hc
2023-12-11 6778948f9de86c3cfaf36725a7c87dcff9ba247f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Machine dependent access functions for RTC registers.
 */
#ifndef _ASM_X86_MC146818RTC_H
#define _ASM_X86_MC146818RTC_H
 
#include <asm/io.h>
#include <asm/processor.h>
 
#ifndef RTC_PORT
#define RTC_PORT(x)    (0x70 + (x))
#define RTC_ALWAYS_BCD    1    /* RTC operates in binary mode */
#endif
 
#if defined(CONFIG_X86_32)
/*
 * This lock provides nmi access to the CMOS/RTC registers.  It has some
 * special properties.  It is owned by a CPU and stores the index register
 * currently being accessed (if owned).  The idea here is that it works
 * like a normal lock (normally).  However, in an NMI, the NMI code will
 * first check to see if its CPU owns the lock, meaning that the NMI
 * interrupted during the read/write of the device.  If it does, it goes ahead
 * and performs the access and then restores the index register.  If it does
 * not, it locks normally.
 *
 * Note that since we are working with NMIs, we need this lock even in
 * a non-SMP machine just to mark that the lock is owned.
 *
 * This only works with compare-and-swap.  There is no other way to
 * atomically claim the lock and set the owner.
 */
#include <linux/smp.h>
extern volatile unsigned long cmos_lock;
 
/*
 * All of these below must be called with interrupts off, preempt
 * disabled, etc.
 */
 
static inline void lock_cmos(unsigned char reg)
{
   unsigned long new;
   new = ((smp_processor_id() + 1) << 8) | reg;
   for (;;) {
       if (cmos_lock) {
           cpu_relax();
           continue;
       }
       if (__cmpxchg(&cmos_lock, 0, new, sizeof(cmos_lock)) == 0)
           return;
   }
}
 
static inline void unlock_cmos(void)
{
   cmos_lock = 0;
}
 
static inline int do_i_have_lock_cmos(void)
{
   return (cmos_lock >> 8) == (smp_processor_id() + 1);
}
 
static inline unsigned char current_lock_cmos_reg(void)
{
   return cmos_lock & 0xff;
}
 
#define lock_cmos_prefix(reg)            \
   do {                    \
       unsigned long cmos_flags;    \
       local_irq_save(cmos_flags);    \
       lock_cmos(reg)
 
#define lock_cmos_suffix(reg)            \
   unlock_cmos();                \
   local_irq_restore(cmos_flags);        \
   } while (0)
#else
#define lock_cmos_prefix(reg) do {} while (0)
#define lock_cmos_suffix(reg) do {} while (0)
#define lock_cmos(reg) do { } while (0)
#define unlock_cmos() do { } while (0)
#define do_i_have_lock_cmos() 0
#define current_lock_cmos_reg() 0
#endif
 
/*
 * The yet supported machines all access the RTC index register via
 * an ISA port access but the way to access the date register differs ...
 */
#define CMOS_READ(addr) rtc_cmos_read(addr)
#define CMOS_WRITE(val, addr) rtc_cmos_write(val, addr)
unsigned char rtc_cmos_read(unsigned char addr);
void rtc_cmos_write(unsigned char val, unsigned char addr);
 
extern int mach_set_rtc_mmss(const struct timespec64 *now);
extern void mach_get_cmos_time(struct timespec64 *now);
 
#define RTC_IRQ 8
 
#endif /* _ASM_X86_MC146818RTC_H */