hc
2023-12-11 6778948f9de86c3cfaf36725a7c87dcff9ba247f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * include/asm-xtensa/pgalloc.h
 *
 * Copyright (C) 2001-2007 Tensilica Inc.
 */
 
#ifndef _XTENSA_PGALLOC_H
#define _XTENSA_PGALLOC_H
 
#ifdef CONFIG_MMU
#include <linux/highmem.h>
#include <linux/slab.h>
 
#define __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL
#define __HAVE_ARCH_PTE_ALLOC_ONE
#include <asm-generic/pgalloc.h>
 
/*
 * Allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
 
#define pmd_populate_kernel(mm, pmdp, ptep)                     \
   (pmd_val(*(pmdp)) = ((unsigned long)ptep))
#define pmd_populate(mm, pmdp, page)                         \
   (pmd_val(*(pmdp)) = ((unsigned long)page_to_virt(page)))
#define pmd_pgtable(pmd) pmd_page(pmd)
 
static inline pgd_t*
pgd_alloc(struct mm_struct *mm)
{
   return (pgd_t*) __get_free_pages(GFP_KERNEL | __GFP_ZERO, PGD_ORDER);
}
 
static inline void ptes_clear(pte_t *ptep)
{
   int i;
 
   for (i = 0; i < PTRS_PER_PTE; i++)
       pte_clear(NULL, 0, ptep + i);
}
 
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
{
   pte_t *ptep;
 
   ptep = (pte_t *)__pte_alloc_one_kernel(mm);
   if (!ptep)
       return NULL;
   ptes_clear(ptep);
   return ptep;
}
 
static inline pgtable_t pte_alloc_one(struct mm_struct *mm)
{
   struct page *page;
 
   page = __pte_alloc_one(mm, GFP_PGTABLE_USER);
   if (!page)
       return NULL;
   ptes_clear(page_address(page));
   return page;
}
 
#define pmd_pgtable(pmd) pmd_page(pmd)
#endif /* CONFIG_MMU */
 
#endif /* _XTENSA_PGALLOC_H */