch_gamut_packet_checksum(
|
struct dc_info_packet *gamut_packet)
|
{
|
/* For gamut we recalc checksum */
|
if (gamut_packet->valid) {
|
uint8_t chk_sum = 0;
|
uint8_t *ptr;
|
uint8_t i;
|
|
/*start of the Gamut data. */
|
ptr = &gamut_packet->sb[3];
|
|
for (i = 0; i <= gamut_packet->sb[1]; i++)
|
chk_sum += ptr[i];
|
|
gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
|
}
|
}
|
|
static void set_avi_info_frame(
|
struct dc_info_packet *info_packet,
|
struct pipe_ctx *pipe_ctx)
|
{
|
struct dc_stream_state *stream = pipe_ctx->stream;
|
enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
|
uint32_t pixel_encoding = 0;
|
enum scanning_type scan_type = SCANNING_TYPE_NODATA;
|
enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
|
bool itc = false;
|
uint8_t itc_value = 0;
|
uint8_t cn0_cn1 = 0;
|
unsigned int cn0_cn1_value = 0;
|
uint8_t *check_sum = NULL;
|
uint8_t byte_index = 0;
|
union hdmi_info_packet hdmi_info;
|
union display_content_support support = {0};
|
unsigned int vic = pipe_ctx->stream->timing.vic;
|
enum dc_timing_3d_format format;
|
|
memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
|
|
color_space = pipe_ctx->stream->output_color_space;
|
if (color_space == COLOR_SPACE_UNKNOWN)
|
color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
|
COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
|
|
/* Initialize header */
|
hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
|
/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
|
* not be used in HDMI 2.0 (Section 10.1) */
|
hdmi_info.bits.header.version = 2;
|
hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
|
|
/*
|
* IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
|
* according to HDMI 2.0 spec (Section 10.1)
|
*/
|
|
switch (stream->timing.pixel_encoding) {
|
case PIXEL_ENCODING_YCBCR422:
|
pixel_encoding = 1;
|
break;
|
|
case PIXEL_ENCODING_YCBCR444:
|
pixel_encoding = 2;
|
break;
|
case PIXEL_ENCODING_YCBCR420:
|
pixel_encoding = 3;
|
break;
|
|
case PIXEL_ENCODING_RGB:
|
default:
|
pixel_encoding = 0;
|
}
|
|
/* Y0_Y1_Y2 : The pixel encoding */
|
/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
|
hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
|
|
/* A0 = 1 Active Format Information valid */
|
hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
|
|
/* B0, B1 = 3; Bar info data is valid */
|
hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
|
|
hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
|
|
/* S0, S1 : Underscan / Overscan */
|
/* TODO: un-hardcode scan type */
|
scan_type = SCANNING_TYPE_UNDERSCAN;
|
hdmi_info.bits.S0_S1 = scan_type;
|
|
/* C0, C1 : Colorimetry */
|
if (color_space == COLOR_SPACE_YCBCR709 ||
|
color_space == COLOR_SPACE_YCBCR709_LIMITED)
|
hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
|
else if (color_space == COLOR_SPACE_YCBCR601 ||
|
color_space == COLOR_SPACE_YCBCR601_LIMITED)
|
hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
|
else {
|
hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
|
}
|
if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
|
color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
|
color_space == COLOR_SPACE_2020_YCBCR) {
|
hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
|
hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
|
} else if (color_space == COLOR_SPACE_ADOBERGB) {
|
hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
|
hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
|
}
|
|
/* TODO: un-hardcode aspect ratio */
|
aspect = stream->timing.aspect_ratio;
|
|
switch (aspect) {
|
case ASPECT_RATIO_4_3:
|
case ASPECT_RATIO_16_9:
|
hdmi_info.bits.M0_M1 = aspect;
|
break;
|
|
case ASPECT_RATIO_NO_DATA:
|
case ASPECT_RATIO_64_27:
|
case ASPECT_RATIO_256_135:
|
default:
|
hdmi_info.bits.M0_M1 = 0;
|
}
|
|
/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
|
hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
|
|
/* TODO: un-hardcode cn0_cn1 and itc */
|
|
cn0_cn1 = 0;
|
cn0_cn1_value = 0;
|
|
itc = true;
|
itc_value = 1;
|
|
support = stream->content_support;
|
|
if (itc) {
|
if (!support.bits.valid_content_type) {
|
cn0_cn1_value = 0;
|
} else {
|
if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
|
if (support.bits.graphics_content == 1) {
|
cn0_cn1_value = 0;
|
}
|
} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
|
if (support.bits.photo_content == 1) {
|
cn0_cn1_value = 1;
|
} else {
|
cn0_cn1_value = 0;
|
itc_value = 0;
|
}
|
} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
|
if (support.bits.cinema_content == 1) {
|
cn0_cn1_value = 2;
|
} else {
|
cn0_cn1_value = 0;
|
itc_value = 0;
|
}
|
} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
|
if (support.bits.game_content == 1) {
|
cn0_cn1_value = 3;
|
} else {
|
cn0_cn1_value = 0;
|
itc_value = 0;
|
}
|
}
|
}
|
hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
|
hdmi_info.bits.ITC = itc_value;
|
}
|
|
/* TODO : We should handle YCC quantization */
|
/* but we do not have matrix calculation */
|
if (stream->qs_bit == 1 &&
|
stream->qy_bit == 1) {
|
if (color_space == COLOR_SPACE_SRGB ||
|
color_space == COLOR_SPACE_2020_RGB_FULLRANGE) {
|
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
|
hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
|
} else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
|
color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE) {
|
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
|
hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
|
} else {
|
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
|
hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
|
}
|
} else {
|
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
|
hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
|
}
|
|
///VIC
|
format = stream->timing.timing_3d_format;
|
/*todo, add 3DStereo support*/
|
if (format != TIMING_3D_FORMAT_NONE) {
|
// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
|
switch (pipe_ctx->stream->timing.hdmi_vic) {
|
case 1:
|
vic = 95;
|
break;
|
case 2:
|
vic = 94;
|
break;
|
case 3:
|
vic = 93;
|
break;
|
case 4:
|
vic = 98;
|
break;
|
default:
|
break;
|
}
|
}
|
/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
|
hdmi_info.bits.VIC0_VIC7 = vic;
|
if (vic >= 128)
|
hdmi_info.bits.header.version = 3;
|
/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
|
* the Source shall use 20 AVI InfoFrame Version 4
|
*/
|
if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
|
hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
|
hdmi_info.bits.header.version = 4;
|
hdmi_info.bits.header.length = 14;
|
}
|
|
/* pixel repetition
|
* PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
|
* repetition start from 1 */
|
hdmi_info.bits.PR0_PR3 = 0;
|
|
/* Bar Info
|
* barTop: Line Number of End of Top Bar.
|
* barBottom: Line Number of Start of Bottom Bar.
|
* barLeft: Pixel Number of End of Left Bar.
|
* barRight: Pixel Number of Start of Right Bar. */
|
hdmi_info.bits.bar_top = stream->timing.v_border_top;
|
hdmi_info.bits.bar_bottom = (stream->timing.v_total
|
- stream->timing.v_border_bottom + 1);
|
hdmi_info.bits.bar_left = stream->timing.h_border_left;
|
hdmi_info.bits.bar_right = (stream->timing.h_total
|
- stream->timing.h_border_right + 1);
|
|
/* Additional Colorimetry Extension
|
* Used in conduction with C0-C1 and EC0-EC2
|
* 0 = DCI-P3 RGB (D65)
|
* 1 = DCI-P3 RGB (theater)
|
*/
|
hdmi_info.bits.ACE0_ACE3 = 0;
|
|
/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
|
check_sum = &hdmi_info.packet_raw_data.sb[0];
|
|
*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
|
|
for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
|
*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
|
|
/* one byte complement */
|
*check_sum = (uint8_t) (0x100 - *check_sum);
|
|
/* Store in hw_path_mode */
|
info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
|
info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
|
info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
|
|
for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
|
info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
|
|
info_packet->valid = true;
|
}
|
|
static void set_vendor_info_packet(
|
struct dc_info_packet *info_packet,
|
struct dc_stream_state *stream)
|
{
|
/* SPD info packet for FreeSync */
|
|
/* Check if Freesync is supported. Return if false. If true,
|
* set the corresponding bit in the info packet
|
*/
|
if (!stream->vsp_infopacket.valid)
|
return;
|
|
*info_packet = stream->vsp_infopacket;
|
}
|
|
static void set_spd_info_packet(
|
struct dc_info_packet *info_packet,
|
struct dc_stream_state *stream)
|
{
|
/* SPD info packet for FreeSync */
|
|
/* Check if Freesync is supported. Return if false. If true,
|
* set the corresponding bit in the info packet
|
*/
|
if (!stream->vrr_infopacket.valid)
|
return;
|
|
*info_packet = stream->vrr_infopacket;
|
}
|
|
static void set_hdr_static_info_packet(
|
struct dc_info_packet *info_packet,
|
struct dc_stream_state *stream)
|
{
|
/* HDR Static Metadata info packet for HDR10 */
|
|
if (!stream->hdr_static_metadata.valid ||
|
stream->use_dynamic_meta)
|
return;
|
|
*info_packet = stream->hdr_static_metadata;
|
}
|
|
static void set_vsc_info_packet(
|
struct dc_info_packet *info_packet,
|
struct dc_stream_state *stream)
|
{
|
if (!stream->vsc_infopacket.valid)
|
return;
|
|
*info_packet = stream->vsc_infopacket;
|
}
|
|
void dc_resource_state_destruct(struct dc_state *context)
|
{
|
int i, j;
|
|
for (i = 0; i < context->stream_count; i++) {
|
for (j = 0; j < context->stream_status[i].plane_count; j++)
|
dc_plane_state_release(
|
context->stream_status[i].plane_states[j]);
|
|
context->stream_status[i].plane_count = 0;
|
dc_stream_release(context->streams[i]);
|
context->streams[i] = NULL;
|
}
|
}
|
|
void dc_resource_state_copy_construct(
|
const struct dc_state *src_ctx,
|
struct dc_state *dst_ctx)
|
{
|
int i, j;
|
struct kref refcount = dst_ctx->refcount;
|
|
*dst_ctx = *src_ctx;
|
|
for (i = 0; i < MAX_PIPES; i++) {
|
struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
|
|
if (cur_pipe->top_pipe)
|
cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
|
|
if (cur_pipe->bottom_pipe)
|
cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
|
|
if (cur_pipe->next_odm_pipe)
|
cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
|
|
if (cur_pipe->prev_odm_pipe)
|
cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
|
}
|
|
for (i = 0; i < dst_ctx->stream_count; i++) {
|
dc_stream_retain(dst_ctx->streams[i]);
|
for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
|
dc_plane_state_retain(
|
dst_ctx->stream_status[i].plane_states[j]);
|
}
|
|
/* context refcount should not be overridden */
|
dst_ctx->refcount = refcount;
|
|
}
|
|
struct clock_source *dc_resource_find_first_free_pll(
|
struct resource_context *res_ctx,
|
const struct resource_pool *pool)
|
{
|
int i;
|
|
for (i = 0; i < pool->clk_src_count; ++i) {
|
if (res_ctx->clock_source_ref_count[i] == 0)
|
return pool->clock_sources[i];
|
}
|
|
return NULL;
|
}
|
|
void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
|
{
|
enum signal_type signal = SIGNAL_TYPE_NONE;
|
struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
|
|
/* default all packets to invalid */
|
info->avi.valid = false;
|
info->gamut.valid = false;
|
info->vendor.valid = false;
|
info->spd.valid = false;
|
info->hdrsmd.valid = false;
|
info->vsc.valid = false;
|
|
signal = pipe_ctx->stream->signal;
|
|
/* HDMi and DP have different info packets*/
|
if (dc_is_hdmi_signal(signal)) {
|
set_avi_info_frame(&info->avi, pipe_ctx);
|
|
set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
|
|
set_spd_info_packet(&info->spd, pipe_ctx->stream);
|
|
set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
|
|
} else if (dc_is_dp_signal(signal)) {
|
set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
|
|
set_spd_info_packet(&info->spd, pipe_ctx->stream);
|
|
set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
|
}
|
|
patch_gamut_packet_checksum(&info->gamut);
|
}
|
|
enum dc_status resource_map_clock_resources(
|
const struct dc *dc,
|
struct dc_state *context,
|
struct dc_stream_state *stream)
|
{
|
/* acquire new resources */
|
const struct resource_pool *pool = dc->res_pool;
|
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
|
&context->res_ctx, stream);
|
|
if (!pipe_ctx)
|
return DC_ERROR_UNEXPECTED;
|
|
if (dc_is_dp_signal(pipe_ctx->stream->signal)
|
|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
|
pipe_ctx->clock_source = pool->dp_clock_source;
|
else {
|
pipe_ctx->clock_source = NULL;
|
|
if (!dc->config.disable_disp_pll_sharing)
|
pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
|
&context->res_ctx,
|
pipe_ctx);
|
|
if (pipe_ctx->clock_source == NULL)
|
pipe_ctx->clock_source =
|
dc_resource_find_first_free_pll(
|
&context->res_ctx,
|
pool);
|
}
|
|
if (pipe_ctx->clock_source == NULL)
|
return DC_NO_CLOCK_SOURCE_RESOURCE;
|
|
resource_reference_clock_source(
|
&context->res_ctx, pool,
|
pipe_ctx->clock_source);
|
|
return DC_OK;
|
}
|
|
/*
|
* Note: We need to disable output if clock sources change,
|
* since bios does optimization and doesn't apply if changing
|
* PHY when not already disabled.
|
*/
|
bool pipe_need_reprogram(
|
struct pipe_ctx *pipe_ctx_old,
|
struct pipe_ctx *pipe_ctx)
|
{
|
if (!pipe_ctx_old->stream)
|
return false;
|
|
if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
|
return true;
|
|
if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
|
return true;
|
|
if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
|
return true;
|
|
if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
|
&& pipe_ctx_old->stream != pipe_ctx->stream)
|
return true;
|
|
if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
|
return true;
|
|
if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
|
return true;
|
|
if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
|
return true;
|
|
if (false == pipe_ctx_old->stream->link->link_state_valid &&
|
false == pipe_ctx_old->stream->dpms_off)
|
return true;
|
|
if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
|
return true;
|
|
return false;
|
}
|
|
void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
|
struct bit_depth_reduction_params *fmt_bit_depth)
|
{
|
enum dc_dither_option option = stream->dither_option;
|
enum dc_pixel_encoding pixel_encoding =
|
stream->timing.pixel_encoding;
|
|
memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
|
|
if (option == DITHER_OPTION_DEFAULT) {
|
switch (stream->timing.display_color_depth) {
|
case COLOR_DEPTH_666:
|
option = DITHER_OPTION_SPATIAL6;
|
break;
|
case COLOR_DEPTH_888:
|
option = DITHER_OPTION_SPATIAL8;
|
break;
|
case COLOR_DEPTH_101010:
|
option = DITHER_OPTION_SPATIAL10;
|
break;
|
default:
|
option = DITHER_OPTION_DISABLE;
|
}
|
}
|
|
if (option == DITHER_OPTION_DISABLE)
|
return;
|
|
if (option == DITHER_OPTION_TRUN6) {
|
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
|
fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
|
} else if (option == DITHER_OPTION_TRUN8 ||
|
option == DITHER_OPTION_TRUN8_SPATIAL6 ||
|
option == DITHER_OPTION_TRUN8_FM6) {
|
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
|
fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
|
} else if (option == DITHER_OPTION_TRUN10 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL6 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL8 ||
|
option == DITHER_OPTION_TRUN10_FM8 ||
|
option == DITHER_OPTION_TRUN10_FM6 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
|
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
|
fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
|
}
|
|
/* special case - Formatter can only reduce by 4 bits at most.
|
* When reducing from 12 to 6 bits,
|
* HW recommends we use trunc with round mode
|
* (if we did nothing, trunc to 10 bits would be used)
|
* note that any 12->10 bit reduction is ignored prior to DCE8,
|
* as the input was 10 bits.
|
*/
|
if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
|
option == DITHER_OPTION_SPATIAL6 ||
|
option == DITHER_OPTION_FM6) {
|
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
|
fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
|
fmt_bit_depth->flags.TRUNCATE_MODE = 1;
|
}
|
|
/* spatial dither
|
* note that spatial modes 1-3 are never used
|
*/
|
if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
|
option == DITHER_OPTION_SPATIAL6 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL6 ||
|
option == DITHER_OPTION_TRUN8_SPATIAL6) {
|
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
|
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
|
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
|
fmt_bit_depth->flags.RGB_RANDOM =
|
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
|
} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
|
option == DITHER_OPTION_SPATIAL8 ||
|
option == DITHER_OPTION_SPATIAL8_FM6 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL8 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
|
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
|
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
|
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
|
fmt_bit_depth->flags.RGB_RANDOM =
|
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
|
} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
|
option == DITHER_OPTION_SPATIAL10 ||
|
option == DITHER_OPTION_SPATIAL10_FM8 ||
|
option == DITHER_OPTION_SPATIAL10_FM6) {
|
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
|
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
|
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
|
fmt_bit_depth->flags.RGB_RANDOM =
|
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
|
}
|
|
if (option == DITHER_OPTION_SPATIAL6 ||
|
option == DITHER_OPTION_SPATIAL8 ||
|
option == DITHER_OPTION_SPATIAL10) {
|
fmt_bit_depth->flags.FRAME_RANDOM = 0;
|
} else {
|
fmt_bit_depth->flags.FRAME_RANDOM = 1;
|
}
|
|
//////////////////////
|
//// temporal dither
|
//////////////////////
|
if (option == DITHER_OPTION_FM6 ||
|
option == DITHER_OPTION_SPATIAL8_FM6 ||
|
option == DITHER_OPTION_SPATIAL10_FM6 ||
|
option == DITHER_OPTION_TRUN10_FM6 ||
|
option == DITHER_OPTION_TRUN8_FM6 ||
|
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
|
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
|
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
|
} else if (option == DITHER_OPTION_FM8 ||
|
option == DITHER_OPTION_SPATIAL10_FM8 ||
|
option == DITHER_OPTION_TRUN10_FM8) {
|
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
|
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
|
} else if (option == DITHER_OPTION_FM10) {
|
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
|
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
|
}
|
|
fmt_bit_depth->pixel_encoding = pixel_encoding;
|
}
|
|
enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
|
{
|
struct dc_link *link = stream->link;
|
struct timing_generator *tg = dc->res_pool->timing_generators[0];
|
enum dc_status res = DC_OK;
|
|
calculate_phy_pix_clks(stream);
|
|
if (!tg->funcs->validate_timing(tg, &stream->timing))
|
res = DC_FAIL_CONTROLLER_VALIDATE;
|
|
if (res == DC_OK) {
|
if (!link->link_enc->funcs->validate_output_with_stream(
|
link->link_enc, stream))
|
res = DC_FAIL_ENC_VALIDATE;
|
}
|
|
/* TODO: validate audio ASIC caps, encoder */
|
|
if (res == DC_OK)
|
res = dc_link_validate_mode_timing(stream,
|
link,
|
&stream->timing);
|
|
return res;
|
}
|
|
enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
|
{
|
enum dc_status res = DC_OK;
|
|
/* TODO For now validates pixel format only */
|
if (dc->res_pool->funcs->validate_plane)
|
return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
|
|
return res;
|
}
|
|
unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
|
{
|
switch (format) {
|
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
|
return 8;
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
|
return 12;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
|
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
|
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
|
return 16;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
|
#if defined(CONFIG_DRM_AMD_DC_DCN3_0)
|
case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
|
case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
|
#endif
|
return 32;
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
|
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
|
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
|
return 64;
|
default:
|
ASSERT_CRITICAL(false);
|
return -1;
|
}
|
}
|
static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
|
{
|
if (modes) {
|
if (modes->sample_rates.rate.RATE_192)
|
return 192000;
|
if (modes->sample_rates.rate.RATE_176_4)
|
return 176400;
|
if (modes->sample_rates.rate.RATE_96)
|
return 96000;
|
if (modes->sample_rates.rate.RATE_88_2)
|
return 88200;
|
if (modes->sample_rates.rate.RATE_48)
|
return 48000;
|
if (modes->sample_rates.rate.RATE_44_1)
|
return 44100;
|
if (modes->sample_rates.rate.RATE_32)
|
return 32000;
|
}
|
/*original logic when no audio info*/
|
return 441000;
|
}
|
|
void get_audio_check(struct audio_info *aud_modes,
|
struct audio_check *audio_chk)
|
{
|
unsigned int i;
|
unsigned int max_sample_rate = 0;
|
|
if (aud_modes) {
|
audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
|
|
audio_chk->max_audiosample_rate = 0;
|
for (i = 0; i < aud_modes->mode_count; i++) {
|
max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
|
if (audio_chk->max_audiosample_rate < max_sample_rate)
|
audio_chk->max_audiosample_rate = max_sample_rate;
|
/*dts takes the same as type 2: AP = 0.25*/
|
}
|
/*check which one take more bandwidth*/
|
if (audio_chk->max_audiosample_rate > 192000)
|
audio_chk->audio_packet_type = 0x9;/*AP =1*/
|
audio_chk->acat = 0;/*not support*/
|
}
|
}
|