/*
|
* Copyright 2012-15 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice shall be included in
|
* all copies or substantial portions of the Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
* OTHER DEALINGS IN THE SOFTWARE.
|
*
|
* Authors: AMD
|
*
|
*/
|
|
#include "dm_services.h"
|
|
/*
|
* Pre-requisites: headers required by header of this unit
|
*/
|
#include "include/i2caux_interface.h"
|
#include "engine.h"
|
#include "i2c_engine.h"
|
|
/*
|
* Header of this unit
|
*/
|
|
#include "i2c_sw_engine.h"
|
|
/*
|
* Post-requisites: headers required by this unit
|
*/
|
|
/*
|
* This unit
|
*/
|
|
#define SCL false
|
#define SDA true
|
|
static inline bool read_bit_from_ddc(
|
struct ddc *ddc,
|
bool data_nor_clock)
|
{
|
uint32_t value = 0;
|
|
if (data_nor_clock)
|
dal_gpio_get_value(ddc->pin_data, &value);
|
else
|
dal_gpio_get_value(ddc->pin_clock, &value);
|
|
return (value != 0);
|
}
|
|
static inline void write_bit_to_ddc(
|
struct ddc *ddc,
|
bool data_nor_clock,
|
bool bit)
|
{
|
uint32_t value = bit ? 1 : 0;
|
|
if (data_nor_clock)
|
dal_gpio_set_value(ddc->pin_data, value);
|
else
|
dal_gpio_set_value(ddc->pin_clock, value);
|
}
|
|
static bool wait_for_scl_high(
|
struct dc_context *ctx,
|
struct ddc *ddc,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t scl_retry = 0;
|
uint32_t scl_retry_max = I2C_SW_TIMEOUT_DELAY / clock_delay_div_4;
|
|
udelay(clock_delay_div_4);
|
|
/* 3 milliseconds delay
|
* to wake up some displays from "low power" state.
|
*/
|
|
do {
|
if (read_bit_from_ddc(ddc, SCL))
|
return true;
|
|
udelay(clock_delay_div_4);
|
|
++scl_retry;
|
} while (scl_retry <= scl_retry_max);
|
|
return false;
|
}
|
|
static bool start_sync(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t retry = 0;
|
|
/* The I2C communications start signal is:
|
* the SDA going low from high, while the SCL is high. */
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
udelay(clock_delay_div_4);
|
|
do {
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
if (!read_bit_from_ddc(ddc_handle, SDA)) {
|
++retry;
|
continue;
|
}
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
break;
|
|
write_bit_to_ddc(ddc_handle, SDA, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
return true;
|
} while (retry <= I2C_SW_RETRIES);
|
|
return false;
|
}
|
|
static bool stop_sync(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t retry = 0;
|
|
/* The I2C communications stop signal is:
|
* the SDA going high from low, while the SCL is high. */
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
do {
|
udelay(clock_delay_div_4);
|
|
if (read_bit_from_ddc(ddc_handle, SDA))
|
return true;
|
|
++retry;
|
} while (retry <= 2);
|
|
return false;
|
}
|
|
static bool write_byte(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t byte)
|
{
|
int32_t shift = 7;
|
bool ack;
|
|
/* bits are transmitted serially, starting from MSB */
|
|
do {
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, (byte >> shift) & 1);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
--shift;
|
} while (shift >= 0);
|
|
/* The display sends ACK by preventing the SDA from going high
|
* after the SCL pulse we use to send our last data bit.
|
* If the SDA goes high after that bit, it's a NACK */
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
/* read ACK bit */
|
|
ack = !read_bit_from_ddc(ddc_handle, SDA);
|
|
udelay(clock_delay_div_4 << 1);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4 << 1);
|
|
return ack;
|
}
|
|
static bool read_byte(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t *byte,
|
bool more)
|
{
|
int32_t shift = 7;
|
|
uint8_t data = 0;
|
|
/* The data bits are read from MSB to LSB;
|
* bit is read while SCL is high */
|
|
do {
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
if (read_bit_from_ddc(ddc_handle, SDA))
|
data |= (1 << shift);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4 << 1);
|
|
--shift;
|
} while (shift >= 0);
|
|
/* read only whole byte */
|
|
*byte = data;
|
|
udelay(clock_delay_div_4);
|
|
/* send the acknowledge bit:
|
* SDA low means ACK, SDA high means NACK */
|
|
write_bit_to_ddc(ddc_handle, SDA, !more);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
udelay(clock_delay_div_4);
|
|
return true;
|
}
|
|
static bool i2c_write(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t address,
|
uint32_t length,
|
const uint8_t *data)
|
{
|
uint32_t i = 0;
|
|
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, address))
|
return false;
|
|
while (i < length) {
|
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, data[i]))
|
return false;
|
++i;
|
}
|
|
return true;
|
}
|
|
static bool i2c_read(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t address,
|
uint32_t length,
|
uint8_t *data)
|
{
|
uint32_t i = 0;
|
|
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, address))
|
return false;
|
|
while (i < length) {
|
if (!read_byte(ctx, ddc_handle, clock_delay_div_4, data + i,
|
i < length - 1))
|
return false;
|
++i;
|
}
|
|
return true;
|
}
|
|
/*
|
* @brief
|
* Cast 'struct i2c_engine *'
|
* to 'struct i2c_sw_engine *'
|
*/
|
#define FROM_I2C_ENGINE(ptr) \
|
container_of((ptr), struct i2c_sw_engine, base)
|
|
/*
|
* @brief
|
* Cast 'struct engine *'
|
* to 'struct i2c_sw_engine *'
|
*/
|
#define FROM_ENGINE(ptr) \
|
FROM_I2C_ENGINE(container_of((ptr), struct i2c_engine, base))
|
|
enum i2caux_engine_type dal_i2c_sw_engine_get_engine_type(
|
const struct engine *engine)
|
{
|
return I2CAUX_ENGINE_TYPE_I2C_SW;
|
}
|
|
bool dal_i2c_sw_engine_submit_request(
|
struct engine *engine,
|
struct i2caux_transaction_request *i2caux_request,
|
bool middle_of_transaction)
|
{
|
struct i2c_sw_engine *sw_engine = FROM_ENGINE(engine);
|
|
struct i2c_engine *base = &sw_engine->base;
|
|
struct i2c_request_transaction_data request;
|
bool operation_succeeded = false;
|
|
if (i2caux_request->operation == I2CAUX_TRANSACTION_READ)
|
request.action = middle_of_transaction ?
|
I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT :
|
I2CAUX_TRANSACTION_ACTION_I2C_READ;
|
else if (i2caux_request->operation == I2CAUX_TRANSACTION_WRITE)
|
request.action = middle_of_transaction ?
|
I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT :
|
I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
|
else {
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_INVALID_OPERATION;
|
/* in DAL2, there was no "return false" */
|
return false;
|
}
|
|
request.address = (uint8_t)i2caux_request->payload.address;
|
request.length = i2caux_request->payload.length;
|
request.data = i2caux_request->payload.data;
|
|
base->funcs->submit_channel_request(base, &request);
|
|
if ((request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY) ||
|
(request.status == I2C_CHANNEL_OPERATION_FAILED))
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_CHANNEL_BUSY;
|
else {
|
enum i2c_channel_operation_result operation_result;
|
|
do {
|
operation_result =
|
base->funcs->get_channel_status(base, NULL);
|
|
switch (operation_result) {
|
case I2C_CHANNEL_OPERATION_SUCCEEDED:
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_SUCCEEDED;
|
operation_succeeded = true;
|
break;
|
case I2C_CHANNEL_OPERATION_NO_RESPONSE:
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_NACK;
|
break;
|
case I2C_CHANNEL_OPERATION_TIMEOUT:
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
break;
|
case I2C_CHANNEL_OPERATION_FAILED:
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_INCOMPLETE;
|
break;
|
default:
|
i2caux_request->status =
|
I2CAUX_TRANSACTION_STATUS_FAILED_OPERATION;
|
break;
|
}
|
} while (operation_result == I2C_CHANNEL_OPERATION_ENGINE_BUSY);
|
}
|
|
return operation_succeeded;
|
}
|
|
uint32_t dal_i2c_sw_engine_get_speed(
|
const struct i2c_engine *engine)
|
{
|
return FROM_I2C_ENGINE(engine)->speed;
|
}
|
|
void dal_i2c_sw_engine_set_speed(
|
struct i2c_engine *engine,
|
uint32_t speed)
|
{
|
struct i2c_sw_engine *sw_engine = FROM_I2C_ENGINE(engine);
|
|
ASSERT(speed);
|
|
sw_engine->speed = speed ? speed : I2CAUX_DEFAULT_I2C_SW_SPEED;
|
|
sw_engine->clock_delay = 1000 / sw_engine->speed;
|
|
if (sw_engine->clock_delay < 12)
|
sw_engine->clock_delay = 12;
|
}
|
|
bool dal_i2caux_i2c_sw_engine_acquire_engine(
|
struct i2c_engine *engine,
|
struct ddc *ddc)
|
{
|
enum gpio_result result;
|
|
result = dal_ddc_open(ddc, GPIO_MODE_FAST_OUTPUT,
|
GPIO_DDC_CONFIG_TYPE_MODE_I2C);
|
|
if (result != GPIO_RESULT_OK)
|
return false;
|
|
engine->base.ddc = ddc;
|
|
return true;
|
}
|
|
void dal_i2c_sw_engine_submit_channel_request(
|
struct i2c_engine *engine,
|
struct i2c_request_transaction_data *req)
|
{
|
struct i2c_sw_engine *sw_engine = FROM_I2C_ENGINE(engine);
|
|
struct ddc *ddc = engine->base.ddc;
|
uint16_t clock_delay_div_4 = sw_engine->clock_delay >> 2;
|
|
/* send sync (start / repeated start) */
|
|
bool result = start_sync(engine->base.ctx, ddc, clock_delay_div_4);
|
|
/* process payload */
|
|
if (result) {
|
switch (req->action) {
|
case I2CAUX_TRANSACTION_ACTION_I2C_WRITE:
|
case I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT:
|
result = i2c_write(engine->base.ctx, ddc, clock_delay_div_4,
|
req->address, req->length, req->data);
|
break;
|
case I2CAUX_TRANSACTION_ACTION_I2C_READ:
|
case I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT:
|
result = i2c_read(engine->base.ctx, ddc, clock_delay_div_4,
|
req->address, req->length, req->data);
|
break;
|
default:
|
result = false;
|
break;
|
}
|
}
|
|
/* send stop if not 'mot' or operation failed */
|
|
if (!result ||
|
(req->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
|
(req->action == I2CAUX_TRANSACTION_ACTION_I2C_READ))
|
if (!stop_sync(engine->base.ctx, ddc, clock_delay_div_4))
|
result = false;
|
|
req->status = result ?
|
I2C_CHANNEL_OPERATION_SUCCEEDED :
|
I2C_CHANNEL_OPERATION_FAILED;
|
}
|
|
enum i2c_channel_operation_result dal_i2c_sw_engine_get_channel_status(
|
struct i2c_engine *engine,
|
uint8_t *returned_bytes)
|
{
|
/* No arbitration with VBIOS is performed since DCE 6.0 */
|
return I2C_CHANNEL_OPERATION_SUCCEEDED;
|
}
|
|
void dal_i2c_sw_engine_destruct(
|
struct i2c_sw_engine *engine)
|
{
|
dal_i2c_engine_destruct(&engine->base);
|
}
|
|
static void destroy(
|
struct i2c_engine **ptr)
|
{
|
dal_i2c_sw_engine_destruct(FROM_I2C_ENGINE(*ptr));
|
|
kfree(*ptr);
|
*ptr = NULL;
|
}
|
|
static const struct i2c_engine_funcs i2c_engine_funcs = {
|
.acquire_engine = dal_i2caux_i2c_sw_engine_acquire_engine,
|
.destroy = destroy,
|
.get_speed = dal_i2c_sw_engine_get_speed,
|
.set_speed = dal_i2c_sw_engine_set_speed,
|
.setup_engine = dal_i2c_engine_setup_i2c_engine,
|
.submit_channel_request = dal_i2c_sw_engine_submit_channel_request,
|
.process_channel_reply = dal_i2c_engine_process_channel_reply,
|
.get_channel_status = dal_i2c_sw_engine_get_channel_status,
|
};
|
|
static void release_engine(
|
struct engine *engine)
|
{
|
|
}
|
|
static const struct engine_funcs engine_funcs = {
|
.release_engine = release_engine,
|
.get_engine_type = dal_i2c_sw_engine_get_engine_type,
|
.acquire = dal_i2c_engine_acquire,
|
.submit_request = dal_i2c_sw_engine_submit_request,
|
};
|
|
void dal_i2c_sw_engine_construct(
|
struct i2c_sw_engine *engine,
|
const struct i2c_sw_engine_create_arg *arg)
|
{
|
dal_i2c_engine_construct(&engine->base, arg->ctx);
|
dal_i2c_sw_engine_set_speed(&engine->base, arg->default_speed);
|
engine->base.funcs = &i2c_engine_funcs;
|
engine->base.base.funcs = &engine_funcs;
|
}
|
|
struct i2c_engine *dal_i2c_sw_engine_create(
|
const struct i2c_sw_engine_create_arg *arg)
|
{
|
struct i2c_sw_engine *engine;
|
|
if (!arg) {
|
BREAK_TO_DEBUGGER();
|
return NULL;
|
}
|
|
engine = kzalloc(sizeof(struct i2c_sw_engine), GFP_KERNEL);
|
|
if (!engine) {
|
BREAK_TO_DEBUGGER();
|
return NULL;
|
}
|
|
dal_i2c_sw_engine_construct(engine, arg);
|
return &engine->base;
|
}
|