// SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
|
/* src/prism2/driver/hfa384x_usb.c
|
*
|
* Functions that talk to the USB variantof the Intersil hfa384x MAC
|
*
|
* Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
|
* --------------------------------------------------------------------
|
*
|
* linux-wlan
|
*
|
* The contents of this file are subject to the Mozilla Public
|
* License Version 1.1 (the "License"); you may not use this file
|
* except in compliance with the License. You may obtain a copy of
|
* the License at http://www.mozilla.org/MPL/
|
*
|
* Software distributed under the License is distributed on an "AS
|
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
|
* implied. See the License for the specific language governing
|
* rights and limitations under the License.
|
*
|
* Alternatively, the contents of this file may be used under the
|
* terms of the GNU Public License version 2 (the "GPL"), in which
|
* case the provisions of the GPL are applicable instead of the
|
* above. If you wish to allow the use of your version of this file
|
* only under the terms of the GPL and not to allow others to use
|
* your version of this file under the MPL, indicate your decision
|
* by deleting the provisions above and replace them with the notice
|
* and other provisions required by the GPL. If you do not delete
|
* the provisions above, a recipient may use your version of this
|
* file under either the MPL or the GPL.
|
*
|
* --------------------------------------------------------------------
|
*
|
* Inquiries regarding the linux-wlan Open Source project can be
|
* made directly to:
|
*
|
* AbsoluteValue Systems Inc.
|
* info@linux-wlan.com
|
* http://www.linux-wlan.com
|
*
|
* --------------------------------------------------------------------
|
*
|
* Portions of the development of this software were funded by
|
* Intersil Corporation as part of PRISM(R) chipset product development.
|
*
|
* --------------------------------------------------------------------
|
*
|
* This file implements functions that correspond to the prism2/hfa384x
|
* 802.11 MAC hardware and firmware host interface.
|
*
|
* The functions can be considered to represent several levels of
|
* abstraction. The lowest level functions are simply C-callable wrappers
|
* around the register accesses. The next higher level represents C-callable
|
* prism2 API functions that match the Intersil documentation as closely
|
* as is reasonable. The next higher layer implements common sequences
|
* of invocations of the API layer (e.g. write to bap, followed by cmd).
|
*
|
* Common sequences:
|
* hfa384x_drvr_xxx Highest level abstractions provided by the
|
* hfa384x code. They are driver defined wrappers
|
* for common sequences. These functions generally
|
* use the services of the lower levels.
|
*
|
* hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
|
* functions are wrappers for the RID get/set
|
* sequence. They call copy_[to|from]_bap() and
|
* cmd_access(). These functions operate on the
|
* RIDs and buffers without validation. The caller
|
* is responsible for that.
|
*
|
* API wrapper functions:
|
* hfa384x_cmd_xxx functions that provide access to the f/w commands.
|
* The function arguments correspond to each command
|
* argument, even command arguments that get packed
|
* into single registers. These functions _just_
|
* issue the command by setting the cmd/parm regs
|
* & reading the status/resp regs. Additional
|
* activities required to fully use a command
|
* (read/write from/to bap, get/set int status etc.)
|
* are implemented separately. Think of these as
|
* C-callable prism2 commands.
|
*
|
* Lowest Layer Functions:
|
* hfa384x_docmd_xxx These functions implement the sequence required
|
* to issue any prism2 command. Primarily used by the
|
* hfa384x_cmd_xxx functions.
|
*
|
* hfa384x_bap_xxx BAP read/write access functions.
|
* Note: we usually use BAP0 for non-interrupt context
|
* and BAP1 for interrupt context.
|
*
|
* hfa384x_dl_xxx download related functions.
|
*
|
* Driver State Issues:
|
* Note that there are two pairs of functions that manage the
|
* 'initialized' and 'running' states of the hw/MAC combo. The four
|
* functions are create(), destroy(), start(), and stop(). create()
|
* sets up the data structures required to support the hfa384x_*
|
* functions and destroy() cleans them up. The start() function gets
|
* the actual hardware running and enables the interrupts. The stop()
|
* function shuts the hardware down. The sequence should be:
|
* create()
|
* start()
|
* .
|
* . Do interesting things w/ the hardware
|
* .
|
* stop()
|
* destroy()
|
*
|
* Note that destroy() can be called without calling stop() first.
|
* --------------------------------------------------------------------
|
*/
|
|
#include <linux/module.h>
|
#include <linux/kernel.h>
|
#include <linux/sched.h>
|
#include <linux/types.h>
|
#include <linux/slab.h>
|
#include <linux/wireless.h>
|
#include <linux/netdevice.h>
|
#include <linux/timer.h>
|
#include <linux/io.h>
|
#include <linux/delay.h>
|
#include <asm/byteorder.h>
|
#include <linux/bitops.h>
|
#include <linux/list.h>
|
#include <linux/usb.h>
|
#include <linux/byteorder/generic.h>
|
|
#include "p80211types.h"
|
#include "p80211hdr.h"
|
#include "p80211mgmt.h"
|
#include "p80211conv.h"
|
#include "p80211msg.h"
|
#include "p80211netdev.h"
|
#include "p80211req.h"
|
#include "p80211metadef.h"
|
#include "p80211metastruct.h"
|
#include "hfa384x.h"
|
#include "prism2mgmt.h"
|
|
enum cmd_mode {
|
DOWAIT = 0,
|
DOASYNC
|
};
|
|
#define THROTTLE_JIFFIES (HZ / 8)
|
#define URB_ASYNC_UNLINK 0
|
#define USB_QUEUE_BULK 0
|
|
#define ROUNDUP64(a) (((a) + 63) & ~63)
|
|
#ifdef DEBUG_USB
|
static void dbprint_urb(struct urb *urb);
|
#endif
|
|
static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
|
struct hfa384x_usb_rxfrm *rxfrm);
|
|
static void hfa384x_usb_defer(struct work_struct *data);
|
|
static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
|
|
static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
|
|
/*---------------------------------------------------*/
|
/* Callbacks */
|
static void hfa384x_usbout_callback(struct urb *urb);
|
static void hfa384x_ctlxout_callback(struct urb *urb);
|
static void hfa384x_usbin_callback(struct urb *urb);
|
|
static void
|
hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
|
|
static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
|
|
static void hfa384x_usbin_info(struct wlandevice *wlandev,
|
union hfa384x_usbin *usbin);
|
|
static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
|
int urb_status);
|
|
/*---------------------------------------------------*/
|
/* Functions to support the prism2 usb command queue */
|
|
static void hfa384x_usbctlxq_run(struct hfa384x *hw);
|
|
static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
|
|
static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
|
|
static void hfa384x_usb_throttlefn(struct timer_list *t);
|
|
static void hfa384x_usbctlx_completion_task(unsigned long data);
|
|
static void hfa384x_usbctlx_reaper_task(unsigned long data);
|
|
static int hfa384x_usbctlx_submit(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx);
|
|
static void unlocked_usbctlx_complete(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx);
|
|
struct usbctlx_completor {
|
int (*complete)(struct usbctlx_completor *completor);
|
};
|
|
static int
|
hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx,
|
struct usbctlx_completor *completor);
|
|
static int
|
unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
|
|
static void hfa384x_cb_status(struct hfa384x *hw,
|
const struct hfa384x_usbctlx *ctlx);
|
|
static int
|
usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
|
struct hfa384x_cmdresult *result);
|
|
static void
|
usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
|
struct hfa384x_rridresult *result);
|
|
/*---------------------------------------------------*/
|
/* Low level req/resp CTLX formatters and submitters */
|
static int
|
hfa384x_docmd(struct hfa384x *hw,
|
enum cmd_mode mode,
|
struct hfa384x_metacmd *cmd,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
|
|
static int
|
hfa384x_dorrid(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 rid,
|
void *riddata,
|
unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
|
|
static int
|
hfa384x_dowrid(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 rid,
|
void *riddata,
|
unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
|
|
static int
|
hfa384x_dormem(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 page,
|
u16 offset,
|
void *data,
|
unsigned int len,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
|
|
static int
|
hfa384x_dowmem(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 page,
|
u16 offset,
|
void *data,
|
unsigned int len,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
|
|
static int hfa384x_isgood_pdrcode(u16 pdrcode);
|
|
static inline const char *ctlxstr(enum ctlx_state s)
|
{
|
static const char * const ctlx_str[] = {
|
"Initial state",
|
"Complete",
|
"Request failed",
|
"Request pending",
|
"Request packet submitted",
|
"Request packet completed",
|
"Response packet completed"
|
};
|
|
return ctlx_str[s];
|
};
|
|
static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
|
{
|
return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
|
}
|
|
#ifdef DEBUG_USB
|
void dbprint_urb(struct urb *urb)
|
{
|
pr_debug("urb->pipe=0x%08x\n", urb->pipe);
|
pr_debug("urb->status=0x%08x\n", urb->status);
|
pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
|
pr_debug("urb->transfer_buffer=0x%08x\n",
|
(unsigned int)urb->transfer_buffer);
|
pr_debug("urb->transfer_buffer_length=0x%08x\n",
|
urb->transfer_buffer_length);
|
pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
|
pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
|
pr_debug("urb->setup_packet(ctl)=0x%08x\n",
|
(unsigned int)urb->setup_packet);
|
pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
|
pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
|
pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
|
pr_debug("urb->timeout=0x%08x\n", urb->timeout);
|
pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
|
pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
|
}
|
#endif
|
|
/*----------------------------------------------------------------
|
* submit_rx_urb
|
*
|
* Listen for input data on the BULK-IN pipe. If the pipe has
|
* stalled then schedule it to be reset.
|
*
|
* Arguments:
|
* hw device struct
|
* memflags memory allocation flags
|
*
|
* Returns:
|
* error code from submission
|
*
|
* Call context:
|
* Any
|
*----------------------------------------------------------------
|
*/
|
static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
|
{
|
struct sk_buff *skb;
|
int result;
|
|
skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
|
if (!skb) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Post the IN urb */
|
usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
|
hw->endp_in,
|
skb->data, sizeof(union hfa384x_usbin),
|
hfa384x_usbin_callback, hw->wlandev);
|
|
hw->rx_urb_skb = skb;
|
|
result = -ENOLINK;
|
if (!hw->wlandev->hwremoved &&
|
!test_bit(WORK_RX_HALT, &hw->usb_flags)) {
|
result = usb_submit_urb(&hw->rx_urb, memflags);
|
|
/* Check whether we need to reset the RX pipe */
|
if (result == -EPIPE) {
|
netdev_warn(hw->wlandev->netdev,
|
"%s rx pipe stalled: requesting reset\n",
|
hw->wlandev->netdev->name);
|
if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
|
schedule_work(&hw->usb_work);
|
}
|
}
|
|
/* Don't leak memory if anything should go wrong */
|
if (result != 0) {
|
dev_kfree_skb(skb);
|
hw->rx_urb_skb = NULL;
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* submit_tx_urb
|
*
|
* Prepares and submits the URB of transmitted data. If the
|
* submission fails then it will schedule the output pipe to
|
* be reset.
|
*
|
* Arguments:
|
* hw device struct
|
* tx_urb URB of data for transmission
|
* memflags memory allocation flags
|
*
|
* Returns:
|
* error code from submission
|
*
|
* Call context:
|
* Any
|
*----------------------------------------------------------------
|
*/
|
static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
|
{
|
struct net_device *netdev = hw->wlandev->netdev;
|
int result;
|
|
result = -ENOLINK;
|
if (netif_running(netdev)) {
|
if (!hw->wlandev->hwremoved &&
|
!test_bit(WORK_TX_HALT, &hw->usb_flags)) {
|
result = usb_submit_urb(tx_urb, memflags);
|
|
/* Test whether we need to reset the TX pipe */
|
if (result == -EPIPE) {
|
netdev_warn(hw->wlandev->netdev,
|
"%s tx pipe stalled: requesting reset\n",
|
netdev->name);
|
set_bit(WORK_TX_HALT, &hw->usb_flags);
|
schedule_work(&hw->usb_work);
|
} else if (result == 0) {
|
netif_stop_queue(netdev);
|
}
|
}
|
}
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa394x_usb_defer
|
*
|
* There are some things that the USB stack cannot do while
|
* in interrupt context, so we arrange this function to run
|
* in process context.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* nothing
|
*
|
* Call context:
|
* process (by design)
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usb_defer(struct work_struct *data)
|
{
|
struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
|
struct net_device *netdev = hw->wlandev->netdev;
|
|
/* Don't bother trying to reset anything if the plug
|
* has been pulled ...
|
*/
|
if (hw->wlandev->hwremoved)
|
return;
|
|
/* Reception has stopped: try to reset the input pipe */
|
if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
|
int ret;
|
|
usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
|
|
ret = usb_clear_halt(hw->usb, hw->endp_in);
|
if (ret != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"Failed to clear rx pipe for %s: err=%d\n",
|
netdev->name, ret);
|
} else {
|
netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
|
netdev->name);
|
clear_bit(WORK_RX_HALT, &hw->usb_flags);
|
set_bit(WORK_RX_RESUME, &hw->usb_flags);
|
}
|
}
|
|
/* Resume receiving data back from the device. */
|
if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
|
int ret;
|
|
ret = submit_rx_urb(hw, GFP_KERNEL);
|
if (ret != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"Failed to resume %s rx pipe.\n",
|
netdev->name);
|
} else {
|
clear_bit(WORK_RX_RESUME, &hw->usb_flags);
|
}
|
}
|
|
/* Transmission has stopped: try to reset the output pipe */
|
if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
|
int ret;
|
|
usb_kill_urb(&hw->tx_urb);
|
ret = usb_clear_halt(hw->usb, hw->endp_out);
|
if (ret != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"Failed to clear tx pipe for %s: err=%d\n",
|
netdev->name, ret);
|
} else {
|
netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
|
netdev->name);
|
clear_bit(WORK_TX_HALT, &hw->usb_flags);
|
set_bit(WORK_TX_RESUME, &hw->usb_flags);
|
|
/* Stopping the BULK-OUT pipe also blocked
|
* us from sending any more CTLX URBs, so
|
* we need to re-run our queue ...
|
*/
|
hfa384x_usbctlxq_run(hw);
|
}
|
}
|
|
/* Resume transmitting. */
|
if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
|
netif_wake_queue(hw->wlandev->netdev);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_create
|
*
|
* Sets up the struct hfa384x data structure for use. Note this
|
* does _not_ initialize the actual hardware, just the data structures
|
* we use to keep track of its state.
|
*
|
* Arguments:
|
* hw device structure
|
* irq device irq number
|
* iobase i/o base address for register access
|
* membase memory base address for register access
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
|
{
|
hw->usb = usb;
|
|
/* Set up the waitq */
|
init_waitqueue_head(&hw->cmdq);
|
|
/* Initialize the command queue */
|
spin_lock_init(&hw->ctlxq.lock);
|
INIT_LIST_HEAD(&hw->ctlxq.pending);
|
INIT_LIST_HEAD(&hw->ctlxq.active);
|
INIT_LIST_HEAD(&hw->ctlxq.completing);
|
INIT_LIST_HEAD(&hw->ctlxq.reapable);
|
|
/* Initialize the authentication queue */
|
skb_queue_head_init(&hw->authq);
|
|
tasklet_init(&hw->reaper_bh,
|
hfa384x_usbctlx_reaper_task, (unsigned long)hw);
|
tasklet_init(&hw->completion_bh,
|
hfa384x_usbctlx_completion_task, (unsigned long)hw);
|
INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
|
INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
|
|
timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
|
|
timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
|
|
timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
|
|
usb_init_urb(&hw->rx_urb);
|
usb_init_urb(&hw->tx_urb);
|
usb_init_urb(&hw->ctlx_urb);
|
|
hw->link_status = HFA384x_LINK_NOTCONNECTED;
|
hw->state = HFA384x_STATE_INIT;
|
|
INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
|
timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_destroy
|
*
|
* Partner to hfa384x_create(). This function cleans up the hw
|
* structure so that it can be freed by the caller using a simple
|
* kfree. Currently, this function is just a placeholder. If, at some
|
* point in the future, an hw in the 'shutdown' state requires a 'deep'
|
* kfree, this is where it should be done. Note that if this function
|
* is called on a _running_ hw structure, the drvr_stop() function is
|
* called.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* nothing, this function is not allowed to fail.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
void hfa384x_destroy(struct hfa384x *hw)
|
{
|
struct sk_buff *skb;
|
|
if (hw->state == HFA384x_STATE_RUNNING)
|
hfa384x_drvr_stop(hw);
|
hw->state = HFA384x_STATE_PREINIT;
|
|
kfree(hw->scanresults);
|
hw->scanresults = NULL;
|
|
/* Now to clean out the auth queue */
|
while ((skb = skb_dequeue(&hw->authq)))
|
dev_kfree_skb(skb);
|
}
|
|
static struct hfa384x_usbctlx *usbctlx_alloc(void)
|
{
|
struct hfa384x_usbctlx *ctlx;
|
|
ctlx = kzalloc(sizeof(*ctlx),
|
in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
|
if (ctlx)
|
init_completion(&ctlx->done);
|
|
return ctlx;
|
}
|
|
static int
|
usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
|
struct hfa384x_cmdresult *result)
|
{
|
result->status = le16_to_cpu(cmdresp->status);
|
result->resp0 = le16_to_cpu(cmdresp->resp0);
|
result->resp1 = le16_to_cpu(cmdresp->resp1);
|
result->resp2 = le16_to_cpu(cmdresp->resp2);
|
|
pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
|
result->status, result->resp0, result->resp1, result->resp2);
|
|
return result->status & HFA384x_STATUS_RESULT;
|
}
|
|
static void
|
usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
|
struct hfa384x_rridresult *result)
|
{
|
result->rid = le16_to_cpu(rridresp->rid);
|
result->riddata = rridresp->data;
|
result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
|
}
|
|
/*----------------------------------------------------------------
|
* Completor object:
|
* This completor must be passed to hfa384x_usbctlx_complete_sync()
|
* when processing a CTLX that returns a struct hfa384x_cmdresult structure.
|
*----------------------------------------------------------------
|
*/
|
struct usbctlx_cmd_completor {
|
struct usbctlx_completor head;
|
|
const struct hfa384x_usb_statusresp *cmdresp;
|
struct hfa384x_cmdresult *result;
|
};
|
|
static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
|
{
|
struct usbctlx_cmd_completor *complete;
|
|
complete = (struct usbctlx_cmd_completor *)head;
|
return usbctlx_get_status(complete->cmdresp, complete->result);
|
}
|
|
static inline struct usbctlx_completor *
|
init_cmd_completor(struct usbctlx_cmd_completor *completor,
|
const struct hfa384x_usb_statusresp *cmdresp,
|
struct hfa384x_cmdresult *result)
|
{
|
completor->head.complete = usbctlx_cmd_completor_fn;
|
completor->cmdresp = cmdresp;
|
completor->result = result;
|
return &completor->head;
|
}
|
|
/*----------------------------------------------------------------
|
* Completor object:
|
* This completor must be passed to hfa384x_usbctlx_complete_sync()
|
* when processing a CTLX that reads a RID.
|
*----------------------------------------------------------------
|
*/
|
struct usbctlx_rrid_completor {
|
struct usbctlx_completor head;
|
|
const struct hfa384x_usb_rridresp *rridresp;
|
void *riddata;
|
unsigned int riddatalen;
|
};
|
|
static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
|
{
|
struct usbctlx_rrid_completor *complete;
|
struct hfa384x_rridresult rridresult;
|
|
complete = (struct usbctlx_rrid_completor *)head;
|
usbctlx_get_rridresult(complete->rridresp, &rridresult);
|
|
/* Validate the length, note body len calculation in bytes */
|
if (rridresult.riddata_len != complete->riddatalen) {
|
pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
|
rridresult.rid,
|
complete->riddatalen, rridresult.riddata_len);
|
return -ENODATA;
|
}
|
|
memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
|
return 0;
|
}
|
|
static inline struct usbctlx_completor *
|
init_rrid_completor(struct usbctlx_rrid_completor *completor,
|
const struct hfa384x_usb_rridresp *rridresp,
|
void *riddata,
|
unsigned int riddatalen)
|
{
|
completor->head.complete = usbctlx_rrid_completor_fn;
|
completor->rridresp = rridresp;
|
completor->riddata = riddata;
|
completor->riddatalen = riddatalen;
|
return &completor->head;
|
}
|
|
/*----------------------------------------------------------------
|
* Completor object:
|
* Interprets the results of a synchronous RID-write
|
*----------------------------------------------------------------
|
*/
|
#define init_wrid_completor init_cmd_completor
|
|
/*----------------------------------------------------------------
|
* Completor object:
|
* Interprets the results of a synchronous memory-write
|
*----------------------------------------------------------------
|
*/
|
#define init_wmem_completor init_cmd_completor
|
|
/*----------------------------------------------------------------
|
* Completor object:
|
* Interprets the results of a synchronous memory-read
|
*----------------------------------------------------------------
|
*/
|
struct usbctlx_rmem_completor {
|
struct usbctlx_completor head;
|
|
const struct hfa384x_usb_rmemresp *rmemresp;
|
void *data;
|
unsigned int len;
|
};
|
|
static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
|
{
|
struct usbctlx_rmem_completor *complete =
|
(struct usbctlx_rmem_completor *)head;
|
|
pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
|
memcpy(complete->data, complete->rmemresp->data, complete->len);
|
return 0;
|
}
|
|
static inline struct usbctlx_completor *
|
init_rmem_completor(struct usbctlx_rmem_completor *completor,
|
struct hfa384x_usb_rmemresp *rmemresp,
|
void *data,
|
unsigned int len)
|
{
|
completor->head.complete = usbctlx_rmem_completor_fn;
|
completor->rmemresp = rmemresp;
|
completor->data = data;
|
completor->len = len;
|
return &completor->head;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cb_status
|
*
|
* Ctlx_complete handler for async CMD type control exchanges.
|
* mark the hw struct as such.
|
*
|
* Note: If the handling is changed here, it should probably be
|
* changed in docmd as well.
|
*
|
* Arguments:
|
* hw hw struct
|
* ctlx completed CTLX
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_cb_status(struct hfa384x *hw,
|
const struct hfa384x_usbctlx *ctlx)
|
{
|
if (ctlx->usercb) {
|
struct hfa384x_cmdresult cmdresult;
|
|
if (ctlx->state != CTLX_COMPLETE) {
|
memset(&cmdresult, 0, sizeof(cmdresult));
|
cmdresult.status =
|
HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
|
} else {
|
usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
|
}
|
|
ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
|
}
|
}
|
|
static inline int hfa384x_docmd_wait(struct hfa384x *hw,
|
struct hfa384x_metacmd *cmd)
|
{
|
return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
|
}
|
|
static inline int
|
hfa384x_docmd_async(struct hfa384x *hw,
|
struct hfa384x_metacmd *cmd,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
|
}
|
|
static inline int
|
hfa384x_dorrid_wait(struct hfa384x *hw, u16 rid, void *riddata,
|
unsigned int riddatalen)
|
{
|
return hfa384x_dorrid(hw, DOWAIT,
|
rid, riddata, riddatalen, NULL, NULL, NULL);
|
}
|
|
static inline int
|
hfa384x_dorrid_async(struct hfa384x *hw,
|
u16 rid, void *riddata, unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb,
|
ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_dorrid(hw, DOASYNC,
|
rid, riddata, riddatalen,
|
cmdcb, usercb, usercb_data);
|
}
|
|
static inline int
|
hfa384x_dowrid_wait(struct hfa384x *hw, u16 rid, void *riddata,
|
unsigned int riddatalen)
|
{
|
return hfa384x_dowrid(hw, DOWAIT,
|
rid, riddata, riddatalen, NULL, NULL, NULL);
|
}
|
|
static inline int
|
hfa384x_dowrid_async(struct hfa384x *hw,
|
u16 rid, void *riddata, unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb,
|
ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_dowrid(hw, DOASYNC,
|
rid, riddata, riddatalen,
|
cmdcb, usercb, usercb_data);
|
}
|
|
static inline int
|
hfa384x_dormem_wait(struct hfa384x *hw,
|
u16 page, u16 offset, void *data, unsigned int len)
|
{
|
return hfa384x_dormem(hw, DOWAIT,
|
page, offset, data, len, NULL, NULL, NULL);
|
}
|
|
static inline int
|
hfa384x_dormem_async(struct hfa384x *hw,
|
u16 page, u16 offset, void *data, unsigned int len,
|
ctlx_cmdcb_t cmdcb,
|
ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_dormem(hw, DOASYNC,
|
page, offset, data, len,
|
cmdcb, usercb, usercb_data);
|
}
|
|
static inline int
|
hfa384x_dowmem_wait(struct hfa384x *hw,
|
u16 page, u16 offset, void *data, unsigned int len)
|
{
|
return hfa384x_dowmem(hw, DOWAIT,
|
page, offset, data, len, NULL, NULL, NULL);
|
}
|
|
static inline int
|
hfa384x_dowmem_async(struct hfa384x *hw,
|
u16 page,
|
u16 offset,
|
void *data,
|
unsigned int len,
|
ctlx_cmdcb_t cmdcb,
|
ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_dowmem(hw, DOASYNC,
|
page, offset, data, len,
|
cmdcb, usercb, usercb_data);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cmd_initialize
|
*
|
* Issues the initialize command and sets the hw->state based
|
* on the result.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_cmd_initialize(struct hfa384x *hw)
|
{
|
int result = 0;
|
int i;
|
struct hfa384x_metacmd cmd;
|
|
cmd.cmd = HFA384x_CMDCODE_INIT;
|
cmd.parm0 = 0;
|
cmd.parm1 = 0;
|
cmd.parm2 = 0;
|
|
result = hfa384x_docmd_wait(hw, &cmd);
|
|
pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
|
cmd.result.status,
|
cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
|
if (result == 0) {
|
for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
|
hw->port_enabled[i] = 0;
|
}
|
|
hw->link_status = HFA384x_LINK_NOTCONNECTED;
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cmd_disable
|
*
|
* Issues the disable command to stop communications on one of
|
* the MACs 'ports'.
|
*
|
* Arguments:
|
* hw device structure
|
* macport MAC port number (host order)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
|
{
|
struct hfa384x_metacmd cmd;
|
|
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
|
HFA384x_CMD_MACPORT_SET(macport);
|
cmd.parm0 = 0;
|
cmd.parm1 = 0;
|
cmd.parm2 = 0;
|
|
return hfa384x_docmd_wait(hw, &cmd);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cmd_enable
|
*
|
* Issues the enable command to enable communications on one of
|
* the MACs 'ports'.
|
*
|
* Arguments:
|
* hw device structure
|
* macport MAC port number
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
|
{
|
struct hfa384x_metacmd cmd;
|
|
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
|
HFA384x_CMD_MACPORT_SET(macport);
|
cmd.parm0 = 0;
|
cmd.parm1 = 0;
|
cmd.parm2 = 0;
|
|
return hfa384x_docmd_wait(hw, &cmd);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cmd_monitor
|
*
|
* Enables the 'monitor mode' of the MAC. Here's the description of
|
* monitor mode that I've received thus far:
|
*
|
* "The "monitor mode" of operation is that the MAC passes all
|
* frames for which the PLCP checks are correct. All received
|
* MPDUs are passed to the host with MAC Port = 7, with a
|
* receive status of good, FCS error, or undecryptable. Passing
|
* certain MPDUs is a violation of the 802.11 standard, but useful
|
* for a debugging tool." Normal communication is not possible
|
* while monitor mode is enabled.
|
*
|
* Arguments:
|
* hw device structure
|
* enable a code (0x0b|0x0f) that enables/disables
|
* monitor mode. (host order)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
|
{
|
struct hfa384x_metacmd cmd;
|
|
cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
|
HFA384x_CMD_AINFO_SET(enable);
|
cmd.parm0 = 0;
|
cmd.parm1 = 0;
|
cmd.parm2 = 0;
|
|
return hfa384x_docmd_wait(hw, &cmd);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_cmd_download
|
*
|
* Sets the controls for the MAC controller code/data download
|
* process. The arguments set the mode and address associated
|
* with a download. Note that the aux registers should be enabled
|
* prior to setting one of the download enable modes.
|
*
|
* Arguments:
|
* hw device structure
|
* mode 0 - Disable programming and begin code exec
|
* 1 - Enable volatile mem programming
|
* 2 - Enable non-volatile mem programming
|
* 3 - Program non-volatile section from NV download
|
* buffer.
|
* (host order)
|
* lowaddr
|
* highaddr For mode 1, sets the high & low order bits of
|
* the "destination address". This address will be
|
* the execution start address when download is
|
* subsequently disabled.
|
* For mode 2, sets the high & low order bits of
|
* the destination in NV ram.
|
* For modes 0 & 3, should be zero. (host order)
|
* NOTE: these are CMD format.
|
* codelen Length of the data to write in mode 2,
|
* zero otherwise. (host order)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
|
u16 highaddr, u16 codelen)
|
{
|
struct hfa384x_metacmd cmd;
|
|
pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
|
mode, lowaddr, highaddr, codelen);
|
|
cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
|
HFA384x_CMD_PROGMODE_SET(mode));
|
|
cmd.parm0 = lowaddr;
|
cmd.parm1 = highaddr;
|
cmd.parm2 = codelen;
|
|
return hfa384x_docmd_wait(hw, &cmd);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_corereset
|
*
|
* Perform a reset of the hfa38xx MAC core. We assume that the hw
|
* structure is in its "created" state. That is, it is initialized
|
* with proper values. Note that if a reset is done after the
|
* device has been active for awhile, the caller might have to clean
|
* up some leftover cruft in the hw structure.
|
*
|
* Arguments:
|
* hw device structure
|
* holdtime how long (in ms) to hold the reset
|
* settletime how long (in ms) to wait after releasing
|
* the reset
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_corereset(struct hfa384x *hw, int holdtime,
|
int settletime, int genesis)
|
{
|
int result;
|
|
result = usb_reset_device(hw->usb);
|
if (result < 0) {
|
netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
|
result);
|
}
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_complete_sync
|
*
|
* Waits for a synchronous CTLX object to complete,
|
* and then handles the response.
|
*
|
* Arguments:
|
* hw device structure
|
* ctlx CTLX ptr
|
* completor functor object to decide what to
|
* do with the CTLX's result.
|
*
|
* Returns:
|
* 0 Success
|
* -ERESTARTSYS Interrupted by a signal
|
* -EIO CTLX failed
|
* -ENODEV Adapter was unplugged
|
* ??? Result from completor
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx,
|
struct usbctlx_completor *completor)
|
{
|
unsigned long flags;
|
int result;
|
|
result = wait_for_completion_interruptible(&ctlx->done);
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/*
|
* We can only handle the CTLX if the USB disconnect
|
* function has not run yet ...
|
*/
|
cleanup:
|
if (hw->wlandev->hwremoved) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
result = -ENODEV;
|
} else if (result != 0) {
|
int runqueue = 0;
|
|
/*
|
* We were probably interrupted, so delete
|
* this CTLX asynchronously, kill the timers
|
* and the URB, and then start the next
|
* pending CTLX.
|
*
|
* NOTE: We can only delete the timers and
|
* the URB if this CTLX is active.
|
*/
|
if (ctlx == get_active_ctlx(hw)) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
|
del_singleshot_timer_sync(&hw->reqtimer);
|
del_singleshot_timer_sync(&hw->resptimer);
|
hw->req_timer_done = 1;
|
hw->resp_timer_done = 1;
|
usb_kill_urb(&hw->ctlx_urb);
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
runqueue = 1;
|
|
/*
|
* This scenario is so unlikely that I'm
|
* happy with a grubby "goto" solution ...
|
*/
|
if (hw->wlandev->hwremoved)
|
goto cleanup;
|
}
|
|
/*
|
* The completion task will send this CTLX
|
* to the reaper the next time it runs. We
|
* are no longer in a hurry.
|
*/
|
ctlx->reapable = 1;
|
ctlx->state = CTLX_REQ_FAILED;
|
list_move_tail(&ctlx->list, &hw->ctlxq.completing);
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
|
if (runqueue)
|
hfa384x_usbctlxq_run(hw);
|
} else {
|
if (ctlx->state == CTLX_COMPLETE) {
|
result = completor->complete(completor);
|
} else {
|
netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
|
le16_to_cpu(ctlx->outbuf.type),
|
ctlxstr(ctlx->state));
|
result = -EIO;
|
}
|
|
list_del(&ctlx->list);
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
kfree(ctlx);
|
}
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_docmd
|
*
|
* Constructs a command CTLX and submits it.
|
*
|
* NOTE: Any changes to the 'post-submit' code in this function
|
* need to be carried over to hfa384x_cbcmd() since the handling
|
* is virtually identical.
|
*
|
* Arguments:
|
* hw device structure
|
* mode DOWAIT or DOASYNC
|
* cmd cmd structure. Includes all arguments and result
|
* data points. All in host order. in host order
|
* cmdcb command-specific callback
|
* usercb user callback for async calls, NULL for DOWAIT calls
|
* usercb_data user supplied data pointer for async calls, NULL
|
* for DOWAIT calls
|
*
|
* Returns:
|
* 0 success
|
* -EIO CTLX failure
|
* -ERESTARTSYS Awakened on signal
|
* >0 command indicated error, Status and Resp0-2 are
|
* in hw structure.
|
*
|
* Side effects:
|
*
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
static int
|
hfa384x_docmd(struct hfa384x *hw,
|
enum cmd_mode mode,
|
struct hfa384x_metacmd *cmd,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
int result;
|
struct hfa384x_usbctlx *ctlx;
|
|
ctlx = usbctlx_alloc();
|
if (!ctlx) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Initialize the command */
|
ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
|
ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
|
ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
|
ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
|
ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
|
|
ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
|
|
pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
|
cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
|
|
ctlx->reapable = mode;
|
ctlx->cmdcb = cmdcb;
|
ctlx->usercb = usercb;
|
ctlx->usercb_data = usercb_data;
|
|
result = hfa384x_usbctlx_submit(hw, ctlx);
|
if (result != 0) {
|
kfree(ctlx);
|
} else if (mode == DOWAIT) {
|
struct usbctlx_cmd_completor cmd_completor;
|
struct usbctlx_completor *completor;
|
|
completor = init_cmd_completor(&cmd_completor,
|
&ctlx->inbuf.cmdresp,
|
&cmd->result);
|
|
result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_dorrid
|
*
|
* Constructs a read rid CTLX and issues it.
|
*
|
* NOTE: Any changes to the 'post-submit' code in this function
|
* need to be carried over to hfa384x_cbrrid() since the handling
|
* is virtually identical.
|
*
|
* Arguments:
|
* hw device structure
|
* mode DOWAIT or DOASYNC
|
* rid Read RID number (host order)
|
* riddata Caller supplied buffer that MAC formatted RID.data
|
* record will be written to for DOWAIT calls. Should
|
* be NULL for DOASYNC calls.
|
* riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
|
* cmdcb command callback for async calls, NULL for DOWAIT calls
|
* usercb user callback for async calls, NULL for DOWAIT calls
|
* usercb_data user supplied data pointer for async calls, NULL
|
* for DOWAIT calls
|
*
|
* Returns:
|
* 0 success
|
* -EIO CTLX failure
|
* -ERESTARTSYS Awakened on signal
|
* -ENODATA riddatalen != macdatalen
|
* >0 command indicated error, Status and Resp0-2 are
|
* in hw structure.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt (DOASYNC)
|
* process (DOWAIT or DOASYNC)
|
*----------------------------------------------------------------
|
*/
|
static int
|
hfa384x_dorrid(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 rid,
|
void *riddata,
|
unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
int result;
|
struct hfa384x_usbctlx *ctlx;
|
|
ctlx = usbctlx_alloc();
|
if (!ctlx) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Initialize the command */
|
ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
|
ctlx->outbuf.rridreq.frmlen =
|
cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
|
ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
|
|
ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
|
|
ctlx->reapable = mode;
|
ctlx->cmdcb = cmdcb;
|
ctlx->usercb = usercb;
|
ctlx->usercb_data = usercb_data;
|
|
/* Submit the CTLX */
|
result = hfa384x_usbctlx_submit(hw, ctlx);
|
if (result != 0) {
|
kfree(ctlx);
|
} else if (mode == DOWAIT) {
|
struct usbctlx_rrid_completor completor;
|
|
result =
|
hfa384x_usbctlx_complete_sync(hw, ctlx,
|
init_rrid_completor
|
(&completor,
|
&ctlx->inbuf.rridresp,
|
riddata, riddatalen));
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_dowrid
|
*
|
* Constructs a write rid CTLX and issues it.
|
*
|
* NOTE: Any changes to the 'post-submit' code in this function
|
* need to be carried over to hfa384x_cbwrid() since the handling
|
* is virtually identical.
|
*
|
* Arguments:
|
* hw device structure
|
* enum cmd_mode DOWAIT or DOASYNC
|
* rid RID code
|
* riddata Data portion of RID formatted for MAC
|
* riddatalen Length of the data portion in bytes
|
* cmdcb command callback for async calls, NULL for DOWAIT calls
|
* usercb user callback for async calls, NULL for DOWAIT calls
|
* usercb_data user supplied data pointer for async calls
|
*
|
* Returns:
|
* 0 success
|
* -ETIMEDOUT timed out waiting for register ready or
|
* command completion
|
* >0 command indicated error, Status and Resp0-2 are
|
* in hw structure.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt (DOASYNC)
|
* process (DOWAIT or DOASYNC)
|
*----------------------------------------------------------------
|
*/
|
static int
|
hfa384x_dowrid(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 rid,
|
void *riddata,
|
unsigned int riddatalen,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
int result;
|
struct hfa384x_usbctlx *ctlx;
|
|
ctlx = usbctlx_alloc();
|
if (!ctlx) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Initialize the command */
|
ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
|
ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
|
(ctlx->outbuf.wridreq.rid) +
|
riddatalen + 1) / 2);
|
ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
|
memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
|
|
ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
|
sizeof(ctlx->outbuf.wridreq.frmlen) +
|
sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
|
|
ctlx->reapable = mode;
|
ctlx->cmdcb = cmdcb;
|
ctlx->usercb = usercb;
|
ctlx->usercb_data = usercb_data;
|
|
/* Submit the CTLX */
|
result = hfa384x_usbctlx_submit(hw, ctlx);
|
if (result != 0) {
|
kfree(ctlx);
|
} else if (mode == DOWAIT) {
|
struct usbctlx_cmd_completor completor;
|
struct hfa384x_cmdresult wridresult;
|
|
result = hfa384x_usbctlx_complete_sync(hw,
|
ctlx,
|
init_wrid_completor
|
(&completor,
|
&ctlx->inbuf.wridresp,
|
&wridresult));
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_dormem
|
*
|
* Constructs a readmem CTLX and issues it.
|
*
|
* NOTE: Any changes to the 'post-submit' code in this function
|
* need to be carried over to hfa384x_cbrmem() since the handling
|
* is virtually identical.
|
*
|
* Arguments:
|
* hw device structure
|
* mode DOWAIT or DOASYNC
|
* page MAC address space page (CMD format)
|
* offset MAC address space offset
|
* data Ptr to data buffer to receive read
|
* len Length of the data to read (max == 2048)
|
* cmdcb command callback for async calls, NULL for DOWAIT calls
|
* usercb user callback for async calls, NULL for DOWAIT calls
|
* usercb_data user supplied data pointer for async calls
|
*
|
* Returns:
|
* 0 success
|
* -ETIMEDOUT timed out waiting for register ready or
|
* command completion
|
* >0 command indicated error, Status and Resp0-2 are
|
* in hw structure.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt (DOASYNC)
|
* process (DOWAIT or DOASYNC)
|
*----------------------------------------------------------------
|
*/
|
static int
|
hfa384x_dormem(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 page,
|
u16 offset,
|
void *data,
|
unsigned int len,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
int result;
|
struct hfa384x_usbctlx *ctlx;
|
|
ctlx = usbctlx_alloc();
|
if (!ctlx) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Initialize the command */
|
ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
|
ctlx->outbuf.rmemreq.frmlen =
|
cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
|
sizeof(ctlx->outbuf.rmemreq.page) + len);
|
ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
|
ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
|
|
ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
|
|
pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
|
ctlx->outbuf.rmemreq.type,
|
ctlx->outbuf.rmemreq.frmlen,
|
ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
|
|
pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
|
|
ctlx->reapable = mode;
|
ctlx->cmdcb = cmdcb;
|
ctlx->usercb = usercb;
|
ctlx->usercb_data = usercb_data;
|
|
result = hfa384x_usbctlx_submit(hw, ctlx);
|
if (result != 0) {
|
kfree(ctlx);
|
} else if (mode == DOWAIT) {
|
struct usbctlx_rmem_completor completor;
|
|
result =
|
hfa384x_usbctlx_complete_sync(hw, ctlx,
|
init_rmem_completor
|
(&completor,
|
&ctlx->inbuf.rmemresp, data,
|
len));
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_dowmem
|
*
|
* Constructs a writemem CTLX and issues it.
|
*
|
* NOTE: Any changes to the 'post-submit' code in this function
|
* need to be carried over to hfa384x_cbwmem() since the handling
|
* is virtually identical.
|
*
|
* Arguments:
|
* hw device structure
|
* mode DOWAIT or DOASYNC
|
* page MAC address space page (CMD format)
|
* offset MAC address space offset
|
* data Ptr to data buffer containing write data
|
* len Length of the data to read (max == 2048)
|
* cmdcb command callback for async calls, NULL for DOWAIT calls
|
* usercb user callback for async calls, NULL for DOWAIT calls
|
* usercb_data user supplied data pointer for async calls.
|
*
|
* Returns:
|
* 0 success
|
* -ETIMEDOUT timed out waiting for register ready or
|
* command completion
|
* >0 command indicated error, Status and Resp0-2 are
|
* in hw structure.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt (DOWAIT)
|
* process (DOWAIT or DOASYNC)
|
*----------------------------------------------------------------
|
*/
|
static int
|
hfa384x_dowmem(struct hfa384x *hw,
|
enum cmd_mode mode,
|
u16 page,
|
u16 offset,
|
void *data,
|
unsigned int len,
|
ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
int result;
|
struct hfa384x_usbctlx *ctlx;
|
|
pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
|
|
ctlx = usbctlx_alloc();
|
if (!ctlx) {
|
result = -ENOMEM;
|
goto done;
|
}
|
|
/* Initialize the command */
|
ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
|
ctlx->outbuf.wmemreq.frmlen =
|
cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
|
sizeof(ctlx->outbuf.wmemreq.page) + len);
|
ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
|
ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
|
memcpy(ctlx->outbuf.wmemreq.data, data, len);
|
|
ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
|
sizeof(ctlx->outbuf.wmemreq.frmlen) +
|
sizeof(ctlx->outbuf.wmemreq.offset) +
|
sizeof(ctlx->outbuf.wmemreq.page) + len;
|
|
ctlx->reapable = mode;
|
ctlx->cmdcb = cmdcb;
|
ctlx->usercb = usercb;
|
ctlx->usercb_data = usercb_data;
|
|
result = hfa384x_usbctlx_submit(hw, ctlx);
|
if (result != 0) {
|
kfree(ctlx);
|
} else if (mode == DOWAIT) {
|
struct usbctlx_cmd_completor completor;
|
struct hfa384x_cmdresult wmemresult;
|
|
result = hfa384x_usbctlx_complete_sync(hw,
|
ctlx,
|
init_wmem_completor
|
(&completor,
|
&ctlx->inbuf.wmemresp,
|
&wmemresult));
|
}
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_disable
|
*
|
* Issues the disable command to stop communications on one of
|
* the MACs 'ports'. Only macport 0 is valid for stations.
|
* APs may also disable macports 1-6. Only ports that have been
|
* previously enabled may be disabled.
|
*
|
* Arguments:
|
* hw device structure
|
* macport MAC port number (host order)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
|
{
|
int result = 0;
|
|
if ((!hw->isap && macport != 0) ||
|
(hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
|
!(hw->port_enabled[macport])) {
|
result = -EINVAL;
|
} else {
|
result = hfa384x_cmd_disable(hw, macport);
|
if (result == 0)
|
hw->port_enabled[macport] = 0;
|
}
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_enable
|
*
|
* Issues the enable command to enable communications on one of
|
* the MACs 'ports'. Only macport 0 is valid for stations.
|
* APs may also enable macports 1-6. Only ports that are currently
|
* disabled may be enabled.
|
*
|
* Arguments:
|
* hw device structure
|
* macport MAC port number
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported failure - f/w status code
|
* <0 driver reported error (timeout|bad arg)
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
|
{
|
int result = 0;
|
|
if ((!hw->isap && macport != 0) ||
|
(hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
|
(hw->port_enabled[macport])) {
|
result = -EINVAL;
|
} else {
|
result = hfa384x_cmd_enable(hw, macport);
|
if (result == 0)
|
hw->port_enabled[macport] = 1;
|
}
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_flashdl_enable
|
*
|
* Begins the flash download state. Checks to see that we're not
|
* already in a download state and that a port isn't enabled.
|
* Sets the download state and retrieves the flash download
|
* buffer location, buffer size, and timeout length.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
|
{
|
int result = 0;
|
int i;
|
|
/* Check that a port isn't active */
|
for (i = 0; i < HFA384x_PORTID_MAX; i++) {
|
if (hw->port_enabled[i]) {
|
pr_debug("called when port enabled.\n");
|
return -EINVAL;
|
}
|
}
|
|
/* Check that we're not already in a download state */
|
if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
|
return -EINVAL;
|
|
/* Retrieve the buffer loc&size and timeout */
|
result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
|
&hw->bufinfo, sizeof(hw->bufinfo));
|
if (result)
|
return result;
|
|
le16_to_cpus(&hw->bufinfo.page);
|
le16_to_cpus(&hw->bufinfo.offset);
|
le16_to_cpus(&hw->bufinfo.len);
|
result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
|
&hw->dltimeout);
|
if (result)
|
return result;
|
|
le16_to_cpus(&hw->dltimeout);
|
|
pr_debug("flashdl_enable\n");
|
|
hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_flashdl_disable
|
*
|
* Ends the flash download state. Note that this will cause the MAC
|
* firmware to restart.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
|
{
|
/* Check that we're already in the download state */
|
if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
|
return -EINVAL;
|
|
pr_debug("flashdl_enable\n");
|
|
/* There isn't much we can do at this point, so I don't */
|
/* bother w/ the return value */
|
hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
|
hw->dlstate = HFA384x_DLSTATE_DISABLED;
|
|
return 0;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_flashdl_write
|
*
|
* Performs a FLASH download of a chunk of data. First checks to see
|
* that we're in the FLASH download state, then sets the download
|
* mode, uses the aux functions to 1) copy the data to the flash
|
* buffer, 2) sets the download 'write flash' mode, 3) readback and
|
* compare. Lather rinse, repeat as many times an necessary to get
|
* all the given data into flash.
|
* When all data has been written using this function (possibly
|
* repeatedly), call drvr_flashdl_disable() to end the download state
|
* and restart the MAC.
|
*
|
* Arguments:
|
* hw device structure
|
* daddr Card address to write to. (host order)
|
* buf Ptr to data to write.
|
* len Length of data (host order).
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
|
void *buf, u32 len)
|
{
|
int result = 0;
|
u32 dlbufaddr;
|
int nburns;
|
u32 burnlen;
|
u32 burndaddr;
|
u16 burnlo;
|
u16 burnhi;
|
int nwrites;
|
u8 *writebuf;
|
u16 writepage;
|
u16 writeoffset;
|
u32 writelen;
|
int i;
|
int j;
|
|
pr_debug("daddr=0x%08x len=%d\n", daddr, len);
|
|
/* Check that we're in the flash download state */
|
if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
|
return -EINVAL;
|
|
netdev_info(hw->wlandev->netdev,
|
"Download %d bytes to flash @0x%06x\n", len, daddr);
|
|
/* Convert to flat address for arithmetic */
|
/* NOTE: dlbuffer RID stores the address in AUX format */
|
dlbufaddr =
|
HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
|
pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
|
hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
|
/* Calculations to determine how many fills of the dlbuffer to do
|
* and how many USB wmemreq's to do for each fill. At this point
|
* in time, the dlbuffer size and the wmemreq size are the same.
|
* Therefore, nwrites should always be 1. The extra complexity
|
* here is a hedge against future changes.
|
*/
|
|
/* Figure out how many times to do the flash programming */
|
nburns = len / hw->bufinfo.len;
|
nburns += (len % hw->bufinfo.len) ? 1 : 0;
|
|
/* For each flash program cycle, how many USB wmemreq's are needed? */
|
nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
|
nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
|
|
/* For each burn */
|
for (i = 0; i < nburns; i++) {
|
/* Get the dest address and len */
|
burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
|
hw->bufinfo.len : (len - (hw->bufinfo.len * i));
|
burndaddr = daddr + (hw->bufinfo.len * i);
|
burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
|
burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
|
|
netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
|
burnlen, burndaddr);
|
|
/* Set the download mode */
|
result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
|
burnlo, burnhi, burnlen);
|
if (result) {
|
netdev_err(hw->wlandev->netdev,
|
"download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
|
burnlo, burnhi, burnlen, result);
|
goto exit_proc;
|
}
|
|
/* copy the data to the flash download buffer */
|
for (j = 0; j < nwrites; j++) {
|
writebuf = buf +
|
(i * hw->bufinfo.len) +
|
(j * HFA384x_USB_RWMEM_MAXLEN);
|
|
writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
|
(j * HFA384x_USB_RWMEM_MAXLEN));
|
writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
|
(j * HFA384x_USB_RWMEM_MAXLEN));
|
|
writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
|
writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
|
HFA384x_USB_RWMEM_MAXLEN : writelen;
|
|
result = hfa384x_dowmem_wait(hw,
|
writepage,
|
writeoffset,
|
writebuf, writelen);
|
}
|
|
/* set the download 'write flash' mode */
|
result = hfa384x_cmd_download(hw,
|
HFA384x_PROGMODE_NVWRITE,
|
0, 0, 0);
|
if (result) {
|
netdev_err(hw->wlandev->netdev,
|
"download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
|
burnlo, burnhi, burnlen, result);
|
goto exit_proc;
|
}
|
|
/* TODO: We really should do a readback and compare. */
|
}
|
|
exit_proc:
|
|
/* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
|
/* actually disable programming mode. Remember, that will cause the */
|
/* the firmware to effectively reset itself. */
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_getconfig
|
*
|
* Performs the sequence necessary to read a config/info item.
|
*
|
* Arguments:
|
* hw device structure
|
* rid config/info record id (host order)
|
* buf host side record buffer. Upon return it will
|
* contain the body portion of the record (minus the
|
* RID and len).
|
* len buffer length (in bytes, should match record length)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
* -ENODATA length mismatch between argument and retrieved
|
* record.
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
|
{
|
return hfa384x_dorrid_wait(hw, rid, buf, len);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_setconfig_async
|
*
|
* Performs the sequence necessary to write a config/info item.
|
*
|
* Arguments:
|
* hw device structure
|
* rid config/info record id (in host order)
|
* buf host side record buffer
|
* len buffer length (in bytes)
|
* usercb completion callback
|
* usercb_data completion callback argument
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int
|
hfa384x_drvr_setconfig_async(struct hfa384x *hw,
|
u16 rid,
|
void *buf,
|
u16 len, ctlx_usercb_t usercb, void *usercb_data)
|
{
|
return hfa384x_dowrid_async(hw, rid, buf, len,
|
hfa384x_cb_status, usercb, usercb_data);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_ramdl_disable
|
*
|
* Ends the ram download state.
|
*
|
* Arguments:
|
* hw device structure
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
|
{
|
/* Check that we're already in the download state */
|
if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
|
return -EINVAL;
|
|
pr_debug("ramdl_disable()\n");
|
|
/* There isn't much we can do at this point, so I don't */
|
/* bother w/ the return value */
|
hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
|
hw->dlstate = HFA384x_DLSTATE_DISABLED;
|
|
return 0;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_ramdl_enable
|
*
|
* Begins the ram download state. Checks to see that we're not
|
* already in a download state and that a port isn't enabled.
|
* Sets the download state and calls cmd_download with the
|
* ENABLE_VOLATILE subcommand and the exeaddr argument.
|
*
|
* Arguments:
|
* hw device structure
|
* exeaddr the card execution address that will be
|
* jumped to when ramdl_disable() is called
|
* (host order).
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
|
{
|
int result = 0;
|
u16 lowaddr;
|
u16 hiaddr;
|
int i;
|
|
/* Check that a port isn't active */
|
for (i = 0; i < HFA384x_PORTID_MAX; i++) {
|
if (hw->port_enabled[i]) {
|
netdev_err(hw->wlandev->netdev,
|
"Can't download with a macport enabled.\n");
|
return -EINVAL;
|
}
|
}
|
|
/* Check that we're not already in a download state */
|
if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
|
netdev_err(hw->wlandev->netdev,
|
"Download state not disabled.\n");
|
return -EINVAL;
|
}
|
|
pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
|
|
/* Call the download(1,addr) function */
|
lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
|
hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
|
|
result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
|
lowaddr, hiaddr, 0);
|
|
if (result == 0) {
|
/* Set the download state */
|
hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
|
} else {
|
pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
|
lowaddr, hiaddr, result);
|
}
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_ramdl_write
|
*
|
* Performs a RAM download of a chunk of data. First checks to see
|
* that we're in the RAM download state, then uses the [read|write]mem USB
|
* commands to 1) copy the data, 2) readback and compare. The download
|
* state is unaffected. When all data has been written using
|
* this function, call drvr_ramdl_disable() to end the download state
|
* and restart the MAC.
|
*
|
* Arguments:
|
* hw device structure
|
* daddr Card address to write to. (host order)
|
* buf Ptr to data to write.
|
* len Length of data (host order).
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
|
{
|
int result = 0;
|
int nwrites;
|
u8 *data = buf;
|
int i;
|
u32 curraddr;
|
u16 currpage;
|
u16 curroffset;
|
u16 currlen;
|
|
/* Check that we're in the ram download state */
|
if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
|
return -EINVAL;
|
|
netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
|
len, daddr);
|
|
/* How many dowmem calls? */
|
nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
|
nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
|
|
/* Do blocking wmem's */
|
for (i = 0; i < nwrites; i++) {
|
/* make address args */
|
curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
|
currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
|
curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
|
currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
|
if (currlen > HFA384x_USB_RWMEM_MAXLEN)
|
currlen = HFA384x_USB_RWMEM_MAXLEN;
|
|
/* Do blocking ctlx */
|
result = hfa384x_dowmem_wait(hw,
|
currpage,
|
curroffset,
|
data +
|
(i * HFA384x_USB_RWMEM_MAXLEN),
|
currlen);
|
|
if (result)
|
break;
|
|
/* TODO: We really should have a readback. */
|
}
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_readpda
|
*
|
* Performs the sequence to read the PDA space. Note there is no
|
* drvr_writepda() function. Writing a PDA is
|
* generally implemented by a calling component via calls to
|
* cmd_download and writing to the flash download buffer via the
|
* aux regs.
|
*
|
* Arguments:
|
* hw device structure
|
* buf buffer to store PDA in
|
* len buffer length
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
* -ETIMEDOUT timeout waiting for the cmd regs to become
|
* available, or waiting for the control reg
|
* to indicate the Aux port is enabled.
|
* -ENODATA the buffer does NOT contain a valid PDA.
|
* Either the card PDA is bad, or the auxdata
|
* reads are giving us garbage.
|
*
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process or non-card interrupt.
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
|
{
|
int result = 0;
|
__le16 *pda = buf;
|
int pdaok = 0;
|
int morepdrs = 1;
|
int currpdr = 0; /* word offset of the current pdr */
|
size_t i;
|
u16 pdrlen; /* pdr length in bytes, host order */
|
u16 pdrcode; /* pdr code, host order */
|
u16 currpage;
|
u16 curroffset;
|
struct pdaloc {
|
u32 cardaddr;
|
u16 auxctl;
|
} pdaloc[] = {
|
{
|
HFA3842_PDA_BASE, 0}, {
|
HFA3841_PDA_BASE, 0}, {
|
HFA3841_PDA_BOGUS_BASE, 0}
|
};
|
|
/* Read the pda from each known address. */
|
for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
|
/* Make address */
|
currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
|
curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
|
|
/* units of bytes */
|
result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
|
len);
|
|
if (result) {
|
netdev_warn(hw->wlandev->netdev,
|
"Read from index %zd failed, continuing\n",
|
i);
|
continue;
|
}
|
|
/* Test for garbage */
|
pdaok = 1; /* initially assume good */
|
morepdrs = 1;
|
while (pdaok && morepdrs) {
|
pdrlen = le16_to_cpu(pda[currpdr]) * 2;
|
pdrcode = le16_to_cpu(pda[currpdr + 1]);
|
/* Test the record length */
|
if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
|
netdev_err(hw->wlandev->netdev,
|
"pdrlen invalid=%d\n", pdrlen);
|
pdaok = 0;
|
break;
|
}
|
/* Test the code */
|
if (!hfa384x_isgood_pdrcode(pdrcode)) {
|
netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
|
pdrcode);
|
pdaok = 0;
|
break;
|
}
|
/* Test for completion */
|
if (pdrcode == HFA384x_PDR_END_OF_PDA)
|
morepdrs = 0;
|
|
/* Move to the next pdr (if necessary) */
|
if (morepdrs) {
|
/* note the access to pda[], need words here */
|
currpdr += le16_to_cpu(pda[currpdr]) + 1;
|
}
|
}
|
if (pdaok) {
|
netdev_info(hw->wlandev->netdev,
|
"PDA Read from 0x%08x in %s space.\n",
|
pdaloc[i].cardaddr,
|
pdaloc[i].auxctl == 0 ? "EXTDS" :
|
pdaloc[i].auxctl == 1 ? "NV" :
|
pdaloc[i].auxctl == 2 ? "PHY" :
|
pdaloc[i].auxctl == 3 ? "ICSRAM" :
|
"<bogus auxctl>");
|
break;
|
}
|
}
|
result = pdaok ? 0 : -ENODATA;
|
|
if (result)
|
pr_debug("Failure: pda is not okay\n");
|
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_setconfig
|
*
|
* Performs the sequence necessary to write a config/info item.
|
*
|
* Arguments:
|
* hw device structure
|
* rid config/info record id (in host order)
|
* buf host side record buffer
|
* len buffer length (in bytes)
|
*
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
|
{
|
return hfa384x_dowrid_wait(hw, rid, buf, len);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_start
|
*
|
* Issues the MAC initialize command, sets up some data structures,
|
* and enables the interrupts. After this function completes, the
|
* low-level stuff should be ready for any/all commands.
|
*
|
* Arguments:
|
* hw device structure
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_start(struct hfa384x *hw)
|
{
|
int result, result1, result2;
|
u16 status;
|
|
might_sleep();
|
|
/* Clear endpoint stalls - but only do this if the endpoint
|
* is showing a stall status. Some prism2 cards seem to behave
|
* badly if a clear_halt is called when the endpoint is already
|
* ok
|
*/
|
result =
|
usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
|
&status);
|
if (result < 0) {
|
netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
|
goto done;
|
}
|
if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
|
netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
|
|
result =
|
usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
|
&status);
|
if (result < 0) {
|
netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
|
goto done;
|
}
|
if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
|
netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
|
|
/* Synchronous unlink, in case we're trying to restart the driver */
|
usb_kill_urb(&hw->rx_urb);
|
|
/* Post the IN urb */
|
result = submit_rx_urb(hw, GFP_KERNEL);
|
if (result != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"Fatal, failed to submit RX URB, result=%d\n",
|
result);
|
goto done;
|
}
|
|
/* Call initialize twice, with a 1 second sleep in between.
|
* This is a nasty work-around since many prism2 cards seem to
|
* need time to settle after an init from cold. The second
|
* call to initialize in theory is not necessary - but we call
|
* it anyway as a double insurance policy:
|
* 1) If the first init should fail, the second may well succeed
|
* and the card can still be used
|
* 2) It helps ensures all is well with the card after the first
|
* init and settle time.
|
*/
|
result1 = hfa384x_cmd_initialize(hw);
|
msleep(1000);
|
result = hfa384x_cmd_initialize(hw);
|
result2 = result;
|
if (result1 != 0) {
|
if (result2 != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"cmd_initialize() failed on two attempts, results %d and %d\n",
|
result1, result2);
|
usb_kill_urb(&hw->rx_urb);
|
goto done;
|
} else {
|
pr_debug("First cmd_initialize() failed (result %d),\n",
|
result1);
|
pr_debug("but second attempt succeeded. All should be ok\n");
|
}
|
} else if (result2 != 0) {
|
netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
|
result2);
|
netdev_warn(hw->wlandev->netdev,
|
"Most likely the card will be functional\n");
|
goto done;
|
}
|
|
hw->state = HFA384x_STATE_RUNNING;
|
|
done:
|
return result;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_stop
|
*
|
* Shuts down the MAC to the point where it is safe to unload the
|
* driver. Any subsystem that may be holding a data or function
|
* ptr into the driver must be cleared/deinitialized.
|
*
|
* Arguments:
|
* hw device structure
|
* Returns:
|
* 0 success
|
* >0 f/w reported error - f/w status code
|
* <0 driver reported error
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_stop(struct hfa384x *hw)
|
{
|
int i;
|
|
might_sleep();
|
|
/* There's no need for spinlocks here. The USB "disconnect"
|
* function sets this "removed" flag and then calls us.
|
*/
|
if (!hw->wlandev->hwremoved) {
|
/* Call initialize to leave the MAC in its 'reset' state */
|
hfa384x_cmd_initialize(hw);
|
|
/* Cancel the rxurb */
|
usb_kill_urb(&hw->rx_urb);
|
}
|
|
hw->link_status = HFA384x_LINK_NOTCONNECTED;
|
hw->state = HFA384x_STATE_INIT;
|
|
del_timer_sync(&hw->commsqual_timer);
|
|
/* Clear all the port status */
|
for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
|
hw->port_enabled[i] = 0;
|
|
return 0;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_drvr_txframe
|
*
|
* Takes a frame from prism2sta and queues it for transmission.
|
*
|
* Arguments:
|
* hw device structure
|
* skb packet buffer struct. Contains an 802.11
|
* data frame.
|
* p80211_hdr points to the 802.11 header for the packet.
|
* Returns:
|
* 0 Success and more buffs available
|
* 1 Success but no more buffs
|
* 2 Allocation failure
|
* 4 Buffer full or queue busy
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
|
union p80211_hdr *p80211_hdr,
|
struct p80211_metawep *p80211_wep)
|
{
|
int usbpktlen = sizeof(struct hfa384x_tx_frame);
|
int result;
|
int ret;
|
char *ptr;
|
|
if (hw->tx_urb.status == -EINPROGRESS) {
|
netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
|
result = 3;
|
goto exit;
|
}
|
|
/* Build Tx frame structure */
|
/* Set up the control field */
|
memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
|
|
/* Setup the usb type field */
|
hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
|
|
/* Set up the sw_support field to identify this frame */
|
hw->txbuff.txfrm.desc.sw_support = 0x0123;
|
|
/* Tx complete and Tx exception disable per dleach. Might be causing
|
* buf depletion
|
*/
|
/* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
|
#if defined(DOBOTH)
|
hw->txbuff.txfrm.desc.tx_control =
|
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
|
HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
|
#elif defined(DOEXC)
|
hw->txbuff.txfrm.desc.tx_control =
|
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
|
HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
|
#else
|
hw->txbuff.txfrm.desc.tx_control =
|
HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
|
HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
|
#endif
|
cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
|
|
/* copy the header over to the txdesc */
|
memcpy(&hw->txbuff.txfrm.desc.frame_control, p80211_hdr,
|
sizeof(union p80211_hdr));
|
|
/* if we're using host WEP, increase size by IV+ICV */
|
if (p80211_wep->data) {
|
hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
|
usbpktlen += 8;
|
} else {
|
hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
|
}
|
|
usbpktlen += skb->len;
|
|
/* copy over the WEP IV if we are using host WEP */
|
ptr = hw->txbuff.txfrm.data;
|
if (p80211_wep->data) {
|
memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
|
ptr += sizeof(p80211_wep->iv);
|
memcpy(ptr, p80211_wep->data, skb->len);
|
} else {
|
memcpy(ptr, skb->data, skb->len);
|
}
|
/* copy over the packet data */
|
ptr += skb->len;
|
|
/* copy over the WEP ICV if we are using host WEP */
|
if (p80211_wep->data)
|
memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
|
|
/* Send the USB packet */
|
usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
|
hw->endp_out,
|
&hw->txbuff, ROUNDUP64(usbpktlen),
|
hfa384x_usbout_callback, hw->wlandev);
|
hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
|
|
result = 1;
|
ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
|
if (ret != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"submit_tx_urb() failed, error=%d\n", ret);
|
result = 3;
|
}
|
|
exit:
|
return result;
|
}
|
|
void hfa384x_tx_timeout(struct wlandevice *wlandev)
|
{
|
struct hfa384x *hw = wlandev->priv;
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
if (!hw->wlandev->hwremoved) {
|
int sched;
|
|
sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
|
sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
|
if (sched)
|
schedule_work(&hw->usb_work);
|
}
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_reaper_task
|
*
|
* Tasklet to delete dead CTLX objects
|
*
|
* Arguments:
|
* data ptr to a struct hfa384x
|
*
|
* Returns:
|
*
|
* Call context:
|
* Interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbctlx_reaper_task(unsigned long data)
|
{
|
struct hfa384x *hw = (struct hfa384x *)data;
|
struct hfa384x_usbctlx *ctlx, *temp;
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/* This list is guaranteed to be empty if someone
|
* has unplugged the adapter.
|
*/
|
list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
|
list_del(&ctlx->list);
|
kfree(ctlx);
|
}
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_completion_task
|
*
|
* Tasklet to call completion handlers for returned CTLXs
|
*
|
* Arguments:
|
* data ptr to struct hfa384x
|
*
|
* Returns:
|
* Nothing
|
*
|
* Call context:
|
* Interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbctlx_completion_task(unsigned long data)
|
{
|
struct hfa384x *hw = (struct hfa384x *)data;
|
struct hfa384x_usbctlx *ctlx, *temp;
|
unsigned long flags;
|
|
int reap = 0;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/* This list is guaranteed to be empty if someone
|
* has unplugged the adapter ...
|
*/
|
list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
|
/* Call the completion function that this
|
* command was assigned, assuming it has one.
|
*/
|
if (ctlx->cmdcb) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
ctlx->cmdcb(hw, ctlx);
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/* Make sure we don't try and complete
|
* this CTLX more than once!
|
*/
|
ctlx->cmdcb = NULL;
|
|
/* Did someone yank the adapter out
|
* while our list was (briefly) unlocked?
|
*/
|
if (hw->wlandev->hwremoved) {
|
reap = 0;
|
break;
|
}
|
}
|
|
/*
|
* "Reapable" CTLXs are ones which don't have any
|
* threads waiting for them to die. Hence they must
|
* be delivered to The Reaper!
|
*/
|
if (ctlx->reapable) {
|
/* Move the CTLX off the "completing" list (hopefully)
|
* on to the "reapable" list where the reaper task
|
* can find it. And "reapable" means that this CTLX
|
* isn't sitting on a wait-queue somewhere.
|
*/
|
list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
|
reap = 1;
|
}
|
|
complete(&ctlx->done);
|
}
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
|
if (reap)
|
tasklet_schedule(&hw->reaper_bh);
|
}
|
|
/*----------------------------------------------------------------
|
* unlocked_usbctlx_cancel_async
|
*
|
* Mark the CTLX dead asynchronously, and ensure that the
|
* next command on the queue is run afterwards.
|
*
|
* Arguments:
|
* hw ptr to the struct hfa384x structure
|
* ctlx ptr to a CTLX structure
|
*
|
* Returns:
|
* 0 the CTLX's URB is inactive
|
* -EINPROGRESS the URB is currently being unlinked
|
*
|
* Call context:
|
* Either process or interrupt, but presumably interrupt
|
*----------------------------------------------------------------
|
*/
|
static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx)
|
{
|
int ret;
|
|
/*
|
* Try to delete the URB containing our request packet.
|
* If we succeed, then its completion handler will be
|
* called with a status of -ECONNRESET.
|
*/
|
hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
|
ret = usb_unlink_urb(&hw->ctlx_urb);
|
|
if (ret != -EINPROGRESS) {
|
/*
|
* The OUT URB had either already completed
|
* or was still in the pending queue, so the
|
* URB's completion function will not be called.
|
* We will have to complete the CTLX ourselves.
|
*/
|
ctlx->state = CTLX_REQ_FAILED;
|
unlocked_usbctlx_complete(hw, ctlx);
|
ret = 0;
|
}
|
|
return ret;
|
}
|
|
/*----------------------------------------------------------------
|
* unlocked_usbctlx_complete
|
*
|
* A CTLX has completed. It may have been successful, it may not
|
* have been. At this point, the CTLX should be quiescent. The URBs
|
* aren't active and the timers should have been stopped.
|
*
|
* The CTLX is migrated to the "completing" queue, and the completing
|
* tasklet is scheduled.
|
*
|
* Arguments:
|
* hw ptr to a struct hfa384x structure
|
* ctlx ptr to a ctlx structure
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* Either, assume interrupt
|
*----------------------------------------------------------------
|
*/
|
static void unlocked_usbctlx_complete(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx)
|
{
|
/* Timers have been stopped, and ctlx should be in
|
* a terminal state. Retire it from the "active"
|
* queue.
|
*/
|
list_move_tail(&ctlx->list, &hw->ctlxq.completing);
|
tasklet_schedule(&hw->completion_bh);
|
|
switch (ctlx->state) {
|
case CTLX_COMPLETE:
|
case CTLX_REQ_FAILED:
|
/* This are the correct terminating states. */
|
break;
|
|
default:
|
netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
|
le16_to_cpu(ctlx->outbuf.type),
|
ctlxstr(ctlx->state));
|
break;
|
} /* switch */
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlxq_run
|
*
|
* Checks to see if the head item is running. If not, starts it.
|
*
|
* Arguments:
|
* hw ptr to struct hfa384x
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* any
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbctlxq_run(struct hfa384x *hw)
|
{
|
unsigned long flags;
|
|
/* acquire lock */
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/* Only one active CTLX at any one time, because there's no
|
* other (reliable) way to match the response URB to the
|
* correct CTLX.
|
*
|
* Don't touch any of these CTLXs if the hardware
|
* has been removed or the USB subsystem is stalled.
|
*/
|
if (!list_empty(&hw->ctlxq.active) ||
|
test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
|
goto unlock;
|
|
while (!list_empty(&hw->ctlxq.pending)) {
|
struct hfa384x_usbctlx *head;
|
int result;
|
|
/* This is the first pending command */
|
head = list_entry(hw->ctlxq.pending.next,
|
struct hfa384x_usbctlx, list);
|
|
/* We need to split this off to avoid a race condition */
|
list_move_tail(&head->list, &hw->ctlxq.active);
|
|
/* Fill the out packet */
|
usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
|
hw->endp_out,
|
&head->outbuf, ROUNDUP64(head->outbufsize),
|
hfa384x_ctlxout_callback, hw);
|
hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
|
|
/* Now submit the URB and update the CTLX's state */
|
result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
|
if (result == 0) {
|
/* This CTLX is now running on the active queue */
|
head->state = CTLX_REQ_SUBMITTED;
|
|
/* Start the OUT wait timer */
|
hw->req_timer_done = 0;
|
hw->reqtimer.expires = jiffies + HZ;
|
add_timer(&hw->reqtimer);
|
|
/* Start the IN wait timer */
|
hw->resp_timer_done = 0;
|
hw->resptimer.expires = jiffies + 2 * HZ;
|
add_timer(&hw->resptimer);
|
|
break;
|
}
|
|
if (result == -EPIPE) {
|
/* The OUT pipe needs resetting, so put
|
* this CTLX back in the "pending" queue
|
* and schedule a reset ...
|
*/
|
netdev_warn(hw->wlandev->netdev,
|
"%s tx pipe stalled: requesting reset\n",
|
hw->wlandev->netdev->name);
|
list_move(&head->list, &hw->ctlxq.pending);
|
set_bit(WORK_TX_HALT, &hw->usb_flags);
|
schedule_work(&hw->usb_work);
|
break;
|
}
|
|
if (result == -ESHUTDOWN) {
|
netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
|
hw->wlandev->netdev->name);
|
break;
|
}
|
|
netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
|
le16_to_cpu(head->outbuf.type), result);
|
unlocked_usbctlx_complete(hw, head);
|
} /* while */
|
|
unlock:
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbin_callback
|
*
|
* Callback for URBs on the BULKIN endpoint.
|
*
|
* Arguments:
|
* urb ptr to the completed urb
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbin_callback(struct urb *urb)
|
{
|
struct wlandevice *wlandev = urb->context;
|
struct hfa384x *hw;
|
union hfa384x_usbin *usbin;
|
struct sk_buff *skb = NULL;
|
int result;
|
int urb_status;
|
u16 type;
|
|
enum USBIN_ACTION {
|
HANDLE,
|
RESUBMIT,
|
ABORT
|
} action;
|
|
if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
|
goto exit;
|
|
hw = wlandev->priv;
|
if (!hw)
|
goto exit;
|
|
skb = hw->rx_urb_skb;
|
if (!skb || (skb->data != urb->transfer_buffer)) {
|
WARN_ON(1);
|
return;
|
}
|
|
hw->rx_urb_skb = NULL;
|
|
/* Check for error conditions within the URB */
|
switch (urb->status) {
|
case 0:
|
action = HANDLE;
|
|
/* Check for short packet */
|
if (urb->actual_length == 0) {
|
wlandev->netdev->stats.rx_errors++;
|
wlandev->netdev->stats.rx_length_errors++;
|
action = RESUBMIT;
|
}
|
break;
|
|
case -EPIPE:
|
netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
|
wlandev->netdev->name);
|
if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
|
schedule_work(&hw->usb_work);
|
wlandev->netdev->stats.rx_errors++;
|
action = ABORT;
|
break;
|
|
case -EILSEQ:
|
case -ETIMEDOUT:
|
case -EPROTO:
|
if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
|
!timer_pending(&hw->throttle)) {
|
mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
|
}
|
wlandev->netdev->stats.rx_errors++;
|
action = ABORT;
|
break;
|
|
case -EOVERFLOW:
|
wlandev->netdev->stats.rx_over_errors++;
|
action = RESUBMIT;
|
break;
|
|
case -ENODEV:
|
case -ESHUTDOWN:
|
pr_debug("status=%d, device removed.\n", urb->status);
|
action = ABORT;
|
break;
|
|
case -ENOENT:
|
case -ECONNRESET:
|
pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
|
action = ABORT;
|
break;
|
|
default:
|
pr_debug("urb status=%d, transfer flags=0x%x\n",
|
urb->status, urb->transfer_flags);
|
wlandev->netdev->stats.rx_errors++;
|
action = RESUBMIT;
|
break;
|
}
|
|
/* Save values from the RX URB before reposting overwrites it. */
|
urb_status = urb->status;
|
usbin = (union hfa384x_usbin *)urb->transfer_buffer;
|
|
if (action != ABORT) {
|
/* Repost the RX URB */
|
result = submit_rx_urb(hw, GFP_ATOMIC);
|
|
if (result != 0) {
|
netdev_err(hw->wlandev->netdev,
|
"Fatal, failed to resubmit rx_urb. error=%d\n",
|
result);
|
}
|
}
|
|
/* Handle any USB-IN packet */
|
/* Note: the check of the sw_support field, the type field doesn't
|
* have bit 12 set like the docs suggest.
|
*/
|
type = le16_to_cpu(usbin->type);
|
if (HFA384x_USB_ISRXFRM(type)) {
|
if (action == HANDLE) {
|
if (usbin->txfrm.desc.sw_support == 0x0123) {
|
hfa384x_usbin_txcompl(wlandev, usbin);
|
} else {
|
skb_put(skb, sizeof(*usbin));
|
hfa384x_usbin_rx(wlandev, skb);
|
skb = NULL;
|
}
|
}
|
goto exit;
|
}
|
if (HFA384x_USB_ISTXFRM(type)) {
|
if (action == HANDLE)
|
hfa384x_usbin_txcompl(wlandev, usbin);
|
goto exit;
|
}
|
switch (type) {
|
case HFA384x_USB_INFOFRM:
|
if (action == ABORT)
|
goto exit;
|
if (action == HANDLE)
|
hfa384x_usbin_info(wlandev, usbin);
|
break;
|
|
case HFA384x_USB_CMDRESP:
|
case HFA384x_USB_WRIDRESP:
|
case HFA384x_USB_RRIDRESP:
|
case HFA384x_USB_WMEMRESP:
|
case HFA384x_USB_RMEMRESP:
|
/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
|
hfa384x_usbin_ctlx(hw, usbin, urb_status);
|
break;
|
|
case HFA384x_USB_BUFAVAIL:
|
pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
|
usbin->bufavail.frmlen);
|
break;
|
|
case HFA384x_USB_ERROR:
|
pr_debug("Received USB_ERROR packet, errortype=%d\n",
|
usbin->usberror.errortype);
|
break;
|
|
default:
|
pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
|
usbin->type, urb_status);
|
break;
|
} /* switch */
|
|
exit:
|
|
if (skb)
|
dev_kfree_skb(skb);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbin_ctlx
|
*
|
* We've received a URB containing a Prism2 "response" message.
|
* This message needs to be matched up with a CTLX on the active
|
* queue and our state updated accordingly.
|
*
|
* Arguments:
|
* hw ptr to struct hfa384x
|
* usbin ptr to USB IN packet
|
* urb_status status of this Bulk-In URB
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
|
int urb_status)
|
{
|
struct hfa384x_usbctlx *ctlx;
|
int run_queue = 0;
|
unsigned long flags;
|
|
retry:
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/* There can be only one CTLX on the active queue
|
* at any one time, and this is the CTLX that the
|
* timers are waiting for.
|
*/
|
if (list_empty(&hw->ctlxq.active))
|
goto unlock;
|
|
/* Remove the "response timeout". It's possible that
|
* we are already too late, and that the timeout is
|
* already running. And that's just too bad for us,
|
* because we could lose our CTLX from the active
|
* queue here ...
|
*/
|
if (del_timer(&hw->resptimer) == 0) {
|
if (hw->resp_timer_done == 0) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
goto retry;
|
}
|
} else {
|
hw->resp_timer_done = 1;
|
}
|
|
ctlx = get_active_ctlx(hw);
|
|
if (urb_status != 0) {
|
/*
|
* Bad CTLX, so get rid of it. But we only
|
* remove it from the active queue if we're no
|
* longer expecting the OUT URB to complete.
|
*/
|
if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
|
run_queue = 1;
|
} else {
|
const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
|
|
/*
|
* Check that our message is what we're expecting ...
|
*/
|
if (ctlx->outbuf.type != intype) {
|
netdev_warn(hw->wlandev->netdev,
|
"Expected IN[%d], received IN[%d] - ignored.\n",
|
le16_to_cpu(ctlx->outbuf.type),
|
le16_to_cpu(intype));
|
goto unlock;
|
}
|
|
/* This URB has succeeded, so grab the data ... */
|
memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
|
|
switch (ctlx->state) {
|
case CTLX_REQ_SUBMITTED:
|
/*
|
* We have received our response URB before
|
* our request has been acknowledged. Odd,
|
* but our OUT URB is still alive...
|
*/
|
pr_debug("Causality violation: please reboot Universe\n");
|
ctlx->state = CTLX_RESP_COMPLETE;
|
break;
|
|
case CTLX_REQ_COMPLETE:
|
/*
|
* This is the usual path: our request
|
* has already been acknowledged, and
|
* now we have received the reply too.
|
*/
|
ctlx->state = CTLX_COMPLETE;
|
unlocked_usbctlx_complete(hw, ctlx);
|
run_queue = 1;
|
break;
|
|
default:
|
/*
|
* Throw this CTLX away ...
|
*/
|
netdev_err(hw->wlandev->netdev,
|
"Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
|
le16_to_cpu(ctlx->outbuf.type),
|
ctlxstr(ctlx->state));
|
if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
|
run_queue = 1;
|
break;
|
} /* switch */
|
}
|
|
unlock:
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
|
if (run_queue)
|
hfa384x_usbctlxq_run(hw);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbin_txcompl
|
*
|
* At this point we have the results of a previous transmit.
|
*
|
* Arguments:
|
* wlandev wlan device
|
* usbin ptr to the usb transfer buffer
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
|
union hfa384x_usbin *usbin)
|
{
|
u16 status;
|
|
status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
|
|
/* Was there an error? */
|
if (HFA384x_TXSTATUS_ISERROR(status))
|
prism2sta_ev_txexc(wlandev, status);
|
else
|
prism2sta_ev_tx(wlandev, status);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbin_rx
|
*
|
* At this point we have a successful received a rx frame packet.
|
*
|
* Arguments:
|
* wlandev wlan device
|
* usbin ptr to the usb transfer buffer
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
|
{
|
union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
|
struct hfa384x *hw = wlandev->priv;
|
int hdrlen;
|
struct p80211_rxmeta *rxmeta;
|
u16 data_len;
|
u16 fc;
|
|
/* Byte order convert once up front. */
|
le16_to_cpus(&usbin->rxfrm.desc.status);
|
le32_to_cpus(&usbin->rxfrm.desc.time);
|
|
/* Now handle frame based on port# */
|
switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
|
case 0:
|
fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
|
|
/* If exclude and we receive an unencrypted, drop it */
|
if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
|
!WLAN_GET_FC_ISWEP(fc)) {
|
break;
|
}
|
|
data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
|
|
/* How much header data do we have? */
|
hdrlen = p80211_headerlen(fc);
|
|
/* Pull off the descriptor */
|
skb_pull(skb, sizeof(struct hfa384x_rx_frame));
|
|
/* Now shunt the header block up against the data block
|
* with an "overlapping" copy
|
*/
|
memmove(skb_push(skb, hdrlen),
|
&usbin->rxfrm.desc.frame_control, hdrlen);
|
|
skb->dev = wlandev->netdev;
|
|
/* And set the frame length properly */
|
skb_trim(skb, data_len + hdrlen);
|
|
/* The prism2 series does not return the CRC */
|
memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
|
|
skb_reset_mac_header(skb);
|
|
/* Attach the rxmeta, set some stuff */
|
p80211skb_rxmeta_attach(wlandev, skb);
|
rxmeta = p80211skb_rxmeta(skb);
|
rxmeta->mactime = usbin->rxfrm.desc.time;
|
rxmeta->rxrate = usbin->rxfrm.desc.rate;
|
rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
|
rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
|
|
p80211netdev_rx(wlandev, skb);
|
|
break;
|
|
case 7:
|
if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
|
/* Copy to wlansnif skb */
|
hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
|
dev_kfree_skb(skb);
|
} else {
|
pr_debug("Received monitor frame: FCSerr set\n");
|
}
|
break;
|
|
default:
|
netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
|
HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
|
break;
|
}
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_int_rxmonitor
|
*
|
* Helper function for int_rx. Handles monitor frames.
|
* Note that this function allocates space for the FCS and sets it
|
* to 0xffffffff. The hfa384x doesn't give us the FCS value but the
|
* higher layers expect it. 0xffffffff is used as a flag to indicate
|
* the FCS is bogus.
|
*
|
* Arguments:
|
* wlandev wlan device structure
|
* rxfrm rx descriptor read from card in int_rx
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
* Allocates an skb and passes it up via the PF_PACKET interface.
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
|
struct hfa384x_usb_rxfrm *rxfrm)
|
{
|
struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
|
unsigned int hdrlen = 0;
|
unsigned int datalen = 0;
|
unsigned int skblen = 0;
|
u8 *datap;
|
u16 fc;
|
struct sk_buff *skb;
|
struct hfa384x *hw = wlandev->priv;
|
|
/* Remember the status, time, and data_len fields are in host order */
|
/* Figure out how big the frame is */
|
fc = le16_to_cpu(rxdesc->frame_control);
|
hdrlen = p80211_headerlen(fc);
|
datalen = le16_to_cpu(rxdesc->data_len);
|
|
/* Allocate an ind message+framesize skb */
|
skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
|
|
/* sanity check the length */
|
if (skblen >
|
(sizeof(struct p80211_caphdr) +
|
WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
|
pr_debug("overlen frm: len=%zd\n",
|
skblen - sizeof(struct p80211_caphdr));
|
|
return;
|
}
|
|
skb = dev_alloc_skb(skblen);
|
if (!skb)
|
return;
|
|
/* only prepend the prism header if in the right mode */
|
if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
|
(hw->sniffhdr != 0)) {
|
struct p80211_caphdr *caphdr;
|
/* The NEW header format! */
|
datap = skb_put(skb, sizeof(struct p80211_caphdr));
|
caphdr = (struct p80211_caphdr *)datap;
|
|
caphdr->version = htonl(P80211CAPTURE_VERSION);
|
caphdr->length = htonl(sizeof(struct p80211_caphdr));
|
caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
|
caphdr->hosttime = __cpu_to_be64(jiffies);
|
caphdr->phytype = htonl(4); /* dss_dot11_b */
|
caphdr->channel = htonl(hw->sniff_channel);
|
caphdr->datarate = htonl(rxdesc->rate);
|
caphdr->antenna = htonl(0); /* unknown */
|
caphdr->priority = htonl(0); /* unknown */
|
caphdr->ssi_type = htonl(3); /* rssi_raw */
|
caphdr->ssi_signal = htonl(rxdesc->signal);
|
caphdr->ssi_noise = htonl(rxdesc->silence);
|
caphdr->preamble = htonl(0); /* unknown */
|
caphdr->encoding = htonl(1); /* cck */
|
}
|
|
/* Copy the 802.11 header to the skb
|
* (ctl frames may be less than a full header)
|
*/
|
skb_put_data(skb, &rxdesc->frame_control, hdrlen);
|
|
/* If any, copy the data from the card to the skb */
|
if (datalen > 0) {
|
datap = skb_put_data(skb, rxfrm->data, datalen);
|
|
/* check for unencrypted stuff if WEP bit set. */
|
if (*(datap - hdrlen + 1) & 0x40) /* wep set */
|
if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
|
/* clear wep; it's the 802.2 header! */
|
*(datap - hdrlen + 1) &= 0xbf;
|
}
|
|
if (hw->sniff_fcs) {
|
/* Set the FCS */
|
datap = skb_put(skb, WLAN_CRC_LEN);
|
memset(datap, 0xff, WLAN_CRC_LEN);
|
}
|
|
/* pass it back up */
|
p80211netdev_rx(wlandev, skb);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbin_info
|
*
|
* At this point we have a successful received a Prism2 info frame.
|
*
|
* Arguments:
|
* wlandev wlan device
|
* usbin ptr to the usb transfer buffer
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbin_info(struct wlandevice *wlandev,
|
union hfa384x_usbin *usbin)
|
{
|
le16_to_cpus(&usbin->infofrm.info.framelen);
|
prism2sta_ev_info(wlandev, &usbin->infofrm.info);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbout_callback
|
*
|
* Callback for URBs on the BULKOUT endpoint.
|
*
|
* Arguments:
|
* urb ptr to the completed urb
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbout_callback(struct urb *urb)
|
{
|
struct wlandevice *wlandev = urb->context;
|
|
#ifdef DEBUG_USB
|
dbprint_urb(urb);
|
#endif
|
|
if (wlandev && wlandev->netdev) {
|
switch (urb->status) {
|
case 0:
|
prism2sta_ev_alloc(wlandev);
|
break;
|
|
case -EPIPE:
|
{
|
struct hfa384x *hw = wlandev->priv;
|
|
netdev_warn(hw->wlandev->netdev,
|
"%s tx pipe stalled: requesting reset\n",
|
wlandev->netdev->name);
|
if (!test_and_set_bit
|
(WORK_TX_HALT, &hw->usb_flags))
|
schedule_work(&hw->usb_work);
|
wlandev->netdev->stats.tx_errors++;
|
break;
|
}
|
|
case -EPROTO:
|
case -ETIMEDOUT:
|
case -EILSEQ:
|
{
|
struct hfa384x *hw = wlandev->priv;
|
|
if (!test_and_set_bit
|
(THROTTLE_TX, &hw->usb_flags) &&
|
!timer_pending(&hw->throttle)) {
|
mod_timer(&hw->throttle,
|
jiffies + THROTTLE_JIFFIES);
|
}
|
wlandev->netdev->stats.tx_errors++;
|
netif_stop_queue(wlandev->netdev);
|
break;
|
}
|
|
case -ENOENT:
|
case -ESHUTDOWN:
|
/* Ignorable errors */
|
break;
|
|
default:
|
netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
|
urb->status);
|
wlandev->netdev->stats.tx_errors++;
|
break;
|
} /* switch */
|
}
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_ctlxout_callback
|
*
|
* Callback for control data on the BULKOUT endpoint.
|
*
|
* Arguments:
|
* urb ptr to the completed urb
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_ctlxout_callback(struct urb *urb)
|
{
|
struct hfa384x *hw = urb->context;
|
int delete_resptimer = 0;
|
int timer_ok = 1;
|
int run_queue = 0;
|
struct hfa384x_usbctlx *ctlx;
|
unsigned long flags;
|
|
pr_debug("urb->status=%d\n", urb->status);
|
#ifdef DEBUG_USB
|
dbprint_urb(urb);
|
#endif
|
if ((urb->status == -ESHUTDOWN) ||
|
(urb->status == -ENODEV) || !hw)
|
return;
|
|
retry:
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
/*
|
* Only one CTLX at a time on the "active" list, and
|
* none at all if we are unplugged. However, we can
|
* rely on the disconnect function to clean everything
|
* up if someone unplugged the adapter.
|
*/
|
if (list_empty(&hw->ctlxq.active)) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
return;
|
}
|
|
/*
|
* Having something on the "active" queue means
|
* that we have timers to worry about ...
|
*/
|
if (del_timer(&hw->reqtimer) == 0) {
|
if (hw->req_timer_done == 0) {
|
/*
|
* This timer was actually running while we
|
* were trying to delete it. Let it terminate
|
* gracefully instead.
|
*/
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
goto retry;
|
}
|
} else {
|
hw->req_timer_done = 1;
|
}
|
|
ctlx = get_active_ctlx(hw);
|
|
if (urb->status == 0) {
|
/* Request portion of a CTLX is successful */
|
switch (ctlx->state) {
|
case CTLX_REQ_SUBMITTED:
|
/* This OUT-ACK received before IN */
|
ctlx->state = CTLX_REQ_COMPLETE;
|
break;
|
|
case CTLX_RESP_COMPLETE:
|
/* IN already received before this OUT-ACK,
|
* so this command must now be complete.
|
*/
|
ctlx->state = CTLX_COMPLETE;
|
unlocked_usbctlx_complete(hw, ctlx);
|
run_queue = 1;
|
break;
|
|
default:
|
/* This is NOT a valid CTLX "success" state! */
|
netdev_err(hw->wlandev->netdev,
|
"Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
|
le16_to_cpu(ctlx->outbuf.type),
|
ctlxstr(ctlx->state), urb->status);
|
break;
|
} /* switch */
|
} else {
|
/* If the pipe has stalled then we need to reset it */
|
if ((urb->status == -EPIPE) &&
|
!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
|
netdev_warn(hw->wlandev->netdev,
|
"%s tx pipe stalled: requesting reset\n",
|
hw->wlandev->netdev->name);
|
schedule_work(&hw->usb_work);
|
}
|
|
/* If someone cancels the OUT URB then its status
|
* should be either -ECONNRESET or -ENOENT.
|
*/
|
ctlx->state = CTLX_REQ_FAILED;
|
unlocked_usbctlx_complete(hw, ctlx);
|
delete_resptimer = 1;
|
run_queue = 1;
|
}
|
|
delresp:
|
if (delete_resptimer) {
|
timer_ok = del_timer(&hw->resptimer);
|
if (timer_ok != 0)
|
hw->resp_timer_done = 1;
|
}
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
|
if (!timer_ok && (hw->resp_timer_done == 0)) {
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
goto delresp;
|
}
|
|
if (run_queue)
|
hfa384x_usbctlxq_run(hw);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_reqtimerfn
|
*
|
* Timer response function for CTLX request timeouts. If this
|
* function is called, it means that the callback for the OUT
|
* URB containing a Prism2.x XXX_Request was never called.
|
*
|
* Arguments:
|
* data a ptr to the struct hfa384x
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
|
{
|
struct hfa384x *hw = from_timer(hw, t, reqtimer);
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
hw->req_timer_done = 1;
|
|
/* Removing the hardware automatically empties
|
* the active list ...
|
*/
|
if (!list_empty(&hw->ctlxq.active)) {
|
/*
|
* We must ensure that our URB is removed from
|
* the system, if it hasn't already expired.
|
*/
|
hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
|
if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
|
struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
|
|
ctlx->state = CTLX_REQ_FAILED;
|
|
/* This URB was active, but has now been
|
* cancelled. It will now have a status of
|
* -ECONNRESET in the callback function.
|
*
|
* We are cancelling this CTLX, so we're
|
* not going to need to wait for a response.
|
* The URB's callback function will check
|
* that this timer is truly dead.
|
*/
|
if (del_timer(&hw->resptimer) != 0)
|
hw->resp_timer_done = 1;
|
}
|
}
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_resptimerfn
|
*
|
* Timer response function for CTLX response timeouts. If this
|
* function is called, it means that the callback for the IN
|
* URB containing a Prism2.x XXX_Response was never called.
|
*
|
* Arguments:
|
* data a ptr to the struct hfa384x
|
*
|
* Returns:
|
* nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
|
{
|
struct hfa384x *hw = from_timer(hw, t, resptimer);
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
hw->resp_timer_done = 1;
|
|
/* The active list will be empty if the
|
* adapter has been unplugged ...
|
*/
|
if (!list_empty(&hw->ctlxq.active)) {
|
struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
|
|
if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
hfa384x_usbctlxq_run(hw);
|
return;
|
}
|
}
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usb_throttlefn
|
*
|
*
|
* Arguments:
|
* data ptr to hw
|
*
|
* Returns:
|
* Nothing
|
*
|
* Side effects:
|
*
|
* Call context:
|
* Interrupt
|
*----------------------------------------------------------------
|
*/
|
static void hfa384x_usb_throttlefn(struct timer_list *t)
|
{
|
struct hfa384x *hw = from_timer(hw, t, throttle);
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
pr_debug("flags=0x%lx\n", hw->usb_flags);
|
if (!hw->wlandev->hwremoved) {
|
bool rx_throttle = test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
|
!test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags);
|
bool tx_throttle = test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
|
!test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags);
|
/*
|
* We need to check BOTH the RX and the TX throttle controls,
|
* so we use the bitwise OR instead of the logical OR.
|
*/
|
if (rx_throttle | tx_throttle)
|
schedule_work(&hw->usb_work);
|
}
|
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_usbctlx_submit
|
*
|
* Called from the doxxx functions to submit a CTLX to the queue
|
*
|
* Arguments:
|
* hw ptr to the hw struct
|
* ctlx ctlx structure to enqueue
|
*
|
* Returns:
|
* -ENODEV if the adapter is unplugged
|
* 0
|
*
|
* Side effects:
|
*
|
* Call context:
|
* process or interrupt
|
*----------------------------------------------------------------
|
*/
|
static int hfa384x_usbctlx_submit(struct hfa384x *hw,
|
struct hfa384x_usbctlx *ctlx)
|
{
|
unsigned long flags;
|
|
spin_lock_irqsave(&hw->ctlxq.lock, flags);
|
|
if (hw->wlandev->hwremoved) {
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
return -ENODEV;
|
}
|
|
ctlx->state = CTLX_PENDING;
|
list_add_tail(&ctlx->list, &hw->ctlxq.pending);
|
spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
|
hfa384x_usbctlxq_run(hw);
|
|
return 0;
|
}
|
|
/*----------------------------------------------------------------
|
* hfa384x_isgood_pdrcore
|
*
|
* Quick check of PDR codes.
|
*
|
* Arguments:
|
* pdrcode PDR code number (host order)
|
*
|
* Returns:
|
* zero not good.
|
* one is good.
|
*
|
* Side effects:
|
*
|
* Call context:
|
*----------------------------------------------------------------
|
*/
|
static int hfa384x_isgood_pdrcode(u16 pdrcode)
|
{
|
switch (pdrcode) {
|
case HFA384x_PDR_END_OF_PDA:
|
case HFA384x_PDR_PCB_PARTNUM:
|
case HFA384x_PDR_PDAVER:
|
case HFA384x_PDR_NIC_SERIAL:
|
case HFA384x_PDR_MKK_MEASUREMENTS:
|
case HFA384x_PDR_NIC_RAMSIZE:
|
case HFA384x_PDR_MFISUPRANGE:
|
case HFA384x_PDR_CFISUPRANGE:
|
case HFA384x_PDR_NICID:
|
case HFA384x_PDR_MAC_ADDRESS:
|
case HFA384x_PDR_REGDOMAIN:
|
case HFA384x_PDR_ALLOWED_CHANNEL:
|
case HFA384x_PDR_DEFAULT_CHANNEL:
|
case HFA384x_PDR_TEMPTYPE:
|
case HFA384x_PDR_IFR_SETTING:
|
case HFA384x_PDR_RFR_SETTING:
|
case HFA384x_PDR_HFA3861_BASELINE:
|
case HFA384x_PDR_HFA3861_SHADOW:
|
case HFA384x_PDR_HFA3861_IFRF:
|
case HFA384x_PDR_HFA3861_CHCALSP:
|
case HFA384x_PDR_HFA3861_CHCALI:
|
case HFA384x_PDR_3842_NIC_CONFIG:
|
case HFA384x_PDR_USB_ID:
|
case HFA384x_PDR_PCI_ID:
|
case HFA384x_PDR_PCI_IFCONF:
|
case HFA384x_PDR_PCI_PMCONF:
|
case HFA384x_PDR_RFENRGY:
|
case HFA384x_PDR_HFA3861_MANF_TESTSP:
|
case HFA384x_PDR_HFA3861_MANF_TESTI:
|
/* code is OK */
|
return 1;
|
default:
|
if (pdrcode < 0x1000) {
|
/* code is OK, but we don't know exactly what it is */
|
pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
|
pdrcode);
|
return 1;
|
}
|
break;
|
}
|
/* bad code */
|
pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
|
pdrcode);
|
return 0;
|
}
|