/*
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice shall be included in
|
* all copies or substantial portions of the Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
* OTHER DEALINGS IN THE SOFTWARE.
|
*
|
*/
|
#include "pp_debug.h"
|
#include <linux/module.h>
|
#include <linux/slab.h>
|
|
#include "process_pptables_v1_0.h"
|
#include "ppatomctrl.h"
|
#include "atombios.h"
|
#include "hwmgr.h"
|
#include "cgs_common.h"
|
#include "pptable_v1_0.h"
|
|
/**
|
* Private Function used during initialization.
|
* @param hwmgr Pointer to the hardware manager.
|
* @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
|
* @param cap Which capability to set/reset.
|
*/
|
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
|
{
|
if (setIt)
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
|
else
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
|
}
|
|
|
/**
|
* Private Function used during initialization.
|
* @param hwmgr Pointer to the hardware manager.
|
* @param powerplay_caps the bit array (from BIOS) of capability bits.
|
* @exception the current implementation always returns 1.
|
*/
|
static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
|
{
|
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
|
"ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
|
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
|
"ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
|
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
|
"ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
|
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
|
"ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
|
PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
|
"ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
|
PHM_PlatformCaps_PowerPlaySupport
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
|
PHM_PlatformCaps_BiosPowerSourceControl
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
|
PHM_PlatformCaps_AutomaticDCTransition
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
|
PHM_PlatformCaps_EnableMVDDControl
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
|
PHM_PlatformCaps_ControlVDDCI
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
|
PHM_PlatformCaps_ControlVDDGFX
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
|
PHM_PlatformCaps_BACO
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
|
PHM_PlatformCaps_DisableVoltageIsland
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
|
PHM_PlatformCaps_CombinePCCWithThermalSignal
|
);
|
|
set_hw_cap(
|
hwmgr,
|
0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
|
PHM_PlatformCaps_LoadPostProductionFirmware
|
);
|
|
return 0;
|
}
|
|
/**
|
* Private Function to get the PowerPlay Table Address.
|
*/
|
static const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
|
{
|
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
|
|
u16 size;
|
u8 frev, crev;
|
void *table_address = (void *)hwmgr->soft_pp_table;
|
|
if (!table_address) {
|
table_address = (ATOM_Tonga_POWERPLAYTABLE *)
|
smu_atom_get_data_table(hwmgr->adev,
|
index, &size, &frev, &crev);
|
hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
|
hwmgr->soft_pp_table_size = size;
|
}
|
|
return table_address;
|
}
|
|
static int get_vddc_lookup_table(
|
struct pp_hwmgr *hwmgr,
|
phm_ppt_v1_voltage_lookup_table **lookup_table,
|
const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables,
|
uint32_t max_levels
|
)
|
{
|
uint32_t table_size, i;
|
phm_ppt_v1_voltage_lookup_table *table;
|
phm_ppt_v1_voltage_lookup_record *record;
|
ATOM_Tonga_Voltage_Lookup_Record *atom_record;
|
|
PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
|
"Invalid CAC Leakage PowerPlay Table!", return 1);
|
|
table_size = sizeof(uint32_t) +
|
sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
|
|
table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == table)
|
return -ENOMEM;
|
|
table->count = vddc_lookup_pp_tables->ucNumEntries;
|
|
for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
|
record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_voltage_lookup_record,
|
entries, table, i);
|
atom_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_Voltage_Lookup_Record,
|
entries, vddc_lookup_pp_tables, i);
|
record->us_calculated = 0;
|
record->us_vdd = le16_to_cpu(atom_record->usVdd);
|
record->us_cac_low = le16_to_cpu(atom_record->usCACLow);
|
record->us_cac_mid = le16_to_cpu(atom_record->usCACMid);
|
record->us_cac_high = le16_to_cpu(atom_record->usCACHigh);
|
}
|
|
*lookup_table = table;
|
|
return 0;
|
}
|
|
/**
|
* Private Function used during initialization.
|
* Initialize Platform Power Management Parameter table
|
* @param hwmgr Pointer to the hardware manager.
|
* @param atom_ppm_table Pointer to PPM table in VBIOS
|
*/
|
static int get_platform_power_management_table(
|
struct pp_hwmgr *hwmgr,
|
ATOM_Tonga_PPM_Table *atom_ppm_table)
|
{
|
struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
|
struct phm_ppt_v1_information *pp_table_information =
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
if (NULL == ptr)
|
return -ENOMEM;
|
|
ptr->ppm_design
|
= atom_ppm_table->ucPpmDesign;
|
ptr->cpu_core_number
|
= atom_ppm_table->usCpuCoreNumber;
|
ptr->platform_tdp
|
= atom_ppm_table->ulPlatformTDP;
|
ptr->small_ac_platform_tdp
|
= atom_ppm_table->ulSmallACPlatformTDP;
|
ptr->platform_tdc
|
= atom_ppm_table->ulPlatformTDC;
|
ptr->small_ac_platform_tdc
|
= atom_ppm_table->ulSmallACPlatformTDC;
|
ptr->apu_tdp
|
= atom_ppm_table->ulApuTDP;
|
ptr->dgpu_tdp
|
= atom_ppm_table->ulDGpuTDP;
|
ptr->dgpu_ulv_power
|
= atom_ppm_table->ulDGpuUlvPower;
|
ptr->tj_max
|
= atom_ppm_table->ulTjmax;
|
|
pp_table_information->ppm_parameter_table = ptr;
|
|
return 0;
|
}
|
|
/**
|
* Private Function used during initialization.
|
* Initialize TDP limits for DPM2
|
* @param hwmgr Pointer to the hardware manager.
|
* @param powerplay_table Pointer to the PowerPlay Table.
|
*/
|
static int init_dpm_2_parameters(
|
struct pp_hwmgr *hwmgr,
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
|
)
|
{
|
int result = 0;
|
struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
|
ATOM_Tonga_PPM_Table *atom_ppm_table;
|
uint32_t disable_ppm = 0;
|
uint32_t disable_power_control = 0;
|
|
pp_table_information->us_ulv_voltage_offset =
|
le16_to_cpu(powerplay_table->usUlvVoltageOffset);
|
|
pp_table_information->ppm_parameter_table = NULL;
|
pp_table_information->vddc_lookup_table = NULL;
|
pp_table_information->vddgfx_lookup_table = NULL;
|
/* TDP limits */
|
hwmgr->platform_descriptor.TDPODLimit =
|
le16_to_cpu(powerplay_table->usPowerControlLimit);
|
hwmgr->platform_descriptor.TDPAdjustment = 0;
|
hwmgr->platform_descriptor.VidAdjustment = 0;
|
hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
|
hwmgr->platform_descriptor.VidMinLimit = 0;
|
hwmgr->platform_descriptor.VidMaxLimit = 1500000;
|
hwmgr->platform_descriptor.VidStep = 6250;
|
|
disable_power_control = 0;
|
if (0 == disable_power_control) {
|
/* enable TDP overdrive (PowerControl) feature as well if supported */
|
if (hwmgr->platform_descriptor.TDPODLimit != 0)
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
PHM_PlatformCaps_PowerControl);
|
}
|
|
if (0 != powerplay_table->usVddcLookupTableOffset) {
|
const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
|
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
|
le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
|
|
result = get_vddc_lookup_table(hwmgr,
|
&pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
|
}
|
|
if (0 != powerplay_table->usVddgfxLookupTableOffset) {
|
const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
|
(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
|
le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
|
|
result = get_vddc_lookup_table(hwmgr,
|
&pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
|
}
|
|
disable_ppm = 0;
|
if (0 == disable_ppm) {
|
atom_ppm_table = (ATOM_Tonga_PPM_Table *)
|
(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
|
|
if (0 != powerplay_table->usPPMTableOffset) {
|
if (get_platform_power_management_table(hwmgr, atom_ppm_table) == 0) {
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
PHM_PlatformCaps_EnablePlatformPowerManagement);
|
}
|
}
|
}
|
|
return result;
|
}
|
|
static int get_valid_clk(
|
struct pp_hwmgr *hwmgr,
|
struct phm_clock_array **clk_table,
|
phm_ppt_v1_clock_voltage_dependency_table const *clk_volt_pp_table
|
)
|
{
|
uint32_t table_size, i;
|
struct phm_clock_array *table;
|
phm_ppt_v1_clock_voltage_dependency_record *dep_record;
|
|
PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) +
|
sizeof(uint32_t) * clk_volt_pp_table->count;
|
|
table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == table)
|
return -ENOMEM;
|
|
table->count = (uint32_t)clk_volt_pp_table->count;
|
|
for (i = 0; i < table->count; i++) {
|
dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_clock_voltage_dependency_record,
|
entries, clk_volt_pp_table, i);
|
table->values[i] = (uint32_t)dep_record->clk;
|
}
|
*clk_table = table;
|
|
return 0;
|
}
|
|
static int get_hard_limits(
|
struct pp_hwmgr *hwmgr,
|
struct phm_clock_and_voltage_limits *limits,
|
ATOM_Tonga_Hard_Limit_Table const *limitable
|
)
|
{
|
PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
|
|
/* currently we always take entries[0] parameters */
|
limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
|
limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
|
limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
|
limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
|
limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
|
|
return 0;
|
}
|
|
static int get_mclk_voltage_dependency_table(
|
struct pp_hwmgr *hwmgr,
|
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
|
ATOM_Tonga_MCLK_Dependency_Table const *mclk_dep_table
|
)
|
{
|
uint32_t table_size, i;
|
phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
|
phm_ppt_v1_clock_voltage_dependency_record *mclk_table_record;
|
ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record;
|
|
PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
|
* mclk_dep_table->ucNumEntries;
|
|
mclk_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == mclk_table)
|
return -ENOMEM;
|
|
mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
|
|
for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
|
mclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_clock_voltage_dependency_record,
|
entries, mclk_table, i);
|
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_MCLK_Dependency_Record,
|
entries, mclk_dep_table, i);
|
mclk_table_record->vddInd = mclk_dep_record->ucVddcInd;
|
mclk_table_record->vdd_offset = mclk_dep_record->usVddgfxOffset;
|
mclk_table_record->vddci = mclk_dep_record->usVddci;
|
mclk_table_record->mvdd = mclk_dep_record->usMvdd;
|
mclk_table_record->clk = mclk_dep_record->ulMclk;
|
}
|
|
*pp_tonga_mclk_dep_table = mclk_table;
|
|
return 0;
|
}
|
|
static int get_sclk_voltage_dependency_table(
|
struct pp_hwmgr *hwmgr,
|
phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
|
PPTable_Generic_SubTable_Header const *sclk_dep_table
|
)
|
{
|
uint32_t table_size, i;
|
phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
|
phm_ppt_v1_clock_voltage_dependency_record *sclk_table_record;
|
|
if (sclk_dep_table->ucRevId < 1) {
|
const ATOM_Tonga_SCLK_Dependency_Table *tonga_table =
|
(ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table;
|
ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record;
|
|
PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
|
* tonga_table->ucNumEntries;
|
|
sclk_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == sclk_table)
|
return -ENOMEM;
|
|
sclk_table->count = (uint32_t)tonga_table->ucNumEntries;
|
|
for (i = 0; i < tonga_table->ucNumEntries; i++) {
|
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_SCLK_Dependency_Record,
|
entries, tonga_table, i);
|
sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_clock_voltage_dependency_record,
|
entries, sclk_table, i);
|
sclk_table_record->vddInd = sclk_dep_record->ucVddInd;
|
sclk_table_record->vdd_offset = sclk_dep_record->usVddcOffset;
|
sclk_table_record->clk = sclk_dep_record->ulSclk;
|
sclk_table_record->cks_enable =
|
(((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
|
sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F);
|
}
|
} else {
|
const ATOM_Polaris_SCLK_Dependency_Table *polaris_table =
|
(ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table;
|
ATOM_Polaris_SCLK_Dependency_Record *sclk_dep_record;
|
|
PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
|
* polaris_table->ucNumEntries;
|
|
sclk_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == sclk_table)
|
return -ENOMEM;
|
|
sclk_table->count = (uint32_t)polaris_table->ucNumEntries;
|
|
for (i = 0; i < polaris_table->ucNumEntries; i++) {
|
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Polaris_SCLK_Dependency_Record,
|
entries, polaris_table, i);
|
sclk_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_clock_voltage_dependency_record,
|
entries, sclk_table, i);
|
sclk_table_record->vddInd = sclk_dep_record->ucVddInd;
|
sclk_table_record->vdd_offset = sclk_dep_record->usVddcOffset;
|
sclk_table_record->clk = sclk_dep_record->ulSclk;
|
sclk_table_record->cks_enable =
|
(((sclk_dep_record->ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
|
sclk_table_record->cks_voffset = (sclk_dep_record->ucCKSVOffsetandDisable & 0x7F);
|
sclk_table_record->sclk_offset = sclk_dep_record->ulSclkOffset;
|
}
|
}
|
*pp_tonga_sclk_dep_table = sclk_table;
|
|
return 0;
|
}
|
|
static int get_pcie_table(
|
struct pp_hwmgr *hwmgr,
|
phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
|
PPTable_Generic_SubTable_Header const *ptable
|
)
|
{
|
uint32_t table_size, i, pcie_count;
|
phm_ppt_v1_pcie_table *pcie_table;
|
struct phm_ppt_v1_information *pp_table_information =
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
phm_ppt_v1_pcie_record *pcie_record;
|
|
if (ptable->ucRevId < 1) {
|
const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)ptable;
|
ATOM_Tonga_PCIE_Record *atom_pcie_record;
|
|
PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) +
|
sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
|
|
pcie_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (pcie_table == NULL)
|
return -ENOMEM;
|
|
/*
|
* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
|
* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
|
*/
|
pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
|
if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
|
pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
|
else
|
pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n");
|
|
pcie_table->count = pcie_count;
|
for (i = 0; i < pcie_count; i++) {
|
pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_pcie_record,
|
entries, pcie_table, i);
|
atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_PCIE_Record,
|
entries, atom_pcie_table, i);
|
pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed;
|
pcie_record->lane_width = atom_pcie_record->usPCIELaneWidth;
|
}
|
|
*pp_tonga_pcie_table = pcie_table;
|
} else {
|
/* Polaris10/Polaris11 and newer. */
|
const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)ptable;
|
ATOM_Polaris10_PCIE_Record *atom_pcie_record;
|
|
PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
|
"Invalid PowerPlay Table!", return -1);
|
|
table_size = sizeof(uint32_t) +
|
sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
|
|
pcie_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (pcie_table == NULL)
|
return -ENOMEM;
|
|
/*
|
* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
|
* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
|
*/
|
pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
|
if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
|
pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
|
else
|
pr_err("Number of Pcie Entries exceed the number of SCLK Dpm Levels! Disregarding the excess entries...\n");
|
|
pcie_table->count = pcie_count;
|
|
for (i = 0; i < pcie_count; i++) {
|
pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_pcie_record,
|
entries, pcie_table, i);
|
atom_pcie_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Polaris10_PCIE_Record,
|
entries, atom_pcie_table, i);
|
pcie_record->gen_speed = atom_pcie_record->ucPCIEGenSpeed;
|
pcie_record->lane_width = atom_pcie_record->usPCIELaneWidth;
|
pcie_record->pcie_sclk = atom_pcie_record->ulPCIE_Sclk;
|
}
|
|
*pp_tonga_pcie_table = pcie_table;
|
}
|
|
return 0;
|
}
|
|
static int get_cac_tdp_table(
|
struct pp_hwmgr *hwmgr,
|
struct phm_cac_tdp_table **cac_tdp_table,
|
const PPTable_Generic_SubTable_Header * table
|
)
|
{
|
uint32_t table_size;
|
struct phm_cac_tdp_table *tdp_table;
|
|
table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
|
tdp_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == tdp_table)
|
return -ENOMEM;
|
|
hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == hwmgr->dyn_state.cac_dtp_table) {
|
kfree(tdp_table);
|
return -ENOMEM;
|
}
|
|
if (table->ucRevId < 3) {
|
const ATOM_Tonga_PowerTune_Table *tonga_table =
|
(ATOM_Tonga_PowerTune_Table *)table;
|
tdp_table->usTDP = tonga_table->usTDP;
|
tdp_table->usConfigurableTDP =
|
tonga_table->usConfigurableTDP;
|
tdp_table->usTDC = tonga_table->usTDC;
|
tdp_table->usBatteryPowerLimit =
|
tonga_table->usBatteryPowerLimit;
|
tdp_table->usSmallPowerLimit =
|
tonga_table->usSmallPowerLimit;
|
tdp_table->usLowCACLeakage =
|
tonga_table->usLowCACLeakage;
|
tdp_table->usHighCACLeakage =
|
tonga_table->usHighCACLeakage;
|
tdp_table->usMaximumPowerDeliveryLimit =
|
tonga_table->usMaximumPowerDeliveryLimit;
|
tdp_table->usDefaultTargetOperatingTemp =
|
tonga_table->usTjMax;
|
tdp_table->usTargetOperatingTemp =
|
tonga_table->usTjMax; /*Set the initial temp to the same as default */
|
tdp_table->usPowerTuneDataSetID =
|
tonga_table->usPowerTuneDataSetID;
|
tdp_table->usSoftwareShutdownTemp =
|
tonga_table->usSoftwareShutdownTemp;
|
tdp_table->usClockStretchAmount =
|
tonga_table->usClockStretchAmount;
|
} else { /* Fiji and newer */
|
const ATOM_Fiji_PowerTune_Table *fijitable =
|
(ATOM_Fiji_PowerTune_Table *)table;
|
tdp_table->usTDP = fijitable->usTDP;
|
tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
|
tdp_table->usTDC = fijitable->usTDC;
|
tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
|
tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
|
tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
|
tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
|
tdp_table->usMaximumPowerDeliveryLimit =
|
fijitable->usMaximumPowerDeliveryLimit;
|
tdp_table->usDefaultTargetOperatingTemp =
|
fijitable->usTjMax;
|
tdp_table->usTargetOperatingTemp =
|
fijitable->usTjMax; /*Set the initial temp to the same as default */
|
tdp_table->usPowerTuneDataSetID =
|
fijitable->usPowerTuneDataSetID;
|
tdp_table->usSoftwareShutdownTemp =
|
fijitable->usSoftwareShutdownTemp;
|
tdp_table->usClockStretchAmount =
|
fijitable->usClockStretchAmount;
|
tdp_table->usTemperatureLimitHotspot =
|
fijitable->usTemperatureLimitHotspot;
|
tdp_table->usTemperatureLimitLiquid1 =
|
fijitable->usTemperatureLimitLiquid1;
|
tdp_table->usTemperatureLimitLiquid2 =
|
fijitable->usTemperatureLimitLiquid2;
|
tdp_table->usTemperatureLimitVrVddc =
|
fijitable->usTemperatureLimitVrVddc;
|
tdp_table->usTemperatureLimitVrMvdd =
|
fijitable->usTemperatureLimitVrMvdd;
|
tdp_table->usTemperatureLimitPlx =
|
fijitable->usTemperatureLimitPlx;
|
tdp_table->ucLiquid1_I2C_address =
|
fijitable->ucLiquid1_I2C_address;
|
tdp_table->ucLiquid2_I2C_address =
|
fijitable->ucLiquid2_I2C_address;
|
tdp_table->ucLiquid_I2C_Line =
|
fijitable->ucLiquid_I2C_Line;
|
tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
|
tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
|
tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
|
tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
|
}
|
|
*cac_tdp_table = tdp_table;
|
|
return 0;
|
}
|
|
static int get_mm_clock_voltage_table(
|
struct pp_hwmgr *hwmgr,
|
phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
|
const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
|
)
|
{
|
uint32_t table_size, i;
|
const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
|
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
|
phm_ppt_v1_mm_clock_voltage_dependency_record *mm_table_record;
|
|
PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
|
"Invalid PowerPlay Table!", return -1);
|
table_size = sizeof(uint32_t) +
|
sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
|
* mm_dependency_table->ucNumEntries;
|
mm_table = kzalloc(table_size, GFP_KERNEL);
|
|
if (NULL == mm_table)
|
return -ENOMEM;
|
|
mm_table->count = mm_dependency_table->ucNumEntries;
|
|
for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
|
mm_dependency_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_MM_Dependency_Record,
|
entries, mm_dependency_table, i);
|
mm_table_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
phm_ppt_v1_mm_clock_voltage_dependency_record,
|
entries, mm_table, i);
|
mm_table_record->vddcInd = mm_dependency_record->ucVddcInd;
|
mm_table_record->vddgfx_offset = mm_dependency_record->usVddgfxOffset;
|
mm_table_record->aclk = mm_dependency_record->ulAClk;
|
mm_table_record->samclock = mm_dependency_record->ulSAMUClk;
|
mm_table_record->eclk = mm_dependency_record->ulEClk;
|
mm_table_record->vclk = mm_dependency_record->ulVClk;
|
mm_table_record->dclk = mm_dependency_record->ulDClk;
|
}
|
|
*tonga_mm_table = mm_table;
|
|
return 0;
|
}
|
|
static int get_gpio_table(struct pp_hwmgr *hwmgr,
|
struct phm_ppt_v1_gpio_table **pp_tonga_gpio_table,
|
const ATOM_Tonga_GPIO_Table *atom_gpio_table)
|
{
|
uint32_t table_size;
|
struct phm_ppt_v1_gpio_table *pp_gpio_table;
|
struct phm_ppt_v1_information *pp_table_information =
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
table_size = sizeof(struct phm_ppt_v1_gpio_table);
|
pp_gpio_table = kzalloc(table_size, GFP_KERNEL);
|
if (!pp_gpio_table)
|
return -ENOMEM;
|
|
if (pp_table_information->vdd_dep_on_sclk->count <
|
atom_gpio_table->ucVRHotTriggeredSclkDpmIndex)
|
PP_ASSERT_WITH_CODE(false,
|
"SCLK DPM index for VRHot cannot exceed the total sclk level count!",);
|
else
|
pp_gpio_table->vrhot_triggered_sclk_dpm_index =
|
atom_gpio_table->ucVRHotTriggeredSclkDpmIndex;
|
|
*pp_tonga_gpio_table = pp_gpio_table;
|
|
return 0;
|
}
|
/**
|
* Private Function used during initialization.
|
* Initialize clock voltage dependency
|
* @param hwmgr Pointer to the hardware manager.
|
* @param powerplay_table Pointer to the PowerPlay Table.
|
*/
|
static int init_clock_voltage_dependency(
|
struct pp_hwmgr *hwmgr,
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
|
)
|
{
|
int result = 0;
|
struct phm_ppt_v1_information *pp_table_information =
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
|
(const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
|
const PPTable_Generic_SubTable_Header *pPowerTuneTable =
|
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
|
const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
|
(const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
|
const PPTable_Generic_SubTable_Header *sclk_dep_table =
|
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
|
const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
|
(const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usHardLimitTableOffset));
|
const PPTable_Generic_SubTable_Header *pcie_table =
|
(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usPCIETableOffset));
|
const ATOM_Tonga_GPIO_Table *gpio_table =
|
(const ATOM_Tonga_GPIO_Table *)(((unsigned long) powerplay_table) +
|
le16_to_cpu(powerplay_table->usGPIOTableOffset));
|
|
pp_table_information->vdd_dep_on_sclk = NULL;
|
pp_table_information->vdd_dep_on_mclk = NULL;
|
pp_table_information->mm_dep_table = NULL;
|
pp_table_information->pcie_table = NULL;
|
pp_table_information->gpio_table = NULL;
|
|
if (powerplay_table->usMMDependencyTableOffset != 0)
|
result = get_mm_clock_voltage_table(hwmgr,
|
&pp_table_information->mm_dep_table, mm_dependency_table);
|
|
if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
|
result = get_cac_tdp_table(hwmgr,
|
&pp_table_information->cac_dtp_table, pPowerTuneTable);
|
|
if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
|
result = get_sclk_voltage_dependency_table(hwmgr,
|
&pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
|
|
if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
|
result = get_mclk_voltage_dependency_table(hwmgr,
|
&pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
|
|
if (result == 0 && powerplay_table->usPCIETableOffset != 0)
|
result = get_pcie_table(hwmgr,
|
&pp_table_information->pcie_table, pcie_table);
|
|
if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
|
result = get_hard_limits(hwmgr,
|
&pp_table_information->max_clock_voltage_on_dc, pHardLimits);
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
|
pp_table_information->max_clock_voltage_on_dc.sclk;
|
hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
|
pp_table_information->max_clock_voltage_on_dc.mclk;
|
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
|
pp_table_information->max_clock_voltage_on_dc.vddc;
|
hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
|
pp_table_information->max_clock_voltage_on_dc.vddci;
|
|
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
|
&& (0 != pp_table_information->vdd_dep_on_mclk->count))
|
result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
|
pp_table_information->vdd_dep_on_mclk);
|
|
if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
|
&& (0 != pp_table_information->vdd_dep_on_sclk->count))
|
result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
|
pp_table_information->vdd_dep_on_sclk);
|
|
if (!result && gpio_table)
|
result = get_gpio_table(hwmgr, &pp_table_information->gpio_table,
|
gpio_table);
|
|
return result;
|
}
|
|
/** Retrieves the (signed) Overdrive limits from VBIOS.
|
* The max engine clock, memory clock and max temperature come from the firmware info table.
|
*
|
* The information is placed into the platform descriptor.
|
*
|
* @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
|
* @param powerplay_table the address of the PowerPlay table.
|
*
|
* @return 1 as long as the firmware info table was present and of a supported version.
|
*/
|
static int init_over_drive_limits(
|
struct pp_hwmgr *hwmgr,
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
|
{
|
hwmgr->platform_descriptor.overdriveLimit.engineClock =
|
le32_to_cpu(powerplay_table->ulMaxODEngineClock);
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
|
le32_to_cpu(powerplay_table->ulMaxODMemoryClock);
|
|
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
|
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
|
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
|
|
return 0;
|
}
|
|
/**
|
* Private Function used during initialization.
|
* Inspect the PowerPlay table for obvious signs of corruption.
|
* @param hwmgr Pointer to the hardware manager.
|
* @param powerplay_table Pointer to the PowerPlay Table.
|
* @exception This implementation always returns 1.
|
*/
|
static int init_thermal_controller(
|
struct pp_hwmgr *hwmgr,
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
|
)
|
{
|
const PPTable_Generic_SubTable_Header *fan_table;
|
ATOM_Tonga_Thermal_Controller *thermal_controller;
|
|
thermal_controller = (ATOM_Tonga_Thermal_Controller *)
|
(((unsigned long)powerplay_table) +
|
le16_to_cpu(powerplay_table->usThermalControllerOffset));
|
PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
|
"Thermal controller table not set!", return -1);
|
|
hwmgr->thermal_controller.ucType = thermal_controller->ucType;
|
hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
|
hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
|
|
hwmgr->thermal_controller.fanInfo.bNoFan =
|
(0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
|
|
hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
|
thermal_controller->ucFanParameters &
|
ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
|
|
hwmgr->thermal_controller.fanInfo.ulMinRPM
|
= thermal_controller->ucFanMinRPM * 100UL;
|
hwmgr->thermal_controller.fanInfo.ulMaxRPM
|
= thermal_controller->ucFanMaxRPM * 100UL;
|
|
set_hw_cap(
|
hwmgr,
|
ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
|
PHM_PlatformCaps_ThermalController
|
);
|
|
if (0 == powerplay_table->usFanTableOffset) {
|
hwmgr->thermal_controller.use_hw_fan_control = 1;
|
return 0;
|
}
|
|
fan_table = (const PPTable_Generic_SubTable_Header *)
|
(((unsigned long)powerplay_table) +
|
le16_to_cpu(powerplay_table->usFanTableOffset));
|
|
PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
|
"Fan table not set!", return -1);
|
PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
|
"Unsupported fan table format!", return -1);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
|
= 100000;
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
if (fan_table->ucRevId < 8) {
|
const ATOM_Tonga_Fan_Table *tonga_fan_table =
|
(ATOM_Tonga_Fan_Table *)fan_table;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
|
= tonga_fan_table->ucTHyst;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
|
= tonga_fan_table->usTMin;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
|
= tonga_fan_table->usTMed;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
|
= tonga_fan_table->usTHigh;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
|
= tonga_fan_table->usPWMMin;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
|
= tonga_fan_table->usPWMMed;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
|
= tonga_fan_table->usPWMHigh;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
|
= 10900; /* hard coded */
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
|
= tonga_fan_table->usTMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
|
= tonga_fan_table->ucFanControlMode;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
|
= tonga_fan_table->usFanPWMMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
|
= 4836;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
|
= tonga_fan_table->usFanOutputSensitivity;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
|
= tonga_fan_table->usFanRPMMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
|
= (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
|
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
|
= tonga_fan_table->ucTargetTemperature;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
|
= tonga_fan_table->ucMinimumPWMLimit;
|
} else {
|
const ATOM_Fiji_Fan_Table *fiji_fan_table =
|
(ATOM_Fiji_Fan_Table *)fan_table;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
|
= fiji_fan_table->ucTHyst;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMin
|
= fiji_fan_table->usTMin;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMed
|
= fiji_fan_table->usTMed;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
|
= fiji_fan_table->usTHigh;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
|
= fiji_fan_table->usPWMMin;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
|
= fiji_fan_table->usPWMMed;
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
|
= fiji_fan_table->usPWMHigh;
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMax
|
= fiji_fan_table->usTMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
|
= fiji_fan_table->ucFanControlMode;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
|
= fiji_fan_table->usFanPWMMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
|
= 4836;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
|
= fiji_fan_table->usFanOutputSensitivity;
|
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
|
= fiji_fan_table->usFanRPMMax;
|
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
|
= (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */
|
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
|
= fiji_fan_table->ucTargetTemperature;
|
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
|
= fiji_fan_table->ucMinimumPWMLimit;
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
|
= fiji_fan_table->usFanGainEdge;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
|
= fiji_fan_table->usFanGainHotspot;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
|
= fiji_fan_table->usFanGainLiquid;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
|
= fiji_fan_table->usFanGainVrVddc;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
|
= fiji_fan_table->usFanGainVrMvdd;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
|
= fiji_fan_table->usFanGainPlx;
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
|
= fiji_fan_table->usFanGainHbm;
|
}
|
|
return 0;
|
}
|
|
/**
|
* Private Function used during initialization.
|
* Inspect the PowerPlay table for obvious signs of corruption.
|
* @param hwmgr Pointer to the hardware manager.
|
* @param powerplay_table Pointer to the PowerPlay Table.
|
* @exception 2 if the powerplay table is incorrect.
|
*/
|
static int check_powerplay_tables(
|
struct pp_hwmgr *hwmgr,
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
|
)
|
{
|
const ATOM_Tonga_State_Array *state_arrays;
|
|
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
|
le16_to_cpu(powerplay_table->usStateArrayOffset));
|
|
PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
|
powerplay_table->sHeader.ucTableFormatRevision),
|
"Unsupported PPTable format!", return -1);
|
PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
|
"State table is not set!", return -1);
|
PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
|
"Invalid PowerPlay Table!", return -1);
|
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
|
"Invalid PowerPlay Table!", return -1);
|
|
return 0;
|
}
|
|
static int pp_tables_v1_0_initialize(struct pp_hwmgr *hwmgr)
|
{
|
int result = 0;
|
const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
|
|
hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
|
|
PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
|
"Failed to allocate hwmgr->pptable!", return -ENOMEM);
|
|
memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
|
|
powerplay_table = get_powerplay_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE((NULL != powerplay_table),
|
"Missing PowerPlay Table!", return -1);
|
|
result = check_powerplay_tables(hwmgr, powerplay_table);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"check_powerplay_tables failed", return result);
|
|
result = set_platform_caps(hwmgr,
|
le32_to_cpu(powerplay_table->ulPlatformCaps));
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"set_platform_caps failed", return result);
|
|
result = init_thermal_controller(hwmgr, powerplay_table);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"init_thermal_controller failed", return result);
|
|
result = init_over_drive_limits(hwmgr, powerplay_table);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"init_over_drive_limits failed", return result);
|
|
result = init_clock_voltage_dependency(hwmgr, powerplay_table);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"init_clock_voltage_dependency failed", return result);
|
|
result = init_dpm_2_parameters(hwmgr, powerplay_table);
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
"init_dpm_2_parameters failed", return result);
|
|
return result;
|
}
|
|
static int pp_tables_v1_0_uninitialize(struct pp_hwmgr *hwmgr)
|
{
|
struct phm_ppt_v1_information *pp_table_information =
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
kfree(pp_table_information->vdd_dep_on_sclk);
|
pp_table_information->vdd_dep_on_sclk = NULL;
|
|
kfree(pp_table_information->vdd_dep_on_mclk);
|
pp_table_information->vdd_dep_on_mclk = NULL;
|
|
kfree(pp_table_information->valid_mclk_values);
|
pp_table_information->valid_mclk_values = NULL;
|
|
kfree(pp_table_information->valid_sclk_values);
|
pp_table_information->valid_sclk_values = NULL;
|
|
kfree(pp_table_information->vddc_lookup_table);
|
pp_table_information->vddc_lookup_table = NULL;
|
|
kfree(pp_table_information->vddgfx_lookup_table);
|
pp_table_information->vddgfx_lookup_table = NULL;
|
|
kfree(pp_table_information->mm_dep_table);
|
pp_table_information->mm_dep_table = NULL;
|
|
kfree(pp_table_information->cac_dtp_table);
|
pp_table_information->cac_dtp_table = NULL;
|
|
kfree(hwmgr->dyn_state.cac_dtp_table);
|
hwmgr->dyn_state.cac_dtp_table = NULL;
|
|
kfree(pp_table_information->ppm_parameter_table);
|
pp_table_information->ppm_parameter_table = NULL;
|
|
kfree(pp_table_information->pcie_table);
|
pp_table_information->pcie_table = NULL;
|
|
kfree(pp_table_information->gpio_table);
|
pp_table_information->gpio_table = NULL;
|
|
kfree(hwmgr->pptable);
|
hwmgr->pptable = NULL;
|
|
return 0;
|
}
|
|
const struct pp_table_func pptable_v1_0_funcs = {
|
.pptable_init = pp_tables_v1_0_initialize,
|
.pptable_fini = pp_tables_v1_0_uninitialize,
|
};
|
|
int get_number_of_powerplay_table_entries_v1_0(struct pp_hwmgr *hwmgr)
|
{
|
ATOM_Tonga_State_Array const *state_arrays;
|
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
|
|
PP_ASSERT_WITH_CODE((NULL != pp_table),
|
"Missing PowerPlay Table!", return -1);
|
PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
|
ATOM_Tonga_TABLE_REVISION_TONGA),
|
"Incorrect PowerPlay table revision!", return -1);
|
|
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
|
le16_to_cpu(pp_table->usStateArrayOffset));
|
|
return (uint32_t)(state_arrays->ucNumEntries);
|
}
|
|
/**
|
* Private function to convert flags stored in the BIOS to software flags in PowerPlay.
|
*/
|
static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
|
uint16_t classification, uint16_t classification2)
|
{
|
uint32_t result = 0;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
|
result |= PP_StateClassificationFlag_Boot;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
|
result |= PP_StateClassificationFlag_Thermal;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
|
result |= PP_StateClassificationFlag_LimitedPowerSource;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
|
result |= PP_StateClassificationFlag_Rest;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
|
result |= PP_StateClassificationFlag_Forced;
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
|
result |= PP_StateClassificationFlag_ACPI;
|
|
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
|
result |= PP_StateClassificationFlag_LimitedPowerSource_2;
|
|
return result;
|
}
|
|
static int ppt_get_num_of_vce_state_table_entries_v1_0(struct pp_hwmgr *hwmgr)
|
{
|
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
|
const ATOM_Tonga_VCE_State_Table *vce_state_table;
|
|
|
if (pp_table == NULL)
|
return 0;
|
|
vce_state_table = (void *)pp_table +
|
le16_to_cpu(pp_table->usVCEStateTableOffset);
|
|
return vce_state_table->ucNumEntries;
|
}
|
|
static int ppt_get_vce_state_table_entry_v1_0(struct pp_hwmgr *hwmgr, uint32_t i,
|
struct amd_vce_state *vce_state, void **clock_info, uint32_t *flag)
|
{
|
const ATOM_Tonga_VCE_State_Record *vce_state_record;
|
ATOM_Tonga_SCLK_Dependency_Record *sclk_dep_record;
|
ATOM_Tonga_MCLK_Dependency_Record *mclk_dep_record;
|
ATOM_Tonga_MM_Dependency_Record *mm_dep_record;
|
const ATOM_Tonga_POWERPLAYTABLE *pptable = get_powerplay_table(hwmgr);
|
const ATOM_Tonga_VCE_State_Table *vce_state_table = (ATOM_Tonga_VCE_State_Table *)(((unsigned long)pptable)
|
+ le16_to_cpu(pptable->usVCEStateTableOffset));
|
const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = (ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long)pptable)
|
+ le16_to_cpu(pptable->usSclkDependencyTableOffset));
|
const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long)pptable)
|
+ le16_to_cpu(pptable->usMclkDependencyTableOffset));
|
const ATOM_Tonga_MM_Dependency_Table *mm_dep_table = (ATOM_Tonga_MM_Dependency_Table *)(((unsigned long)pptable)
|
+ le16_to_cpu(pptable->usMMDependencyTableOffset));
|
|
PP_ASSERT_WITH_CODE((i < vce_state_table->ucNumEntries),
|
"Requested state entry ID is out of range!",
|
return -EINVAL);
|
|
vce_state_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_VCE_State_Record,
|
entries, vce_state_table, i);
|
sclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_SCLK_Dependency_Record,
|
entries, sclk_dep_table,
|
vce_state_record->ucSCLKIndex);
|
mm_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_MM_Dependency_Record,
|
entries, mm_dep_table,
|
vce_state_record->ucVCEClockIndex);
|
*flag = vce_state_record->ucFlag;
|
|
vce_state->evclk = mm_dep_record->ulEClk;
|
vce_state->ecclk = mm_dep_record->ulEClk;
|
vce_state->sclk = sclk_dep_record->ulSclk;
|
|
if (vce_state_record->ucMCLKIndex >= mclk_dep_table->ucNumEntries)
|
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_MCLK_Dependency_Record,
|
entries, mclk_dep_table,
|
mclk_dep_table->ucNumEntries - 1);
|
else
|
mclk_dep_record = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_MCLK_Dependency_Record,
|
entries, mclk_dep_table,
|
vce_state_record->ucMCLKIndex);
|
|
vce_state->mclk = mclk_dep_record->ulMclk;
|
return 0;
|
}
|
|
/**
|
* Create a Power State out of an entry in the PowerPlay table.
|
* This function is called by the hardware back-end.
|
* @param hwmgr Pointer to the hardware manager.
|
* @param entry_index The index of the entry to be extracted from the table.
|
* @param power_state The address of the PowerState instance being created.
|
* @return -1 if the entry cannot be retrieved.
|
*/
|
int get_powerplay_table_entry_v1_0(struct pp_hwmgr *hwmgr,
|
uint32_t entry_index, struct pp_power_state *power_state,
|
int (*call_back_func)(struct pp_hwmgr *, void *,
|
struct pp_power_state *, void *, uint32_t))
|
{
|
int result = 0;
|
const ATOM_Tonga_State_Array *state_arrays;
|
const ATOM_Tonga_State *state_entry;
|
const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
|
int i, j;
|
uint32_t flags = 0;
|
|
PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
|
power_state->classification.bios_index = entry_index;
|
|
if (pp_table->sHeader.ucTableFormatRevision >=
|
ATOM_Tonga_TABLE_REVISION_TONGA) {
|
state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
|
le16_to_cpu(pp_table->usStateArrayOffset));
|
|
PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
|
"Invalid PowerPlay Table State Array Offset.", return -1);
|
PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
|
"Invalid PowerPlay Table State Array.", return -1);
|
PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
|
"Invalid PowerPlay Table State Array Entry.", return -1);
|
|
state_entry = GET_FLEXIBLE_ARRAY_MEMBER_ADDR(
|
ATOM_Tonga_State, entries,
|
state_arrays, entry_index);
|
|
result = call_back_func(hwmgr, (void *)state_entry, power_state,
|
(void *)pp_table,
|
make_classification_flags(hwmgr,
|
le16_to_cpu(state_entry->usClassification),
|
le16_to_cpu(state_entry->usClassification2)));
|
}
|
|
if (!result && (power_state->classification.flags &
|
PP_StateClassificationFlag_Boot))
|
result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
|
|
hwmgr->num_vce_state_tables = i = ppt_get_num_of_vce_state_table_entries_v1_0(hwmgr);
|
|
if ((i != 0) && (i <= AMD_MAX_VCE_LEVELS)) {
|
for (j = 0; j < i; j++)
|
ppt_get_vce_state_table_entry_v1_0(hwmgr, j, &(hwmgr->vce_states[j]), NULL, &flags);
|
}
|
|
return result;
|
}
|