hc
2023-12-11 6778948f9de86c3cfaf36725a7c87dcff9ba247f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_EXTABLE_H
#define _ASM_EXTABLE_H
 
/*
 * About the exception table:
 *
 * - insn is a 32-bit pc-relative offset from the faulting insn.
 * - nextinsn is a 16-bit offset off of the faulting instruction
 *   (not off of the *next* instruction as branches are).
 * - errreg is the register in which to place -EFAULT.
 * - valreg is the final target register for the load sequence
 *   and will be zeroed.
 *
 * Either errreg or valreg may be $31, in which case nothing happens.
 *
 * The exception fixup information "just so happens" to be arranged
 * as in a MEM format instruction.  This lets us emit our three
 * values like so:
 *
 *      lda valreg, nextinsn(errreg)
 *
 */
 
struct exception_table_entry
{
   signed int insn;
   union exception_fixup {
       unsigned unit;
       struct {
           signed int nextinsn : 16;
           unsigned int errreg : 5;
           unsigned int valreg : 5;
       } bits;
   } fixup;
};
 
/* Returns the new pc */
#define fixup_exception(map_reg, _fixup, pc)            \
({                                \
   if ((_fixup)->fixup.bits.valreg != 31)            \
       map_reg((_fixup)->fixup.bits.valreg) = 0;    \
   if ((_fixup)->fixup.bits.errreg != 31)            \
       map_reg((_fixup)->fixup.bits.errreg) = -EFAULT;    \
   (pc) + (_fixup)->fixup.bits.nextinsn;            \
})
 
#define ARCH_HAS_RELATIVE_EXTABLE
 
#define swap_ex_entry_fixup(a, b, tmp, delta)            \
   do {                            \
       (a)->fixup.unit = (b)->fixup.unit;        \
       (b)->fixup.unit = (tmp).fixup.unit;        \
   } while (0)
 
#endif