/*
|
* Misc utility routines for accessing chip-specific features
|
* of the BOOKER NCI (non coherent interconnect) based Broadcom chips.
|
*
|
* Broadcom Proprietary and Confidential. Copyright (C) 2020,
|
* All Rights Reserved.
|
*
|
* This is UNPUBLISHED PROPRIETARY SOURCE CODE of Broadcom;
|
* the contents of this file may not be disclosed to third parties,
|
* copied or duplicated in any form, in whole or in part, without
|
* the prior written permission of Broadcom.
|
*
|
*
|
* <<Broadcom-WL-IPTag/Proprietary:>>
|
*/
|
|
#include <typedefs.h>
|
#include <hndsoc.h>
|
#include <sbchipc.h>
|
#include <pcicfg.h>
|
#include <pcie_core.h>
|
#include "siutils_priv.h"
|
#include <nci.h>
|
#include <bcmdevs.h>
|
#include <hndoobr.h>
|
|
#define NCI_BAD_REG 0xbbadd000u /* Bad Register Address */
|
#define NCI_BAD_INDEX -1 /* Bad Index */
|
|
#define OOBR_BASE_MASK 0x00001FFFu /* Mask to get Base address of OOBR */
|
#define EROM1_BASE_MASK 0x00000FFFu /* Mask to get Base address of EROM1 */
|
|
/* Core Info */
|
#define COREINFO_COREID_MASK 0x00000FFFu /* Bit-11 to 0 */
|
#define COREINFO_REV_MASK 0x000FF000u /* Core Rev Mask */
|
#define COREINFO_REV_SHIFT 12u /* Bit-12 */
|
#define COREINFO_MFG_MASK 0x00F00000u /* Core Mfg Mask */
|
#define COREINFO_MFG_SHIFT 20u /* Bit-20 */
|
#define COREINFO_BPID_MASK 0x07000000u /* 26-24 Gives Backplane ID */
|
#define COREINFO_BPID_SHIFT 24u /* Bit:26-24 */
|
#define COREINFO_ISBP_MASK 0x08000000u /* Is Backplane or Bridge */
|
#define COREINFO_ISBP_SHIFT 27u /* Bit:27 */
|
|
/* Interface Config */
|
#define IC_IFACECNT_MASK 0x0000F000u /* No of Interface Descriptor Mask */
|
#define IC_IFACECNT_SHIFT 12u /* Bit-12 */
|
#define IC_IFACEOFFSET_MASK 0x00000FFFu /* OFFSET for 1st Interface Descriptor */
|
|
/* DMP Reg Offset */
|
#define DMP_DMPCTRL_REG_OFFSET 8u
|
|
/* Interface Descriptor Masks */
|
#define ID_NODEPTR_MASK 0xFFFFFFF8u /* Master/Slave Network Interface Addr */
|
#define ID_NODETYPE_MASK 0x00000007u /* 0:Booker 1:IDM 1-0xf:Reserved */
|
#define ID_WORDOFFSET_MASK 0xF0000000u /* WordOffset to next Iface Desc in EROM2 */
|
#define ID_WORDOFFSET_SHIFT 28u /* WordOffset bits 31-28 */
|
#define ID_CORETYPE_MASK 0x08000000u /* CORE belongs to OOBR(0) or EROM(1) */
|
#define ID_CORETYPE_SHIFT 27u /* Bit-27 */
|
#define ID_MI_MASK 0x04000000u /* 0: Slave Interface, 1:Master Interface */
|
#define ID_MI_SHIFT 26u /* Bit-26 */
|
#define ID_NADDR_MASK 0x03000000u /* No of Slave Address Regions */
|
#define ID_NADDR_SHIFT 24u /* Bit:25-24 */
|
#define ID_BPID_MASK 0x00F00000u /* Give Backplane ID */
|
#define ID_BPID_SHIFT 20u /* Bit:20-23 */
|
#define ID_COREINFOPTR_MASK 0x00001FFFu /* OOBR or EROM Offset */
|
#define ID_ENDMARKER 0xFFFFFFFFu /* End of EROM Part 2 */
|
|
/* Slave Port Address Descriptor Masks */
|
#define SLAVEPORT_BASE_ADDR_MASK 0xFFFFFF00u /* Bits 31:8 is the base address */
|
#define SLAVEPORT_BOUND_ADDR_MASK 0x00000040u /* Addr is not 2^n and with bound addr */
|
#define SLAVEPORT_BOUND_ADDR_SHIFT 6u /* Bit-6 */
|
#define SLAVEPORT_64BIT_ADDR_MASK 0x00000020u /* 64-bit base and bound fields */
|
#define SLAVEPORT_64BIT_ADDR_SHIFT 5u /* Bit-5 */
|
#define SLAVEPORT_ADDR_SIZE_MASK 0x0000001Fu /* Address Size mask */
|
#define SLAVEPORT_ADDR_TYPE_BOUND 0x1u /* Bound Addr */
|
#define SLAVEPORT_ADDR_TYPE_64 0x2u /* 64-Bit Addr */
|
#define SLAVEPORT_ADDR_MIN_SHIFT 0x8u
|
/* Address space Size of the slave port */
|
#define SLAVEPORT_ADDR_SIZE(adesc) (1u << ((adesc & SLAVEPORT_ADDR_SIZE_MASK) + \
|
SLAVEPORT_ADDR_MIN_SHIFT))
|
|
#define GET_NEXT_EROM_ADDR(addr) ((uint32*)((uintptr)(addr) + 4u))
|
|
#define NCI_DEFAULT_CORE_UNIT (0u)
|
|
/* Error Codes */
|
enum {
|
NCI_OK = 0,
|
NCI_BACKPLANE_ID_MISMATCH = -1,
|
NCI_INVALID_EROM2PTR = -2,
|
NCI_WORDOFFSET_MISMATCH = -3,
|
NCI_NOMEM = -4,
|
NCI_MASTER_INVALID_ADDR = -5
|
};
|
|
#define GET_OOBR_BASE(erom2base) ((erom2base) & ~OOBR_BASE_MASK)
|
#define GET_EROM1_BASE(erom2base) ((erom2base) & ~EROM1_BASE_MASK)
|
#define CORE_ID(core_info) ((core_info) & COREINFO_COREID_MASK)
|
#define GET_INFACECNT(iface_cfg) (((iface_cfg) & IC_IFACECNT_MASK) >> IC_IFACECNT_SHIFT)
|
#define GET_NODEPTR(iface_desc_0) ((iface_desc_0) & ID_NODEPTR_MASK)
|
#define GET_NODETYPE(iface_desc_0) ((iface_desc_0) & ID_NODETYPE_MASK)
|
#define GET_WORDOFFSET(iface_desc_1) (((iface_desc_1) & ID_WORDOFFSET_MASK) \
|
>> ID_WORDOFFSET_SHIFT)
|
#define IS_MASTER(iface_desc_1) (((iface_desc_1) & ID_MI_MASK) >> ID_MI_SHIFT)
|
#define GET_CORETYPE(iface_desc_1) (((iface_desc_1) & ID_CORETYPE_MASK) >> ID_CORETYPE_SHIFT)
|
#define GET_NUM_ADDR_REG(iface_desc_1) (((iface_desc_1) & ID_NADDR_MASK) >> ID_NADDR_SHIFT)
|
#define GET_COREOFFSET(iface_desc_1) ((iface_desc_1) & ID_COREINFOPTR_MASK)
|
#define ADDR_SIZE(sz) ((1u << ((sz) + 8u)) - 1u)
|
|
#define CORE_REV(core_info) ((core_info) & COREINFO_REV_MASK) >> COREINFO_REV_SHIFT
|
#define CORE_MFG(core_info) ((core_info) & COREINFO_MFG_MASK) >> COREINFO_MFG_SHIFT
|
#define COREINFO_BPID(core_info) (((core_info) & COREINFO_BPID_MASK) >> COREINFO_BPID_SHIFT)
|
#define IS_BACKPLANE(core_info) (((core_info) & COREINFO_ISBP_MASK) >> COREINFO_ISBP_SHIFT)
|
#define ID_BPID(iface_desc_1) (((iface_desc_1) & ID_BPID_MASK) >> ID_BPID_SHIFT)
|
#define IS_BACKPLANE_ID_SAME(core_info, iface_desc_1) \
|
(COREINFO_BPID((core_info)) == ID_BPID((iface_desc_1)))
|
|
#define NCI_WORD_SIZE (4u)
|
#define PCI_ACCESS_SIZE (4u)
|
|
#define NCI_ADDR2NUM(addr) ((uintptr)(addr))
|
#define NCI_ADD_NUM(addr, size) (NCI_ADDR2NUM(addr) + (size))
|
#ifdef DONGLEBUILD
|
#define NCI_ADD_ADDR(addr, size) ((uint32*)REG_MAP(NCI_ADD_NUM((addr), (size)), 0u))
|
#else /* !DONGLEBUILD */
|
#define NCI_ADD_ADDR(addr, size) ((uint32*)(NCI_ADD_NUM((addr), (size))))
|
#endif /* DONGLEBUILD */
|
#define NCI_INC_ADDR(addr, size) ((addr) = NCI_ADD_ADDR((addr), (size)))
|
|
#define NODE_TYPE_BOOKER 0x0u
|
#define NODE_TYPE_NIC400 0x1u
|
|
#define BP_BOOKER 0x0u
|
#define BP_NIC400 0x1u
|
#define BP_APB1 0x2u
|
#define BP_APB2 0x3u
|
#define BP_CCI400 0x4u
|
|
#define PCIE_WRITE_SIZE 4u
|
|
static const char BACKPLANE_ID_NAME[][11] = {
|
"BOOKER",
|
"NIC400",
|
"APB1",
|
"APB2",
|
"CCI400",
|
"\0"
|
};
|
|
#define APB_INF(ifd) ((ID_BPID((ifd).iface_desc_1) == BP_APB1) || \
|
(ID_BPID((ifd).iface_desc_1) == BP_APB2))
|
#define BOOKER_INF(ifd) (ID_BPID((ifd).iface_desc_1) == BP_BOOKER)
|
#define NIC_INF(ifd) (ID_BPID((ifd).iface_desc_1) == BP_NIC400)
|
|
/* BOOKER NCI LOG LEVEL */
|
#define NCI_LOG_LEVEL_ERROR 0x1u
|
#define NCI_LOG_LEVEL_TRACE 0x2u
|
#define NCI_LOG_LEVEL_INFO 0x4u
|
#define NCI_LOG_LEVEL_PRINT 0x8u
|
|
#ifndef NCI_DEFAULT_LOG_LEVEL
|
#define NCI_DEFAULT_LOG_LEVEL (NCI_LOG_LEVEL_ERROR)
|
#endif /* NCI_DEFAULT_LOG_LEVEL */
|
|
uint32 nci_log_level = NCI_DEFAULT_LOG_LEVEL;
|
|
#ifdef DONGLEBUILD
|
#define NCI_ERROR(args) do { if (nci_log_level & NCI_LOG_LEVEL_ERROR) { printf args; } } while (0u)
|
#define NCI_TRACE(args) do { if (nci_log_level & NCI_LOG_LEVEL_TRACE) { printf args; } } while (0u)
|
#define NCI_INFO(args) do { if (nci_log_level & NCI_LOG_LEVEL_INFO) { printf args; } } while (0u)
|
#define NCI_PRINT(args) do { if (nci_log_level & NCI_LOG_LEVEL_PRINT) { printf args; } } while (0u)
|
#else /* !DONGLEBUILD */
|
#define NCI_KERN_PRINT(...) printk(KERN_ERR __VA_ARGS__)
|
#define NCI_ERROR(args) do { if (nci_log_level & NCI_LOG_LEVEL_ERROR) \
|
{ NCI_KERN_PRINT args; } } while (0u)
|
#define NCI_TRACE(args) do { if (nci_log_level & NCI_LOG_LEVEL_TRACE) \
|
{ NCI_KERN_PRINT args; } } while (0u)
|
#define NCI_INFO(args) do { if (nci_log_level & NCI_LOG_LEVEL_INFO) \
|
{ NCI_KERN_PRINT args; } } while (0u)
|
#define NCI_PRINT(args) do { if (nci_log_level & NCI_LOG_LEVEL_PRINT) \
|
{ NCI_KERN_PRINT args; } } while (0u)
|
#endif /* DONGLEBUILD */
|
|
#define NCI_EROM_WORD_SIZEOF 4u
|
#define NCI_REGS_PER_CORE 2u
|
|
#define NCI_EROM1_LEN(erom2base) (erom2base - GET_EROM1_BASE(erom2base))
|
#define NCI_NONOOBR_CORES(erom2base) NCI_EROM1_LEN(erom2base) \
|
/(NCI_REGS_PER_CORE * NCI_EROM_WORD_SIZEOF)
|
|
/* AXI ID to CoreID + unit mappings */
|
typedef struct nci_axi_to_coreidx {
|
uint coreid;
|
uint coreunit;
|
} nci_axi_to_coreidx_t;
|
|
static const nci_axi_to_coreidx_t axi2coreidx_4397[] = {
|
{CC_CORE_ID, 0}, /* 00 Chipcommon */
|
{PCIE2_CORE_ID, 0}, /* 01 PCIe */
|
{D11_CORE_ID, 0}, /* 02 D11 Main */
|
{ARMCR4_CORE_ID, 0}, /* 03 ARM */
|
{BT_CORE_ID, 0}, /* 04 BT AHB */
|
{D11_CORE_ID, 1}, /* 05 D11 Aux */
|
{D11_CORE_ID, 0}, /* 06 D11 Main l1 */
|
{D11_CORE_ID, 1}, /* 07 D11 Aux l1 */
|
{D11_CORE_ID, 0}, /* 08 D11 Main l2 */
|
{D11_CORE_ID, 1}, /* 09 D11 Aux l2 */
|
{NODEV_CORE_ID, 0}, /* 10 M2M DMA */
|
{NODEV_CORE_ID, 0}, /* 11 unused */
|
{NODEV_CORE_ID, 0}, /* 12 unused */
|
{NODEV_CORE_ID, 0}, /* 13 unused */
|
{NODEV_CORE_ID, 0}, /* 14 unused */
|
{NODEV_CORE_ID, 0} /* 15 unused */
|
};
|
|
typedef struct slave_port {
|
uint32 adesc; /**< Address Descriptor 0 */
|
uint32 addrl; /**< Lower Base */
|
uint32 addrh; /**< Upper Base */
|
uint32 extaddrl; /**< Lower Bound */
|
uint32 extaddrh; /**< Ubber Bound */
|
} slave_port_t;
|
|
typedef struct interface_desc {
|
slave_port_t *sp; /**< Slave Port Addr 0-3 */
|
|
uint32 iface_desc_0; /**< Interface-0 Descriptor Word0 */
|
/* If Node Type 0-Booker xMNI/xSNI address. If Node Type 1-DMP wrapper Address */
|
uint32 node_ptr; /**< Core's Node pointer */
|
|
uint32 iface_desc_1; /**< Interface Descriptor Word1 */
|
uint8 num_addr_reg; /**< Number of Slave Port Addr (Valid only if master=0) */
|
uint8 coretype; /**< Core Belongs to 0:OOBR 1:Without OOBR */
|
uint8 master; /**< 1:Master 0:Slave */
|
|
uint8 node_type; /**< 0:Booker , 1:IDM Wrapper, 2-0xf: Reserved */
|
} interface_desc_t;
|
|
typedef struct nci_cores {
|
void *regs;
|
/* 2:0-Node type (0-booker,1-IDM Wrapper) 31:3-Interconnect registyer space */
|
interface_desc_t *desc; /**< Interface & Address Descriptors */
|
/*
|
* 11:0-CoreID, 19:12-RevID 23:20-MFG 26:24-Backplane ID if
|
* bit 27 is 1 (Core is Backplane or Bridge )
|
*/
|
uint32 coreinfo; /**< CoreInfo of each core */
|
/*
|
* 11:0 - Offosewt of 1st Interface desc in EROM 15:12 - No.
|
* of interfaces attachedto this core
|
*/
|
uint32 iface_cfg; /**< Interface config Reg */
|
uint32 dmp_regs_off; /**< DMP control & DMP status @ 0x48 from coreinfo */
|
uint32 coreid; /**< id of each core */
|
uint8 coreunit; /**< Unit differentiate same coreids */
|
uint8 iface_cnt; /**< no of Interface connected to each core */
|
uint8 PAD[2u];
|
} nci_cores_t;
|
|
typedef struct nci_info {
|
void *osh; /**< osl os handle */
|
nci_cores_t *cores; /**< Cores Parsed */
|
void *pci_bar_addr; /**< PCI BAR0 Window */
|
uint32 cc_erom2base; /**< Base of EROM2 from ChipCommon */
|
uint32 *erom1base; /**< Base of EROM1 */
|
uint32 *erom2base; /**< Base of EROM2 */
|
uint32 *oobr_base; /**< Base of OOBR */
|
uint16 bustype; /**< SI_BUS, PCI_BUS */
|
uint8 max_cores; /**< # Max cores indicated by Register */
|
uint8 num_cores; /**< # discovered cores */
|
uint8 refcnt; /**< Allocation reference count */
|
uint8 scan_done; /**< Set to TRUE when erom scan is done. */
|
uint8 PAD[2];
|
} nci_info_t;
|
|
#define NI_IDM_RESET_ENTRY 0x1
|
#define NI_IDM_RESET_EXIT 0x0
|
|
/* AXI Slave Network Interface registers */
|
typedef volatile struct asni_regs {
|
uint32 node_type; /* 0x000 */
|
uint32 node_info; /* 0x004 */
|
uint32 secr_acc; /* 0x008 */
|
uint32 pmusela; /* 0x00c */
|
uint32 pmuselb; /* 0x010 */
|
uint32 PAD[11];
|
uint32 node_feat; /* 0x040 */
|
uint32 bursplt; /* 0x044 */
|
uint32 addr_remap; /* 0x048 */
|
uint32 PAD[13];
|
uint32 sildbg; /* 0x080 */
|
uint32 qosctl; /* 0x084 */
|
uint32 wdatthrs; /* 0x088 */
|
uint32 arqosovr; /* 0x08c */
|
uint32 awqosovr; /* 0x090 */
|
uint32 atqosot; /* 0x094 */
|
uint32 arqosot; /* 0x098 */
|
uint32 awqosot; /* 0x09c */
|
uint32 axqosot; /* 0x0a0 */
|
uint32 qosrdpk; /* 0x0a4 */
|
uint32 qosrdbur; /* 0x0a8 */
|
uint32 qosrdavg; /* 0x0ac */
|
uint32 qoswrpk; /* 0x0b0 */
|
uint32 qoswrbur; /* 0x0b4 */
|
uint32 qoswravg; /* 0x0b8 */
|
uint32 qoscompk; /* 0x0bc */
|
uint32 qoscombur; /* 0x0c0 */
|
uint32 qoscomavg; /* 0x0c4 */
|
uint32 qosrbbqv; /* 0x0c8 */
|
uint32 qoswrbqv; /* 0x0cc */
|
uint32 qoscombqv; /* 0x0d0 */
|
uint32 PAD[11];
|
uint32 idm_device_id; /* 0x100 */
|
uint32 PAD[15];
|
uint32 idm_reset_ctrl; /* 0x140 */
|
} asni_regs_t;
|
|
/* AXI Master Network Interface registers */
|
typedef volatile struct amni_regs {
|
uint32 node_type; /* 0x000 */
|
uint32 node_info; /* 0x004 */
|
uint32 secr_acc; /* 0x008 */
|
uint32 pmusela; /* 0x00c */
|
uint32 pmuselb; /* 0x010 */
|
uint32 PAD[11];
|
uint32 node_feat; /* 0x040 */
|
uint32 PAD[15];
|
uint32 sildbg; /* 0x080 */
|
uint32 qosacc; /* 0x084 */
|
uint32 PAD[26];
|
uint32 interrupt_status; /* 0x0f0 */
|
uint32 interrupt_mask; /* 0x0f4 */
|
uint32 interrupt_status_ns; /* 0x0f8 */
|
uint32 interrupt_mask_ns; /* 0x0FC */
|
uint32 idm_device_id; /* 0x100 */
|
uint32 PAD[15];
|
uint32 idm_reset_ctrl; /* 0x140 */
|
} amni_regs_t;
|
|
#define NCI_SPINWAIT_TIMEOUT (300u)
|
|
/* DMP/io control and DMP/io status */
|
typedef struct dmp_regs {
|
uint32 dmpctrl;
|
uint32 dmpstatus;
|
} dmp_regs_t;
|
|
#ifdef _RTE_
|
static nci_info_t *knci_info = NULL;
|
#endif /* _RTE_ */
|
|
static void nci_save_iface1_reg(interface_desc_t *desc, uint32 iface_desc_1);
|
static uint32* nci_save_slaveport_addr(nci_info_t *nci,
|
interface_desc_t *desc, uint32 *erom2ptr);
|
static int nci_get_coreunit(nci_cores_t *cores, uint32 numcores, uint cid,
|
uint32 iface_desc_1);
|
static nci_cores_t* nci_initial_parse(nci_info_t *nci, uint32 *erom2ptr, uint32 *core_idx);
|
static void _nci_setcoreidx_pcie_bus(si_t *sih, volatile void **regs, uint32 curmap,
|
uint32 curwrap);
|
static volatile void *_nci_setcoreidx(si_t *sih, uint coreidx);
|
static uint32 _nci_get_curwrap(nci_info_t *nci, uint coreidx, uint wrapper_idx);
|
static uint32 nci_get_curwrap(nci_info_t *nci, uint coreidx);
|
static uint32 _nci_get_curmap(nci_info_t *nci, uint coreidx, uint slave_port_idx, uint base_idx);
|
static uint32 nci_get_curmap(nci_info_t *nci, uint coreidx);
|
static void _nci_core_reset(const si_t *sih, uint32 bits, uint32 resetbits);
|
#if defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC)
|
static void nci_reset_APB(const si_info_t *sii, aidmp_t *ai, int *ret,
|
uint32 errlog_status, uint32 errlog_id);
|
static void nci_reset_axi_to(const si_info_t *sii, aidmp_t *ai);
|
#endif /* (AXI_TIMEOUTS) || (AXI_TIMEOUTS_NIC) */
|
static uint32 nci_find_numcores(si_t *sih);
|
#ifdef BOOKER_NIC400_INF
|
static int32 nci_find_first_wrapper_idx(nci_info_t *nci, uint32 coreidx);
|
#endif /* BOOKER_NIC400_INF */
|
|
/*
|
* Description : This function will search for a CORE with matching 'core_id' and mismatching
|
* 'wordoffset', if found then increments 'coreunit' by 1.
|
*/
|
/* TODO: Need to understand this. */
|
static int
|
BCMATTACHFN(nci_get_coreunit)(nci_cores_t *cores, uint32 numcores,
|
uint core_id, uint32 iface_desc_1)
|
{
|
uint32 core_idx;
|
uint32 coreunit = NCI_DEFAULT_CORE_UNIT;
|
|
for (core_idx = 0u; core_idx < numcores; core_idx++) {
|
if ((cores[core_idx].coreid == core_id) &&
|
(GET_COREOFFSET(cores[core_idx].desc->iface_desc_1) !=
|
GET_COREOFFSET(iface_desc_1))) {
|
coreunit = cores[core_idx].coreunit + 1;
|
}
|
}
|
|
return coreunit;
|
}
|
|
/*
|
* OOBR Region
|
+-------------------------------+
|
+ +
|
+ OOBR with EROM Data +
|
+ +
|
+-------------------------------+
|
+ +
|
+ EROM1 +
|
+ +
|
+-------------------------------+ --> ChipCommon.EROMBASE
|
+ +
|
+ EROM2 +
|
+ +
|
+-------------------------------+
|
*/
|
|
/**
|
* Function : nci_init
|
* Description : Malloc's memory related to 'nci_info_t' and its internal elements.
|
*
|
* @paramter[in]
|
* @regs : This is a ChipCommon Regster
|
* @bustype : Bus Connect Type
|
*
|
* Return : On Succes 'nci_info_t' data structure is returned as void,
|
* where all EROM parsed Cores are saved,
|
* using this all EROM Cores are Freed.
|
* On Failure 'NULL' is returned by printing ERROR messages
|
*/
|
void*
|
BCMATTACHFN(nci_init)(si_t *sih, chipcregs_t *cc, uint bustype)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
nci_cores_t *cores;
|
nci_info_t *nci = NULL;
|
uint8 err_at = 0u;
|
|
#ifdef _RTE_
|
if (knci_info) {
|
knci_info->refcnt++;
|
nci = knci_info;
|
|
goto end;
|
}
|
#endif /* _RTE_ */
|
|
/* It is used only when NCI_ERROR is used */
|
BCM_REFERENCE(err_at);
|
|
if ((nci = MALLOCZ(sii->osh, sizeof(*nci))) == NULL) {
|
err_at = 1u;
|
goto end;
|
}
|
sii->nci_info = nci;
|
|
nci->osh = sii->osh;
|
nci->refcnt++;
|
|
nci->cc_erom2base = R_REG(nci->osh, &cc->eromptr);
|
nci->bustype = bustype;
|
switch (nci->bustype) {
|
case SI_BUS:
|
nci->erom2base = (uint32*)REG_MAP(nci->cc_erom2base, 0u);
|
nci->oobr_base = (uint32*)REG_MAP(GET_OOBR_BASE(nci->cc_erom2base), 0u);
|
nci->erom1base = (uint32*)REG_MAP(GET_EROM1_BASE(nci->cc_erom2base), 0u);
|
|
break;
|
|
case PCI_BUS:
|
/* Set wrappers address */
|
sii->curwrap = (void *)((uintptr)cc + SI_CORE_SIZE);
|
/* Set access window to Erom Base(For NCI, EROM starts with OOBR) */
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_EROM1_BASE(nci->cc_erom2base));
|
nci->erom1base = (uint32*)((uintptr)cc);
|
nci->erom2base = (uint32*)((uintptr)cc + NCI_EROM1_LEN(nci->cc_erom2base));
|
|
break;
|
|
default:
|
err_at = 2u;
|
ASSERT(0u);
|
goto end;
|
}
|
|
nci->max_cores = nci_find_numcores(sih);
|
if (!nci->max_cores) {
|
err_at = 3u;
|
goto end;
|
}
|
|
if ((cores = MALLOCZ(nci->osh, sizeof(*cores) * nci->max_cores)) == NULL) {
|
err_at = 4u;
|
goto end;
|
}
|
nci->cores = cores;
|
|
#ifdef _RTE_
|
knci_info = nci;
|
#endif /* _RTE_ */
|
|
end:
|
if (err_at) {
|
NCI_ERROR(("nci_init: Failed err_at=%#x\n", err_at));
|
nci_uninit(nci);
|
nci = NULL;
|
}
|
|
return nci;
|
}
|
|
/**
|
* Function : nci_uninit
|
* Description : Free's memory related to 'nci_info_t' and its internal malloc'd elements.
|
*
|
* @paramter[in]
|
* @nci : This is 'nci_info_t' data structure, where all EROM parsed Cores are saved, using this
|
* all EROM Cores are Freed.
|
*
|
* Return : void
|
*/
|
void
|
BCMATTACHFN(nci_uninit)(void *ctx)
|
{
|
nci_info_t *nci = (nci_info_t *)ctx;
|
uint8 core_idx, desc_idx;
|
interface_desc_t *desc;
|
nci_cores_t *cores;
|
slave_port_t *sp;
|
|
if (nci == NULL) {
|
return;
|
}
|
|
nci->refcnt--;
|
|
#ifdef _RTE_
|
if (nci->refcnt != 0) {
|
return;
|
}
|
#endif /* _RTE_ */
|
|
cores = nci->cores;
|
if (cores == NULL) {
|
goto end;
|
}
|
|
for (core_idx = 0u; core_idx < nci->num_cores; core_idx++) {
|
desc = cores[core_idx].desc;
|
if (desc == NULL) {
|
break;
|
}
|
|
for (desc_idx = 0u; desc_idx < cores[core_idx].iface_cnt; desc_idx++) {
|
sp = desc[desc_idx].sp;
|
if (sp) {
|
MFREE(nci->osh, sp, (sizeof(*sp) * desc[desc_idx].num_addr_reg));
|
}
|
}
|
MFREE(nci->osh, desc, (sizeof(*desc) * cores[core_idx].iface_cnt));
|
}
|
MFREE(nci->osh, cores, sizeof(*cores) * nci->max_cores);
|
|
end:
|
|
#ifdef _RTE_
|
knci_info = NULL;
|
#endif /* _RTE_ */
|
|
MFREE(nci->osh, nci, sizeof(*nci));
|
}
|
|
/**
|
* Function : nci_save_iface1_reg
|
* Description : Interface1 Descriptor is obtained from the Reg and saved in
|
* Internal data structures 'nci->cores'.
|
*
|
* @paramter[in]
|
* @desc : Descriptor of Core which needs to be updated with obatained Interface1 Descritpor.
|
* @iface_desc_1 : Obatained Interface1 Descritpor.
|
*
|
* Return : void
|
*/
|
static void
|
BCMATTACHFN(nci_save_iface1_reg)(interface_desc_t *desc, uint32 iface_desc_1)
|
{
|
BCM_REFERENCE(BACKPLANE_ID_NAME);
|
|
desc->coretype = GET_CORETYPE(iface_desc_1);
|
desc->master = IS_MASTER(iface_desc_1);
|
|
desc->iface_desc_1 = iface_desc_1;
|
desc->num_addr_reg = GET_NUM_ADDR_REG(iface_desc_1);
|
if (desc->master) {
|
if (desc->num_addr_reg) {
|
NCI_ERROR(("nci_save_iface1_reg: Master NODEPTR Addresses is not zero "
|
"i.e. %d\n", GET_NUM_ADDR_REG(iface_desc_1)));
|
ASSERT(0u);
|
}
|
} else {
|
/* SLAVE 'NumAddressRegion' one less than actual slave ports, so increment by 1 */
|
desc->num_addr_reg++;
|
}
|
|
NCI_INFO(("\tnci_save_iface1_reg: %s InterfaceDesc:%#x WordOffset=%#x "
|
"NoAddrReg=%#x %s_Offset=%#x BackplaneID=%s\n",
|
desc->master?"Master":"Slave", desc->iface_desc_1,
|
GET_WORDOFFSET(desc->iface_desc_1),
|
desc->num_addr_reg, desc->coretype?"EROM1":"OOBR",
|
GET_COREOFFSET(desc->iface_desc_1),
|
BACKPLANE_ID_NAME[ID_BPID(desc->iface_desc_1)]));
|
}
|
|
/**
|
* Function : nci_save_slaveport_addr
|
* Description : All Slave Port Addr of Interface Descriptor are saved.
|
*
|
* @paramter[in]
|
* @nci : This is 'nci_info_t' data structure, where all EROM parsed Cores are saved
|
* @desc : Current Interface Descriptor.
|
* @erom2ptr : Pointer to Address Descriptor0.
|
*
|
* Return : On Success, this function returns Erom2 Ptr to Next Interface Descriptor,
|
* On Failure, NULL is returned.
|
*/
|
static uint32*
|
BCMATTACHFN(nci_save_slaveport_addr)(nci_info_t *nci,
|
interface_desc_t *desc, uint32 *erom2ptr)
|
{
|
slave_port_t *sp;
|
uint32 adesc;
|
uint32 sz;
|
uint32 addr_idx;
|
|
/* Allocate 'NumAddressRegion' of Slave Port */
|
if ((desc->sp = (slave_port_t *)MALLOCZ(
|
nci->osh, (sizeof(*sp) * desc->num_addr_reg))) == NULL) {
|
NCI_ERROR(("\tnci_save_slaveport_addr: Memory Allocation failed for Slave Port\n"));
|
return NULL;
|
}
|
|
sp = desc->sp;
|
/* Slave Port Addrs Desc */
|
for (addr_idx = 0u; addr_idx < desc->num_addr_reg; addr_idx++) {
|
adesc = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
sp[addr_idx].adesc = adesc;
|
|
sp[addr_idx].addrl = adesc & SLAVEPORT_BASE_ADDR_MASK;
|
if (adesc & SLAVEPORT_64BIT_ADDR_MASK) {
|
sp[addr_idx].addrh = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
sp[addr_idx].extaddrl = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
sp[addr_idx].extaddrh = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
NCI_INFO(("\tnci_save_slaveport_addr: SlavePortAddr[%#x]:0x%08x al=0x%08x "
|
"ah=0x%08x extal=0x%08x extah=0x%08x\n", addr_idx, adesc,
|
sp[addr_idx].addrl, sp[addr_idx].addrh, sp[addr_idx].extaddrl,
|
sp[addr_idx].extaddrh));
|
}
|
else if (adesc & SLAVEPORT_BOUND_ADDR_MASK) {
|
sp[addr_idx].addrh = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
NCI_INFO(("\tnci_save_slaveport_addr: SlavePortAddr[%#x]:0x%08x al=0x%08x "
|
"ah=0x%08x\n", addr_idx, adesc, sp[addr_idx].addrl,
|
sp[addr_idx].addrh));
|
} else {
|
sz = adesc & SLAVEPORT_ADDR_SIZE_MASK;
|
sp[addr_idx].addrh = sp[addr_idx].addrl + ADDR_SIZE(sz);
|
NCI_INFO(("\tnci_save_slaveport_addr: SlavePortAddr[%#x]:0x%08x al=0x%08x "
|
"ah=0x%08x sz=0x%08x\n", addr_idx, adesc, sp[addr_idx].addrl,
|
sp[addr_idx].addrh, sz));
|
}
|
}
|
|
return erom2ptr;
|
}
|
|
/**
|
* Function : nci_initial_parse
|
* Description : This function does
|
* 1. Obtains OOBR/EROM1 pointer based on CoreType
|
* 2. Analysis right CoreUnit for this 'core'
|
* 3. Saves CoreInfo & Interface Config in Coresponding 'core'
|
*
|
* @paramter[in]
|
* @nci : This is 'nci_info_t' data structure, where all EROM parsed Cores are saved.
|
* @erom2ptr : Pointer to Interface Descriptor0.
|
* @core_idx : New core index needs to be populated in this pointer.
|
*
|
* Return : On Success, this function returns 'core' where CoreInfo & Interface Config are saved.
|
*/
|
static nci_cores_t*
|
BCMATTACHFN(nci_initial_parse)(nci_info_t *nci, uint32 *erom2ptr, uint32 *core_idx)
|
{
|
uint32 iface_desc_1;
|
nci_cores_t *core;
|
uint32 dmp_regs_off = 0u;
|
uint32 iface_cfg = 0u;
|
uint32 core_info;
|
uint32 *ptr;
|
uint coreid;
|
|
iface_desc_1 = R_REG(nci->osh, erom2ptr);
|
|
/* Get EROM1/OOBR Pointer based on CoreType */
|
if (!GET_CORETYPE(iface_desc_1)) {
|
if (nci->bustype == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
nci->oobr_base = (uint32*)((uintptr)nci->erom1base);
|
}
|
|
ptr = NCI_ADD_ADDR(nci->oobr_base, GET_COREOFFSET(iface_desc_1));
|
} else {
|
ptr = NCI_ADD_ADDR(nci->erom1base, GET_COREOFFSET(iface_desc_1));
|
}
|
dmp_regs_off = GET_COREOFFSET(iface_desc_1) + DMP_DMPCTRL_REG_OFFSET;
|
|
core_info = R_REG(nci->osh, ptr);
|
NCI_INC_ADDR(ptr, NCI_WORD_SIZE);
|
iface_cfg = R_REG(nci->osh, ptr);
|
|
*core_idx = nci->num_cores;
|
core = &nci->cores[*core_idx];
|
|
if (CORE_ID(core_info) < 0xFFu) {
|
coreid = CORE_ID(core_info) | 0x800u;
|
} else {
|
coreid = CORE_ID(core_info);
|
}
|
|
/* Get coreunit from previous cores i.e. num_cores */
|
core->coreunit = nci_get_coreunit(nci->cores, nci->num_cores,
|
coreid, iface_desc_1);
|
|
core->coreid = coreid;
|
|
/* Increment the num_cores once proper coreunit is known */
|
nci->num_cores++;
|
|
NCI_INFO(("\n\nnci_initial_parse: core_idx:%d %s=%p \n",
|
*core_idx, GET_CORETYPE(iface_desc_1)?"EROM1":"OOBR", ptr));
|
|
/* Core Info Register */
|
core->coreinfo = core_info;
|
|
/* Save DMP register base address. */
|
core->dmp_regs_off = dmp_regs_off;
|
|
NCI_INFO(("\tnci_initial_parse: COREINFO:%#x CId:%#x CUnit=%#x CRev=%#x CMfg=%#x\n",
|
core->coreinfo, core->coreid, core->coreunit, CORE_REV(core->coreinfo),
|
CORE_MFG(core->coreinfo)));
|
|
/* Interface Config Register */
|
core->iface_cfg = iface_cfg;
|
core->iface_cnt = GET_INFACECNT(iface_cfg);
|
|
NCI_INFO(("\tnci_initial_parse: INTERFACE_CFG:%#x IfaceCnt=%#x IfaceOffset=%#x \n",
|
iface_cfg, core->iface_cnt, iface_cfg & IC_IFACEOFFSET_MASK));
|
|
/* For PCI_BUS case set back BAR0 Window to EROM1 Base */
|
if (nci->bustype == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_EROM1_BASE(nci->cc_erom2base));
|
}
|
|
return core;
|
}
|
|
static uint32
|
BCMATTACHFN(nci_find_numcores)(si_t *sih)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
volatile hndoobr_reg_t *oobr_reg = NULL;
|
uint32 orig_bar0_win1 = 0u;
|
uint32 num_oobr_cores = 0u;
|
uint32 num_nonoobr_cores = 0u;
|
|
/* No of Non-OOBR Cores */
|
num_nonoobr_cores = NCI_NONOOBR_CORES(nci->cc_erom2base);
|
if (num_nonoobr_cores <= 0u) {
|
NCI_ERROR(("nci_find_numcores: Invalid Number of non-OOBR cores %d\n",
|
num_nonoobr_cores));
|
goto fail;
|
}
|
|
/* No of OOBR Cores */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
oobr_reg = (volatile hndoobr_reg_t*)REG_MAP(GET_OOBR_BASE(nci->cc_erom2base),
|
SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/* Save Original Bar0 Win1 */
|
orig_bar0_win1 = OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN,
|
PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
oobr_reg = (volatile hndoobr_reg_t*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("nci_find_numcores: Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
ASSERT(0);
|
goto fail;
|
}
|
|
num_oobr_cores = R_REG(nci->osh, &oobr_reg->capability) & OOBR_CAP_CORECNT_MASK;
|
if (num_oobr_cores <= 0u) {
|
NCI_ERROR(("nci_find_numcores: Invalid Number of OOBR cores %d\n", num_oobr_cores));
|
goto fail;
|
}
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
|
NCI_PRINT(("nci_find_numcores: Total Cores found %d\n",
|
(num_oobr_cores + num_nonoobr_cores)));
|
/* Total No of Cores */
|
return (num_oobr_cores + num_nonoobr_cores);
|
|
fail:
|
return 0u;
|
}
|
|
/**
|
* Function : nci_scan
|
* Description : Function parses EROM in BOOKER NCI Architecture and saves all inforamtion about
|
* Cores in 'nci_info_t' data structure.
|
*
|
* @paramter[in]
|
* @nci : This is 'nci_info_t' data structure, where all EROM parsed Cores are saved.
|
*
|
* Return : On Success No of parsed Cores in EROM is returned,
|
* On Failure '0' is returned by printing ERROR messages
|
* in Console(If NCI_LOG_LEVEL is enabled).
|
*/
|
uint32
|
BCMATTACHFN(nci_scan)(si_t *sih)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = (nci_info_t *)sii->nci_info;
|
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
|
uint32 *cur_iface_desc_1_ptr;
|
nci_cores_t *core;
|
interface_desc_t *desc;
|
uint32 wordoffset = 0u;
|
uint32 iface_desc_0;
|
uint32 iface_desc_1;
|
uint32 *erom2ptr;
|
uint8 iface_idx;
|
uint32 core_idx;
|
int err = 0;
|
|
/* If scan was finished already */
|
if (nci->scan_done) {
|
goto end;
|
}
|
|
erom2ptr = nci->erom2base;
|
sii->axi_num_wrappers = 0;
|
|
while (TRUE) {
|
iface_desc_0 = R_REG(nci->osh, erom2ptr);
|
if (iface_desc_0 == ID_ENDMARKER) {
|
NCI_INFO(("\nnci_scan: Reached end of EROM2 with total cores=%d \n",
|
nci->num_cores));
|
break;
|
}
|
|
/* Save current Iface1 Addr for comparision */
|
cur_iface_desc_1_ptr = GET_NEXT_EROM_ADDR(erom2ptr);
|
|
/* Get CoreInfo, InterfaceCfg, CoreIdx */
|
core = nci_initial_parse(nci, cur_iface_desc_1_ptr, &core_idx);
|
|
core->desc = (interface_desc_t *)MALLOCZ(
|
nci->osh, (sizeof(*(core->desc)) * core->iface_cnt));
|
if (core->desc == NULL) {
|
NCI_ERROR(("nci_scan: Mem Alloc failed for Iface and Addr "
|
"Descriptor\n"));
|
err = NCI_NOMEM;
|
break;
|
}
|
|
for (iface_idx = 0u; iface_idx < core->iface_cnt; iface_idx++) {
|
desc = &core->desc[iface_idx];
|
|
iface_desc_0 = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
iface_desc_1 = R_REG(nci->osh, erom2ptr);
|
NCI_INC_ADDR(erom2ptr, NCI_WORD_SIZE);
|
|
/* Interface Descriptor Register */
|
nci_save_iface1_reg(desc, iface_desc_1);
|
if (desc->master && desc->num_addr_reg) {
|
err = NCI_MASTER_INVALID_ADDR;
|
goto end;
|
}
|
|
wordoffset = GET_WORDOFFSET(iface_desc_1);
|
|
/* NodePointer Register */
|
desc->iface_desc_0 = iface_desc_0;
|
desc->node_ptr = GET_NODEPTR(iface_desc_0);
|
desc->node_type = GET_NODETYPE(iface_desc_0);
|
|
if (axi_wrapper && (sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS)) {
|
axi_wrapper[sii->axi_num_wrappers].mfg = CORE_MFG(core->coreinfo);
|
axi_wrapper[sii->axi_num_wrappers].cid = CORE_ID(core->coreinfo);
|
axi_wrapper[sii->axi_num_wrappers].rev = CORE_REV(core->coreinfo);
|
axi_wrapper[sii->axi_num_wrappers].wrapper_type = desc->master;
|
axi_wrapper[sii->axi_num_wrappers].wrapper_addr = desc->node_ptr;
|
sii->axi_num_wrappers++;
|
}
|
|
NCI_INFO(("nci_scan: %s NodePointer:%#x Type=%s NODEPTR=%#x \n",
|
desc->master?"Master":"Slave", desc->iface_desc_0,
|
desc->node_type?"NIC-400":"BOOKER", desc->node_ptr));
|
|
/* Slave Port Addresses */
|
if (!desc->master) {
|
erom2ptr = nci_save_slaveport_addr(nci, desc, erom2ptr);
|
if (erom2ptr == NULL) {
|
NCI_ERROR(("nci_scan: Invalid EROM2PTR\n"));
|
err = NCI_INVALID_EROM2PTR;
|
goto end;
|
}
|
}
|
|
/* Current loop ends with next iface_desc_0 */
|
}
|
|
if (wordoffset == 0u) {
|
NCI_INFO(("\nnci_scan: EROM PARSING found END 'wordoffset=%#x' "
|
"with total cores=%d \n", wordoffset, nci->num_cores));
|
break;
|
}
|
}
|
nci->scan_done = TRUE;
|
|
end:
|
if (err) {
|
NCI_ERROR(("nci_scan: Failed with Code %d\n", err));
|
nci->num_cores = 0;
|
ASSERT(0u);
|
}
|
|
return nci->num_cores;
|
}
|
|
/**
|
* Function : nci_dump_erom
|
* Description : Function dumps EROM from inforamtion cores in 'nci_info_t' data structure.
|
*
|
* @paramter[in]
|
* @nci : This is 'nci_info_t' data structure, where all EROM parsed Cores are saved.
|
*
|
* Return : void
|
*/
|
void
|
BCMATTACHFN(nci_dump_erom)(void *ctx)
|
{
|
nci_info_t *nci = (nci_info_t *)ctx;
|
nci_cores_t *core;
|
interface_desc_t *desc;
|
slave_port_t *sp;
|
uint32 core_idx, addr_idx, iface_idx;
|
uint32 core_info;
|
|
BCM_REFERENCE(core_info);
|
|
NCI_INFO(("\nnci_dump_erom: -- EROM Dump --\n"));
|
for (core_idx = 0u; core_idx < nci->num_cores; core_idx++) {
|
core = &nci->cores[core_idx];
|
|
/* Core Info Register */
|
core_info = core->coreinfo;
|
NCI_INFO(("\nnci_dump_erom: core_idx=%d COREINFO:%#x CId:%#x CUnit:%#x CRev=%#x "
|
"CMfg=%#x\n", core_idx, core_info, CORE_ID(core_info), core->coreunit,
|
CORE_REV(core_info), CORE_MFG(core_info)));
|
|
/* Interface Config Register */
|
NCI_INFO(("nci_dump_erom: IfaceCfg=%#x IfaceCnt=%#x \n",
|
core->iface_cfg, core->iface_cnt));
|
|
for (iface_idx = 0u; iface_idx < core->iface_cnt; iface_idx++) {
|
desc = &core->desc[iface_idx];
|
/* NodePointer Register */
|
NCI_INFO(("nci_dump_erom: %s iface_desc_0 Master=%#x MASTER_WRAP=%#x "
|
"Type=%s \n", desc->master?"Master":"Slave", desc->iface_desc_0,
|
desc->node_ptr,
|
(desc->node_type)?"NIC-400":"BOOKER"));
|
|
/* Interface Descriptor Register */
|
NCI_INFO(("nci_dump_erom: %s InterfaceDesc:%#x WOffset=%#x NoAddrReg=%#x "
|
"%s_Offset=%#x\n", desc->master?"Master":"Slave",
|
desc->iface_desc_1, GET_WORDOFFSET(desc->iface_desc_1),
|
desc->num_addr_reg,
|
desc->coretype?"EROM1":"OOBR", GET_COREOFFSET(desc->iface_desc_1)));
|
|
/* Slave Port Addresses */
|
sp = desc->sp;
|
if (!sp) {
|
continue;
|
}
|
for (addr_idx = 0u; addr_idx < desc->num_addr_reg; addr_idx++) {
|
if (sp[addr_idx].extaddrl) {
|
NCI_INFO(("nci_dump_erom: SlavePortAddr[%#x]: AddrDesc=%#x"
|
" al=%#x ah=%#x extal=%#x extah=%#x\n", addr_idx,
|
sp[addr_idx].adesc, sp[addr_idx].addrl,
|
sp[addr_idx].addrh, sp[addr_idx].extaddrl,
|
sp[addr_idx].extaddrh));
|
} else {
|
NCI_INFO(("nci_dump_erom: SlavePortAddr[%#x]: AddrDesc=%#x"
|
" al=%#x ah=%#x\n", addr_idx, sp[addr_idx].adesc,
|
sp[addr_idx].addrl, sp[addr_idx].addrh));
|
}
|
}
|
}
|
}
|
|
return;
|
}
|
|
/*
|
* Switch to 'coreidx', issue a single arbitrary 32bit register mask & set operation,
|
* switch back to the original core, and return the new value.
|
*/
|
uint
|
BCMPOSTTRAPFN(nci_corereg)(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
|
{
|
uint origidx = 0;
|
volatile uint32 *r = NULL;
|
uint w;
|
bcm_int_bitmask_t intr_val;
|
bool fast = FALSE;
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores_info = &nci->cores[coreidx];
|
|
NCI_TRACE(("nci_corereg coreidx %u regoff %u mask %u val %u\n",
|
coreidx, regoff, mask, val));
|
ASSERT(GOODIDX(coreidx, nci->num_cores));
|
ASSERT(regoff < SI_CORE_SIZE);
|
ASSERT((val & ~mask) == 0);
|
|
if (coreidx >= SI_MAXCORES) {
|
return 0;
|
}
|
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
/* If internal bus, we can always get at everything */
|
uint32 curmap = nci_get_curmap(nci, coreidx);
|
BCM_REFERENCE(curmap);
|
|
fast = TRUE;
|
/* map if does not exist */
|
if (!cores_info->regs) {
|
cores_info->regs = REG_MAP(curmap, SI_CORE_SIZE);
|
ASSERT(GOODREGS(cores_info->regs));
|
}
|
r = (volatile uint32 *)((volatile uchar *)cores_info->regs + regoff);
|
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
|
if ((cores_info->coreid == CC_CORE_ID) && SI_FAST(sii)) {
|
/* Chipc registers are mapped at 12KB */
|
|
fast = TRUE;
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_CCREGS_OFFSET + regoff);
|
} else if (sii->pub.buscoreidx == coreidx) {
|
/* pci registers are at either in the last 2KB of an 8KB window
|
* or, in pcie and pci rev 13 at 8KB
|
*/
|
fast = TRUE;
|
if (SI_FAST(sii)) {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
} else {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
((regoff >= SBCONFIGOFF) ?
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff);
|
}
|
}
|
}
|
|
if (!fast) {
|
INTR_OFF(sii, &intr_val);
|
|
/* save current core index */
|
origidx = si_coreidx(&sii->pub);
|
|
/* switch core */
|
r = (volatile uint32*)((volatile uchar*)nci_setcoreidx(&sii->pub, coreidx) +
|
regoff);
|
}
|
ASSERT(r != NULL);
|
|
/* mask and set */
|
if (mask || val) {
|
w = (R_REG(sii->osh, r) & ~mask) | val;
|
W_REG(sii->osh, r, w);
|
}
|
|
/* readback */
|
w = R_REG(sii->osh, r);
|
|
if (!fast) {
|
/* restore core index */
|
if (origidx != coreidx) {
|
nci_setcoreidx(&sii->pub, origidx);
|
}
|
INTR_RESTORE(sii, &intr_val);
|
}
|
|
return (w);
|
}
|
|
uint
|
nci_corereg_writeonly(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
|
{
|
uint origidx = 0;
|
volatile uint32 *r = NULL;
|
uint w = 0;
|
bcm_int_bitmask_t intr_val;
|
bool fast = FALSE;
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores_info = &nci->cores[coreidx];
|
|
NCI_TRACE(("nci_corereg_writeonly() coreidx %u regoff %u mask %u val %u\n",
|
coreidx, regoff, mask, val));
|
|
ASSERT(GOODIDX(coreidx, nci->num_cores));
|
ASSERT(regoff < SI_CORE_SIZE);
|
ASSERT((val & ~mask) == 0);
|
|
if (coreidx >= SI_MAXCORES) {
|
return 0;
|
}
|
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
/* If internal bus, we can always get at everything */
|
uint32 curmap = nci_get_curmap(nci, coreidx);
|
BCM_REFERENCE(curmap);
|
fast = TRUE;
|
/* map if does not exist */
|
if (!cores_info->regs) {
|
cores_info->regs = REG_MAP(curmap, SI_CORE_SIZE);
|
ASSERT(GOODREGS(cores_info->regs));
|
}
|
r = (volatile uint32 *)((volatile uchar *)cores_info->regs + regoff);
|
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
|
if ((cores_info->coreid == CC_CORE_ID) && SI_FAST(sii)) {
|
/* Chipc registers are mapped at 12KB */
|
|
fast = TRUE;
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_CCREGS_OFFSET + regoff);
|
} else if (sii->pub.buscoreidx == coreidx) {
|
/* pci registers are at either in the last 2KB of an 8KB window
|
* or, in pcie and pci rev 13 at 8KB
|
*/
|
fast = TRUE;
|
if (SI_FAST(sii)) {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
} else {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
((regoff >= SBCONFIGOFF) ?
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff);
|
}
|
}
|
}
|
|
if (!fast) {
|
INTR_OFF(sii, &intr_val);
|
|
/* save current core index */
|
origidx = si_coreidx(&sii->pub);
|
|
/* switch core */
|
r = (volatile uint32*) ((volatile uchar*) nci_setcoreidx(&sii->pub, coreidx) +
|
regoff);
|
}
|
ASSERT(r != NULL);
|
|
/* mask and set */
|
if (mask || val) {
|
w = (R_REG(sii->osh, r) & ~mask) | val;
|
W_REG(sii->osh, r, w);
|
}
|
|
if (!fast) {
|
/* restore core index */
|
if (origidx != coreidx) {
|
nci_setcoreidx(&sii->pub, origidx);
|
}
|
|
INTR_RESTORE(sii, &intr_val);
|
}
|
|
return (w);
|
}
|
|
/*
|
* If there is no need for fiddling with interrupts or core switches (typically silicon
|
* back plane registers, pci registers and chipcommon registers), this function
|
* returns the register offset on this core to a mapped address. This address can
|
* be used for W_REG/R_REG directly.
|
*
|
* For accessing registers that would need a core switch, this function will return
|
* NULL.
|
*/
|
volatile uint32 *
|
nci_corereg_addr(si_t *sih, uint coreidx, uint regoff)
|
{
|
volatile uint32 *r = NULL;
|
bool fast = FALSE;
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores_info = &nci->cores[coreidx];
|
|
NCI_TRACE(("nci_corereg_addr() coreidx %u regoff %u\n", coreidx, regoff));
|
|
ASSERT(GOODIDX(coreidx, nci->num_cores));
|
ASSERT(regoff < SI_CORE_SIZE);
|
|
if (coreidx >= SI_MAXCORES) {
|
return 0;
|
}
|
|
if (BUSTYPE(sih->bustype) == SI_BUS) {
|
uint32 curmap = nci_get_curmap(nci, coreidx);
|
BCM_REFERENCE(curmap);
|
|
/* If internal bus, we can always get at everything */
|
fast = TRUE;
|
/* map if does not exist */
|
if (!cores_info->regs) {
|
cores_info->regs = REG_MAP(curmap, SI_CORE_SIZE);
|
ASSERT(GOODREGS(cores_info->regs));
|
}
|
r = (volatile uint32 *)((volatile uchar *)cores_info->regs + regoff);
|
|
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
|
if ((cores_info->coreid == CC_CORE_ID) && SI_FAST(sii)) {
|
/* Chipc registers are mapped at 12KB */
|
|
fast = TRUE;
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_CCREGS_OFFSET + regoff);
|
} else if (sii->pub.buscoreidx == coreidx) {
|
/* pci registers are at either in the last 2KB of an 8KB window
|
* or, in pcie and pci rev 13 at 8KB
|
*/
|
fast = TRUE;
|
if (SI_FAST(sii)) {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
} else {
|
r = (volatile uint32 *)((volatile char *)sii->curmap +
|
((regoff >= SBCONFIGOFF) ?
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff);
|
}
|
}
|
}
|
|
if (!fast) {
|
ASSERT(sii->curidx == coreidx);
|
r = (volatile uint32*) ((volatile uchar*)sii->curmap + regoff);
|
}
|
|
return (r);
|
}
|
|
uint
|
BCMPOSTTRAPFN(nci_findcoreidx)(const si_t *sih, uint coreid, uint coreunit)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
uint core_idx;
|
|
NCI_TRACE(("nci_findcoreidx() coreid %u coreunit %u\n", coreid, coreunit));
|
|
for (core_idx = 0; core_idx < nci->num_cores; core_idx++) {
|
if ((nci->cores[core_idx].coreid == coreid) &&
|
(nci->cores[core_idx].coreunit == coreunit)) {
|
return core_idx;
|
}
|
}
|
return BADIDX;
|
}
|
|
static uint32
|
_nci_get_slave_addr_size(nci_info_t *nci, uint coreidx, uint32 slave_port_idx, uint base_idx)
|
{
|
uint32 size;
|
uint32 add_desc;
|
|
NCI_TRACE(("_nci_get_slave_addr_size() coreidx %u slave_port_idx %u base_idx %u\n",
|
coreidx, slave_port_idx, base_idx));
|
|
add_desc = nci->cores[coreidx].desc[slave_port_idx].sp[base_idx].adesc;
|
|
size = add_desc & SLAVEPORT_ADDR_SIZE_MASK;
|
return ADDR_SIZE(size);
|
}
|
|
static uint32
|
BCMPOSTTRAPFN(_nci_get_curmap)(nci_info_t *nci, uint coreidx, uint slave_port_idx, uint base_idx)
|
{
|
/* TODO: Is handling of 64 bit addressing required */
|
NCI_TRACE(("_nci_get_curmap coreidx %u slave_port_idx %u base_idx %u\n",
|
coreidx, slave_port_idx, base_idx));
|
return nci->cores[coreidx].desc[slave_port_idx].sp[base_idx].addrl;
|
}
|
|
/* Get the interface descriptor which is connected to APB and return its address */
|
static uint32
|
BCMPOSTTRAPFN(nci_get_curmap)(nci_info_t *nci, uint coreidx)
|
{
|
nci_cores_t *core_info = &nci->cores[coreidx];
|
uint32 iface_idx;
|
|
NCI_TRACE(("nci_get_curmap coreidx %u\n", coreidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curmap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
|
/* If core is a Backplane or Bridge, then its slave port
|
* will give the pointer to access registers.
|
*/
|
if (!IS_MASTER(core_info->desc[iface_idx].iface_desc_1) &&
|
(IS_BACKPLANE(core_info->coreinfo) ||
|
APB_INF(core_info->desc[iface_idx]))) {
|
return _nci_get_curmap(nci, coreidx, iface_idx, 0);
|
}
|
}
|
|
/* no valid slave port address is found */
|
return NCI_BAD_REG;
|
}
|
|
static uint32
|
BCMPOSTTRAPFN(_nci_get_curwrap)(nci_info_t *nci, uint coreidx, uint wrapper_idx)
|
{
|
return nci->cores[coreidx].desc[wrapper_idx].node_ptr;
|
}
|
|
static uint32
|
BCMPOSTTRAPFN(nci_get_curwrap)(nci_info_t *nci, uint coreidx)
|
{
|
nci_cores_t *core_info = &nci->cores[coreidx];
|
uint32 iface_idx;
|
NCI_TRACE(("nci_get_curwrap coreidx %u\n", coreidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curwrap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
if ((ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_BOOKER) ||
|
(ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_NIC400)) {
|
return _nci_get_curwrap(nci, coreidx, iface_idx);
|
}
|
}
|
|
/* no valid master wrapper found */
|
return NCI_BAD_REG;
|
}
|
|
static void
|
_nci_setcoreidx_pcie_bus(si_t *sih, volatile void **regs, uint32 curmap,
|
uint32 curwrap)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
|
*regs = sii->curmap;
|
switch (sii->slice) {
|
case 0: /* main/first slice */
|
/* point bar0 window */
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, PCIE_WRITE_SIZE, curmap);
|
// TODO: why curwrap is zero i.e no master wrapper
|
if (curwrap != 0) {
|
if (PCIE_GEN2(sii)) {
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2,
|
PCIE_WRITE_SIZE, curwrap);
|
} else {
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2,
|
PCIE_WRITE_SIZE, curwrap);
|
}
|
}
|
break;
|
case 1: /* aux/second slice */
|
/* PCIE GEN2 only for other slices */
|
if (!PCIE_GEN2(sii)) {
|
/* other slices not supported */
|
NCI_ERROR(("pci gen not supported for slice 1\n"));
|
ASSERT(0);
|
break;
|
}
|
|
/* 0x4000 - 0x4fff: enum space 0x5000 - 0x5fff: wrapper space */
|
|
*regs = (volatile uint8 *)*regs + PCI_SEC_BAR0_WIN_OFFSET;
|
sii->curwrap = (void *)((uintptr)*regs + SI_CORE_SIZE);
|
|
/* point bar0 window */
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_CORE2_WIN, PCIE_WRITE_SIZE, curmap);
|
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_CORE2_WIN2, PCIE_WRITE_SIZE, curwrap);
|
break;
|
|
case 2: /* scan/third slice */
|
/* PCIE GEN2 only for other slices */
|
if (!PCIE_GEN2(sii)) {
|
/* other slices not supported */
|
NCI_ERROR(("pci gen not supported for slice 1\n"));
|
ASSERT(0);
|
break;
|
}
|
/* 0x9000 - 0x9fff: enum space 0xa000 - 0xafff: wrapper space */
|
*regs = (volatile uint8 *)*regs + PCI_SEC_BAR0_WIN_OFFSET;
|
sii->curwrap = (void *)((uintptr)*regs + SI_CORE_SIZE);
|
|
/* point bar0 window */
|
nci_corereg(sih, sih->buscoreidx, PCIE_TER_BAR0_WIN, ~0, curmap);
|
nci_corereg(sih, sih->buscoreidx, PCIE_TER_BAR0_WRAPPER, ~0, curwrap);
|
break;
|
default:
|
ASSERT(0);
|
break;
|
}
|
}
|
|
static volatile void *
|
BCMPOSTTRAPFN(_nci_setcoreidx)(si_t *sih, uint coreidx)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores_info = &nci->cores[coreidx];
|
uint32 curmap, curwrap;
|
volatile void *regs = NULL;
|
|
NCI_TRACE(("_nci_setcoreidx coreidx %u\n", coreidx));
|
if (!GOODIDX(coreidx, nci->num_cores)) {
|
return (NULL);
|
}
|
/*
|
* If the user has provided an interrupt mask enabled function,
|
* then assert interrupts are disabled before switching the core.
|
*/
|
ASSERT((sii->intrsenabled_fn == NULL) ||
|
!(*(sii)->intrsenabled_fn)((sii)->intr_arg));
|
|
curmap = nci_get_curmap(nci, coreidx);
|
curwrap = nci_get_curwrap(nci, coreidx);
|
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
/* map if does not exist */
|
if (!cores_info->regs) {
|
cores_info->regs = REG_MAP(curmap, SI_CORE_SIZE);
|
ASSERT(GOODREGS(cores_info->regs));
|
}
|
sii->curmap = regs = cores_info->regs;
|
sii->curwrap = REG_MAP(curwrap, SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
_nci_setcoreidx_pcie_bus(sih, ®s, curmap, curwrap);
|
break;
|
|
default:
|
NCI_ERROR(("_nci_stcoreidx Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
break;
|
}
|
sii->curidx = coreidx;
|
return regs;
|
}
|
|
volatile void *
|
BCMPOSTTRAPFN(nci_setcoreidx)(si_t *sih, uint coreidx)
|
{
|
return _nci_setcoreidx(sih, coreidx);
|
}
|
|
volatile void *
|
BCMPOSTTRAPFN(nci_setcore)(si_t *sih, uint coreid, uint coreunit)
|
{
|
si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
uint core_idx;
|
|
NCI_TRACE(("nci_setcore coreidx %u coreunit %u\n", coreid, coreunit));
|
core_idx = nci_findcoreidx(sih, coreid, coreunit);
|
|
if (!GOODIDX(core_idx, nci->num_cores)) {
|
return (NULL);
|
}
|
return nci_setcoreidx(sih, core_idx);
|
}
|
|
/* Get the value of the register at offset "offset" of currently configured core */
|
uint
|
BCMPOSTTRAPFN(nci_get_wrap_reg)(const si_t *sih, uint32 offset, uint32 mask, uint32 val)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
uint32 *addr = (uint32 *) ((uchar *)(sii->curwrap) + offset);
|
NCI_TRACE(("nci_wrap_reg offset %u mask %u val %u\n", offset, mask, val));
|
|
if (mask || val) {
|
uint32 w = R_REG(sii->osh, addr);
|
w &= ~mask;
|
w |= val;
|
W_REG(sii->osh, addr, w);
|
}
|
return (R_REG(sii->osh, addr));
|
}
|
|
uint
|
nci_corevendor(const si_t *sih)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
|
NCI_TRACE(("nci_corevendor coreidx %u\n", sii->curidx));
|
return (nci->cores[sii->curidx].coreinfo & COREINFO_MFG_MASK) >> COREINFO_MFG_SHIFT;
|
}
|
|
uint
|
BCMPOSTTRAPFN(nci_corerev)(const si_t *sih)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
uint coreidx = sii->curidx;
|
|
NCI_TRACE(("nci_corerev coreidx %u\n", coreidx));
|
|
return (nci->cores[coreidx].coreinfo & COREINFO_REV_MASK) >> COREINFO_REV_SHIFT;
|
}
|
|
uint
|
nci_corerev_minor(const si_t *sih)
|
{
|
return (nci_core_sflags(sih, 0, 0) >> SISF_MINORREV_D11_SHIFT) &
|
SISF_MINORREV_D11_MASK;
|
}
|
|
uint
|
BCMPOSTTRAPFN(nci_coreid)(const si_t *sih, uint coreidx)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
|
NCI_TRACE(("nci_coreid coreidx %u\n", coreidx));
|
return nci->cores[coreidx].coreid;
|
}
|
|
/** return total coreunit of coreid or zero if not found */
|
uint
|
BCMPOSTTRAPFN(nci_numcoreunits)(const si_t *sih, uint coreid)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
uint found = 0;
|
uint i;
|
|
NCI_TRACE(("nci_numcoreunits coreidx %u\n", coreid));
|
|
for (i = 0; i < nci->num_cores; i++) {
|
if (nci->cores[i].coreid == coreid) {
|
found++;
|
}
|
}
|
|
return found;
|
}
|
|
/* Return the address of the nth address space in the current core
|
* Arguments:
|
* sih : Pointer to struct si_t
|
* spidx : slave port index
|
* baidx : base address index
|
*/
|
uint32
|
nci_addr_space(const si_t *sih, uint spidx, uint baidx)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
uint cidx;
|
|
NCI_TRACE(("nci_addr_space spidx %u baidx %u\n", spidx, baidx));
|
cidx = sii->curidx;
|
return _nci_get_curmap(sii->nci_info, cidx, spidx, baidx);
|
}
|
|
/* Return the size of the nth address space in the current core
|
* Arguments:
|
* sih : Pointer to struct si_t
|
* spidx : slave port index
|
* baidx : base address index
|
*/
|
uint32
|
nci_addr_space_size(const si_t *sih, uint spidx, uint baidx)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
uint cidx;
|
|
NCI_TRACE(("nci_addr_space_size spidx %u baidx %u\n", spidx, baidx));
|
|
cidx = sii->curidx;
|
return _nci_get_slave_addr_size(sii->nci_info, cidx, spidx, baidx);
|
}
|
|
/*
|
* Performs soft reset of attached device.
|
* Writes have the following effect:
|
* 0b1 Request attached device to enter reset.
|
* Write is ignored if it occurs before soft reset exit has occurred.
|
*
|
* 0b0 Request attached device to exit reset.
|
* Write is ignored if it occurs before soft reset entry has occurred.
|
*
|
* Software can poll this register to determine whether soft reset entry or exit has occurred,
|
* using the following values:
|
* 0b1 Indicates that the device is in reset.
|
* 0b0 Indicates that the device is not in reset.
|
*
|
*
|
* Note
|
* The register value updates to reflect a request for reset entry or reset exit,
|
* but the update can only occur after required internal conditions are met.
|
* Until these conditions are met, a read to the register returns the old value.
|
* For example, outstanding transactions currently being handled must complete before
|
* the register value updates.
|
*
|
* To ensure reset propagation within the device,
|
* it is the responsibility of software to allow enough cycles after
|
* soft reset assertion is reflected in the reset control register
|
* before exiting soft reset by triggering a write of 0b0.
|
* If this responsibility is not met, the behavior is undefined or unpredictable.
|
*
|
* When the register value is 0b1,
|
* the external soft reset pin that connects to the attached AXI master or slave
|
* device is asserted, using the correct polarity of the reset pin.
|
* When the register value is 0b0, the external softreset
|
* pin that connects to the attached AXI master or slave device is deasserted,
|
* using the correct polarity of the reset pin.
|
*/
|
static void
|
BCMPOSTTRAPFN(_nci_core_reset)(const si_t *sih, uint32 bits, uint32 resetbits)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
amni_regs_t *amni = (amni_regs_t *)(uintptr)sii->curwrap;
|
volatile dmp_regs_t *io;
|
volatile uint32* erom_base = 0u;
|
uint32 orig_bar0_win1 = 0u;
|
volatile uint32 dummy;
|
volatile uint32 reg_read;
|
uint32 dmp_write_value;
|
|
/* Point to OOBR base */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
erom_base = (volatile uint32*)REG_MAP(GET_OOBR_BASE(nci->cc_erom2base),
|
SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/*
|
* Save Original Bar0 Win1. In nci, the io registers dmpctrl & dmpstatus
|
* registers are implemented in the EROM section. REF -
|
* https://docs.google.com/document/d/1HE7hAmvdoNFSnMI7MKQV1qVrFBZVsgLdNcILNOA2C8c
|
* This requires addition BAR0 windows mapping to erom section in chipcommon.
|
*/
|
orig_bar0_win1 = OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN,
|
PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
erom_base = (volatile uint32*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("_nci_core_reset Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
break;
|
}
|
|
/* Point to DMP Control */
|
io = (dmp_regs_t*)(NCI_ADD_ADDR(erom_base, nci->cores[sii->curidx].dmp_regs_off));
|
|
NCI_TRACE(("_nci_core_reset reg 0x%p io %p\n", amni, io));
|
|
/* Put core into reset */
|
W_REG(nci->osh, &amni->idm_reset_ctrl, NI_IDM_RESET_ENTRY);
|
|
/* poll for the reset to happen */
|
while (TRUE) {
|
/* Wait until reset is effective */
|
SPINWAIT(((reg_read = R_REG(nci->osh, &amni->idm_reset_ctrl)) !=
|
NI_IDM_RESET_ENTRY), NCI_SPINWAIT_TIMEOUT);
|
|
if (reg_read == NI_IDM_RESET_ENTRY) {
|
break;
|
}
|
}
|
|
dmp_write_value = (bits | resetbits | SICF_FGC | SICF_CLOCK_EN);
|
|
W_REG(nci->osh, &io->dmpctrl, dmp_write_value);
|
|
/* poll for the dmp_reg write to happen */
|
while (TRUE) {
|
/* Wait until reset is effective */
|
SPINWAIT(((reg_read = R_REG(nci->osh, &io->dmpctrl)) !=
|
dmp_write_value), NCI_SPINWAIT_TIMEOUT);
|
if (reg_read == dmp_write_value) {
|
break;
|
}
|
}
|
|
/* take core out of reset */
|
W_REG(nci->osh, &amni->idm_reset_ctrl, 0u);
|
|
/* poll for the core to come out of reset */
|
while (TRUE) {
|
/* Wait until reset is effected */
|
SPINWAIT(((reg_read = R_REG(nci->osh, &amni->idm_reset_ctrl)) !=
|
NI_IDM_RESET_EXIT), NCI_SPINWAIT_TIMEOUT);
|
if (reg_read == NI_IDM_RESET_EXIT) {
|
break;
|
}
|
}
|
|
dmp_write_value = (bits | SICF_CLOCK_EN);
|
W_REG(nci->osh, &io->dmpctrl, (bits | SICF_CLOCK_EN));
|
/* poll for the core to come out of reset */
|
while (TRUE) {
|
SPINWAIT(((reg_read = R_REG(nci->osh, &io->dmpctrl)) !=
|
dmp_write_value), NCI_SPINWAIT_TIMEOUT);
|
if (reg_read == dmp_write_value) {
|
break;
|
}
|
}
|
|
dummy = R_REG(nci->osh, &io->dmpctrl);
|
BCM_REFERENCE(dummy);
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
}
|
|
/* reset and re-enable a core
|
*/
|
void
|
BCMPOSTTRAPFN(nci_core_reset)(const si_t *sih, uint32 bits, uint32 resetbits)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
int32 iface_idx = 0u;
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
for (iface_idx = core->iface_cnt-1; iface_idx >= 0; iface_idx--) {
|
if (!(BOOKER_INF(core->desc[iface_idx]) || NIC_INF(core->desc[iface_idx]))) {
|
continue;
|
}
|
#ifdef BOOKER_NIC400_INF
|
if (core->desc[iface_idx].node_type == NODE_TYPE_NIC400) {
|
ai_core_reset_ext(sih, bits, resetbits);
|
} else
|
#endif /* BOOKER_NIC400_INF */
|
{
|
_nci_core_reset(sih, bits, resetbits);
|
}
|
}
|
}
|
|
#ifdef BOOKER_NIC400_INF
|
static int32
|
BCMPOSTTRAPFN(nci_find_first_wrapper_idx)(nci_info_t *nci, uint32 coreidx)
|
{
|
nci_cores_t *core_info = &nci->cores[coreidx];
|
uint32 iface_idx;
|
|
NCI_TRACE(("nci_find_first_wrapper_idx %u\n", coreidx));
|
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_INFO(("nci_find_first_wrapper_idx: %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
|
if ((ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_BOOKER) ||
|
(ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_NIC400)) {
|
return iface_idx;
|
}
|
}
|
|
/* no valid master wrapper found */
|
return NCI_BAD_INDEX;
|
}
|
#endif /* BOOKER_NIC400_INF */
|
|
void
|
nci_core_disable(const si_t *sih, uint32 bits)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
uint32 reg_read;
|
volatile dmp_regs_t *io = NULL;
|
uint32 orig_bar0_win1 = 0u;
|
uint32 dmp_write_value;
|
amni_regs_t *amni = (amni_regs_t *)(uintptr)sii->curwrap;
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
int32 iface_idx;
|
|
NCI_TRACE(("nci_core_disable\n"));
|
|
BCM_REFERENCE(core);
|
BCM_REFERENCE(iface_idx);
|
|
#ifdef BOOKER_NIC400_INF
|
iface_idx = nci_find_first_wrapper_idx(nci, sii->curidx);
|
|
if (iface_idx < 0) {
|
NCI_ERROR(("nci_core_disable: First Wrapper is not found\n"));
|
ASSERT(0u);
|
return;
|
}
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
if (core->desc[iface_idx].master && (core->desc[iface_idx].node_type == NODE_TYPE_NIC400)) {
|
return ai_core_disable(sih, bits);
|
}
|
#endif /* BOOKER_NIC400_INF */
|
|
ASSERT(GOODREGS(sii->curwrap));
|
reg_read = R_REG(nci->osh, &amni->idm_reset_ctrl);
|
|
/* if core is already in reset, just return */
|
if (reg_read == NI_IDM_RESET_ENTRY) {
|
return;
|
}
|
|
/* Put core into reset */
|
W_REG(nci->osh, &amni->idm_reset_ctrl, NI_IDM_RESET_ENTRY);
|
while (TRUE) {
|
/* Wait until reset is effected */
|
SPINWAIT(((reg_read = R_REG(nci->osh, &amni->idm_reset_ctrl)) !=
|
NI_IDM_RESET_ENTRY), NCI_SPINWAIT_TIMEOUT);
|
if (reg_read == NI_IDM_RESET_ENTRY) {
|
break;
|
}
|
}
|
|
/* Point to OOBR base */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
io = (volatile dmp_regs_t*)
|
REG_MAP(GET_OOBR_BASE(nci->cc_erom2base), SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/* Save Original Bar0 Win1 */
|
orig_bar0_win1 =
|
OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
io = (volatile dmp_regs_t*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("nci_core_disable Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
break;
|
|
}
|
|
/* Point to DMP Control */
|
io = (dmp_regs_t*)(NCI_ADD_ADDR(io, nci->cores[sii->curidx].dmp_regs_off));
|
|
dmp_write_value = (bits | SICF_FGC | SICF_CLOCK_EN);
|
W_REG(nci->osh, &io->dmpctrl, dmp_write_value);
|
|
/* poll for the dmp_reg write to happen */
|
while (TRUE) {
|
/* Wait until reset is effected */
|
SPINWAIT(((reg_read = R_REG(nci->osh, &io->dmpctrl)) != dmp_write_value),
|
NCI_SPINWAIT_TIMEOUT);
|
if (reg_read == dmp_write_value) {
|
break;
|
}
|
}
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
}
|
|
bool
|
BCMPOSTTRAPFN(nci_iscoreup)(const si_t *sih)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
amni_regs_t *ni = (amni_regs_t *)(uintptr)sii->curwrap;
|
uint32 reset_ctrl;
|
|
#ifdef BOOKER_NIC400_INF
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
int32 iface_idx = nci_find_first_wrapper_idx(nci, sii->curidx);
|
|
if (iface_idx < 0) {
|
NCI_ERROR(("nci_iscoreup: First Wrapper is not found\n"));
|
ASSERT(0u);
|
return FALSE;
|
}
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
if (core->desc[iface_idx].master && (core->desc[iface_idx].node_type == NODE_TYPE_NIC400)) {
|
return ai_iscoreup(sih);
|
}
|
#endif /* BOOKER_NIC400_INF */
|
|
NCI_TRACE(("nci_iscoreup\n"));
|
reset_ctrl = R_REG(nci->osh, &ni->idm_reset_ctrl);
|
|
return (reset_ctrl == NI_IDM_RESET_ENTRY) ? FALSE : TRUE;
|
}
|
|
/* TODO: OOB Router core is not available. Can be removed. */
|
uint
|
nci_intflag(si_t *sih)
|
{
|
return 0;
|
}
|
|
uint
|
nci_flag(si_t *sih)
|
{
|
/* TODO: will be implemented if required for NCI */
|
return 0;
|
}
|
|
uint
|
nci_flag_alt(const si_t *sih)
|
{
|
/* TODO: will be implemented if required for NCI */
|
return 0;
|
}
|
|
void
|
BCMATTACHFN(nci_setint)(const si_t *sih, int siflag)
|
{
|
BCM_REFERENCE(sih);
|
BCM_REFERENCE(siflag);
|
|
/* TODO: Figure out how to set interrupt mask in nci */
|
}
|
|
/* TODO: OOB Router core is not available. Can we remove or need an alternate implementation. */
|
uint32
|
nci_oobr_baseaddr(const si_t *sih, bool second)
|
{
|
return 0;
|
}
|
|
uint
|
nci_coreunit(const si_t *sih)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores = nci->cores;
|
uint idx;
|
uint coreid;
|
uint coreunit;
|
uint i;
|
|
coreunit = 0;
|
|
idx = sii->curidx;
|
|
ASSERT(GOODREGS(sii->curmap));
|
coreid = nci_coreid(sih, sii->curidx);
|
|
/* count the cores of our type */
|
for (i = 0; i < idx; i++) {
|
if (cores[i].coreid == coreid) {
|
coreunit++;
|
}
|
}
|
|
return (coreunit);
|
}
|
|
uint
|
nci_corelist(const si_t *sih, uint coreid[])
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *cores = nci->cores;
|
uint32 i;
|
|
for (i = 0; i < sii->numcores; i++) {
|
coreid[i] = cores[i].coreid;
|
}
|
|
return (sii->numcores);
|
}
|
|
/* Return the number of address spaces in current core */
|
int
|
BCMATTACHFN(nci_numaddrspaces)(const si_t *sih)
|
{
|
/* TODO: Either save it or parse the EROM on demand, currently hardcode 2 */
|
BCM_REFERENCE(sih);
|
|
return 2;
|
}
|
|
/* The value of wrap_pos should be greater than 0 */
|
/* wrapba, wrapba2 and wrapba3 */
|
uint32
|
nci_get_nth_wrapper(const si_t *sih, int32 wrap_pos)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = &nci->cores[sii->curidx];
|
uint32 iface_idx;
|
uint32 addr = 0;
|
|
ASSERT(wrap_pos >= 0);
|
if (wrap_pos < 0) {
|
return addr;
|
}
|
|
NCI_TRACE(("nci_get_curmap coreidx %u\n", sii->curidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curmap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
/* hack for core idx 8, coreidx without APB Backplane ID */
|
if (!IS_MASTER(core_info->desc[iface_idx].iface_desc_1)) {
|
continue;
|
}
|
/* TODO: Should the interface be only BOOKER or NIC is also fine. */
|
if (GET_NODETYPE(core_info->desc[iface_idx].iface_desc_0) != NODE_TYPE_BOOKER) {
|
continue;
|
}
|
/* Iterate till we do not get a wrapper at nth (wrap_pos) position */
|
if (wrap_pos == 0) {
|
break;
|
}
|
wrap_pos--;
|
}
|
if (iface_idx < core_info->iface_cnt) {
|
addr = GET_NODEPTR(core_info->desc[iface_idx].iface_desc_0);
|
}
|
return addr;
|
}
|
|
/* Get slave port address of the 0th slave (csp2ba) */
|
uint32
|
nci_get_axi_addr(const si_t *sih, uint32 *size)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = (const nci_cores_t *)&nci->cores[sii->curidx];
|
uint32 iface_idx;
|
uint32 addr = 0;
|
|
NCI_TRACE(("nci_get_curmap coreidx %u\n", sii->curidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curmap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
if (IS_MASTER(core_info->desc[iface_idx].iface_desc_1)) {
|
continue;
|
}
|
if ((ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_BOOKER) ||
|
(ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_NIC400)) {
|
break;
|
}
|
}
|
if (iface_idx < core_info->iface_cnt) {
|
/*
|
* TODO: Is there any case where we need to return the slave port address
|
* corresponding to index other than 0.
|
*/
|
if (&core_info->desc[iface_idx].sp[0] != NULL) {
|
addr = core_info->desc[iface_idx].sp[0].addrl;
|
if (size) {
|
uint32 adesc = core_info->desc[iface_idx].sp[0].adesc;
|
*size = SLAVEPORT_ADDR_SIZE(adesc);
|
}
|
}
|
}
|
return addr;
|
}
|
|
/* spidx shouldbe the index of the slave port which we are expecting.
|
* The value will vary from 0 to num_addr_reg.
|
*/
|
/* coresba and coresba2 */
|
uint32
|
nci_get_core_baaddr(const si_t *sih, uint32 *size, int32 baidx)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = (const nci_cores_t *)&nci->cores[sii->curidx];
|
uint32 iface_idx;
|
uint32 addr = 0;
|
|
NCI_TRACE(("nci_get_curmap coreidx %u\n", sii->curidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curmap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
/* hack for core idx 8, coreidx without APB Backplane ID */
|
if (IS_MASTER(core_info->desc[iface_idx].iface_desc_1)) {
|
continue;
|
}
|
if ((ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_APB1) ||
|
(ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_APB2)) {
|
break;
|
}
|
}
|
if (iface_idx < core_info->iface_cnt) {
|
/*
|
* TODO: Is there any case where we need to return the slave port address
|
* corresponding to index other than 0.
|
*/
|
if ((core_info->desc[iface_idx].num_addr_reg > baidx) &&
|
(&core_info->desc[iface_idx].sp[baidx] != NULL)) {
|
addr = core_info->desc[iface_idx].sp[baidx].addrl;
|
if (size) {
|
uint32 adesc = core_info->desc[iface_idx].sp[0].adesc;
|
*size = SLAVEPORT_ADDR_SIZE(adesc);
|
}
|
}
|
}
|
return addr;
|
}
|
|
uint32
|
nci_addrspace(const si_t *sih, uint spidx, uint baidx)
|
{
|
if (spidx == CORE_SLAVE_PORT_0) {
|
if (baidx == CORE_BASE_ADDR_0) {
|
return nci_get_core_baaddr(sih, NULL, CORE_BASE_ADDR_0);
|
} else if (baidx == CORE_BASE_ADDR_1) {
|
return nci_get_core_baaddr(sih, NULL, CORE_BASE_ADDR_1);
|
}
|
} else if (spidx == CORE_SLAVE_PORT_1) {
|
if (baidx == CORE_BASE_ADDR_0) {
|
return nci_get_axi_addr(sih, NULL);
|
}
|
}
|
|
SI_ERROR(("nci_addrspace: Need to parse the erom again to find %d base addr"
|
" in %d slave port\n", baidx, spidx));
|
|
return 0;
|
}
|
|
uint32
|
BCMATTACHFN(nci_addrspacesize)(const si_t *sih, uint spidx, uint baidx)
|
{
|
uint32 size = 0;
|
|
if (spidx == CORE_SLAVE_PORT_0) {
|
if (baidx == CORE_BASE_ADDR_0) {
|
nci_get_core_baaddr(sih, &size, CORE_BASE_ADDR_0);
|
goto done;
|
} else if (baidx == CORE_BASE_ADDR_1) {
|
nci_get_core_baaddr(sih, &size, CORE_BASE_ADDR_1);
|
goto done;
|
}
|
} else if (spidx == CORE_SLAVE_PORT_1) {
|
if (baidx == CORE_BASE_ADDR_0) {
|
nci_get_axi_addr(sih, &size);
|
goto done;
|
}
|
}
|
|
SI_ERROR(("nci_addrspacesize: Need to parse the erom again to find %d"
|
" base addr in %d slave port\n", baidx, spidx));
|
done:
|
return size;
|
}
|
|
uint32
|
BCMPOSTTRAPFN(nci_core_cflags)(const si_t *sih, uint32 mask, uint32 val)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
uint32 orig_bar0_win1 = 0;
|
int32 iface_idx;
|
uint32 w;
|
|
BCM_REFERENCE(iface_idx);
|
|
if ((core[sii->curidx].coreid) == PMU_CORE_ID) {
|
NCI_ERROR(("nci_core_cflags: Accessing PMU DMP register (ioctrl)\n"));
|
return 0;
|
}
|
|
ASSERT(GOODREGS(sii->curwrap));
|
ASSERT((val & ~mask) == 0);
|
|
#ifdef BOOKER_NIC400_INF
|
iface_idx = nci_find_first_wrapper_idx(nci, sii->curidx);
|
if (iface_idx < 0) {
|
NCI_ERROR(("nci_core_cflags: First Wrapper is not found\n"));
|
ASSERT(0u);
|
return 0u;
|
}
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
if (core->desc[iface_idx].master && (core->desc[iface_idx].node_type == NODE_TYPE_NIC400)) {
|
aidmp_t *ai = sii->curwrap;
|
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
|
W_REG(sii->osh, &ai->ioctrl, w);
|
}
|
return R_REG(sii->osh, &ai->ioctrl);
|
} else
|
#endif /* BOOKER_NIC400_INF */
|
{
|
volatile dmp_regs_t *io = sii->curwrap;
|
volatile uint32 reg_read;
|
|
/* BOOKER */
|
/* Point to OOBR base */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
io = (volatile dmp_regs_t*)
|
REG_MAP(GET_OOBR_BASE(nci->cc_erom2base), SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/* Save Original Bar0 Win1 */
|
orig_bar0_win1 =
|
OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
io = (volatile dmp_regs_t*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("nci_core_cflags Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
break;
|
|
}
|
|
/* Point to DMP Control */
|
io = (dmp_regs_t*)(NCI_ADD_ADDR(io, nci->cores[sii->curidx].dmp_regs_off));
|
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &io->dmpctrl) & ~mask) | val);
|
W_REG(sii->osh, &io->dmpctrl, w);
|
}
|
|
reg_read = R_REG(sii->osh, &io->dmpctrl);
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN,
|
PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
|
return reg_read;
|
}
|
}
|
|
void
|
BCMPOSTTRAPFN(nci_core_cflags_wo)(const si_t *sih, uint32 mask, uint32 val)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
volatile dmp_regs_t *io = sii->curwrap;
|
uint32 orig_bar0_win1 = 0;
|
int32 iface_idx;
|
uint32 w;
|
|
BCM_REFERENCE(iface_idx);
|
|
if ((core[sii->curidx].coreid) == PMU_CORE_ID) {
|
NCI_ERROR(("nci_core_cflags: Accessing PMU DMP register (ioctrl)\n"));
|
return;
|
}
|
|
ASSERT(GOODREGS(sii->curwrap));
|
ASSERT((val & ~mask) == 0);
|
|
#ifdef BOOKER_NIC400_INF
|
iface_idx = nci_find_first_wrapper_idx(nci, sii->curidx);
|
if (iface_idx < 0) {
|
NCI_ERROR(("nci_core_cflags_wo: First Wrapper is not found\n"));
|
ASSERT(0u);
|
return;
|
}
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
if (core->desc[iface_idx].master && (core->desc[iface_idx].node_type == NODE_TYPE_NIC400)) {
|
aidmp_t *ai = sii->curwrap;
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
|
W_REG(sii->osh, &ai->ioctrl, w);
|
}
|
} else
|
#endif /* BOOKER_NIC400_INF */
|
{
|
/* BOOKER */
|
/* Point to OOBR base */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
io = (volatile dmp_regs_t*)
|
REG_MAP(GET_OOBR_BASE(nci->cc_erom2base), SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/* Save Original Bar0 Win1 */
|
orig_bar0_win1 =
|
OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
io = (volatile dmp_regs_t*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("nci_core_cflags_wo Invalid bustype %d\n",
|
BUSTYPE(sih->bustype)));
|
break;
|
}
|
|
/* Point to DMP Control */
|
io = (dmp_regs_t*)(NCI_ADD_ADDR(io, nci->cores[sii->curidx].dmp_regs_off));
|
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &io->dmpctrl) & ~mask) | val);
|
W_REG(sii->osh, &io->dmpctrl, w);
|
}
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN,
|
PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
}
|
}
|
|
uint32
|
nci_core_sflags(const si_t *sih, uint32 mask, uint32 val)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
nci_cores_t *core = &nci->cores[sii->curidx];
|
uint32 orig_bar0_win1 = 0;
|
int32 iface_idx;
|
uint32 w;
|
|
BCM_REFERENCE(iface_idx);
|
|
if ((core[sii->curidx].coreid) == PMU_CORE_ID) {
|
NCI_ERROR(("nci_core_sflags: Accessing PMU DMP register (ioctrl)\n"));
|
return 0;
|
}
|
|
ASSERT(GOODREGS(sii->curwrap));
|
|
ASSERT((val & ~mask) == 0);
|
ASSERT((mask & ~SISF_CORE_BITS) == 0);
|
|
#ifdef BOOKER_NIC400_INF
|
iface_idx = nci_find_first_wrapper_idx(nci, sii->curidx);
|
if (iface_idx < 0) {
|
NCI_ERROR(("nci_core_sflags: First Wrapper is not found\n"));
|
ASSERT(0u);
|
return 0u;
|
}
|
|
/* If Wrapper is of NIC400, then call AI functionality */
|
if (core->desc[iface_idx].master && (core->desc[iface_idx].node_type == NODE_TYPE_NIC400)) {
|
aidmp_t *ai = sii->curwrap;
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
|
W_REG(sii->osh, &ai->iostatus, w);
|
}
|
|
return R_REG(sii->osh, &ai->iostatus);
|
} else
|
#endif /* BOOKER_NIC400_INF */
|
{
|
volatile dmp_regs_t *io = sii->curwrap;
|
volatile uint32 reg_read;
|
|
/* BOOKER */
|
/* Point to OOBR base */
|
switch (BUSTYPE(sih->bustype)) {
|
case SI_BUS:
|
io = (volatile dmp_regs_t*)
|
REG_MAP(GET_OOBR_BASE(nci->cc_erom2base), SI_CORE_SIZE);
|
break;
|
|
case PCI_BUS:
|
/* Save Original Bar0 Win1 */
|
orig_bar0_win1 =
|
OSL_PCI_READ_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE);
|
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN, PCI_ACCESS_SIZE,
|
GET_OOBR_BASE(nci->cc_erom2base));
|
io = (volatile dmp_regs_t*)sii->curmap;
|
break;
|
|
default:
|
NCI_ERROR(("nci_core_sflags Invalid bustype %d\n", BUSTYPE(sih->bustype)));
|
return 0u;
|
}
|
|
/* Point to DMP Control */
|
io = (dmp_regs_t*)(NCI_ADD_ADDR(io, nci->cores[sii->curidx].dmp_regs_off));
|
|
if (mask || val) {
|
w = ((R_REG(sii->osh, &io->dmpstatus) & ~mask) | val);
|
W_REG(sii->osh, &io->dmpstatus, w);
|
}
|
|
reg_read = R_REG(sii->osh, &io->dmpstatus);
|
|
/* Point back to original base */
|
if (BUSTYPE(sih->bustype) == PCI_BUS) {
|
OSL_PCI_WRITE_CONFIG(nci->osh, PCI_BAR0_WIN,
|
PCI_ACCESS_SIZE, orig_bar0_win1);
|
}
|
|
return reg_read;
|
}
|
}
|
|
/* TODO: Used only by host */
|
int
|
nci_backplane_access(si_t *sih, uint addr, uint size, uint *val, bool read)
|
{
|
return 0;
|
}
|
|
int
|
nci_backplane_access_64(si_t *sih, uint addr, uint size, uint64 *val, bool read)
|
{
|
return 0;
|
}
|
|
uint
|
nci_num_slaveports(const si_t *sih, uint coreidx)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = (const nci_cores_t *)&nci->cores[coreidx];
|
uint32 iface_idx;
|
uint32 numports = 0;
|
|
NCI_TRACE(("nci_get_curmap coreidx %u\n", coreidx));
|
for (iface_idx = 0; iface_idx < core_info->iface_cnt; iface_idx++) {
|
NCI_TRACE(("nci_get_curmap iface_idx %u BP_ID %u master %u\n",
|
iface_idx, ID_BPID(core_info->desc[iface_idx].iface_desc_1),
|
IS_MASTER(core_info->desc[iface_idx].iface_desc_1)));
|
/* hack for core idx 8, coreidx without APB Backplane ID */
|
if (IS_MASTER(core_info->desc[iface_idx].iface_desc_1)) {
|
continue;
|
}
|
if ((ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_APB1) ||
|
(ID_BPID(core_info->desc[iface_idx].iface_desc_1) == BP_APB2)) {
|
break;
|
}
|
}
|
if (iface_idx < core_info->iface_cnt) {
|
numports = core_info->desc[iface_idx].num_addr_reg;
|
}
|
return numports;
|
}
|
|
#if defined(BCMDBG) || defined(BCMDBG_DUMP) || defined(BCMDBG_PHYDUMP)
|
void
|
nci_dumpregs(const si_t *sih, struct bcmstrbuf *b)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
|
bcm_bprintf(b, "ChipNum:%x, ChipRev;%x, BusType:%x, BoardType:%x, BoardVendor:%x\n\n",
|
sih->chip, sih->chiprev, sih->bustype, sih->boardtype, sih->boardvendor);
|
BCM_REFERENCE(sii);
|
/* TODO: Implement dump regs for nci. */
|
}
|
#endif /* BCMDBG || BCMDBG_DUMP || BCMDBG_PHYDUMP */
|
|
#ifdef BCMDBG
|
static void
|
_nci_view(osl_t *osh, aidmp_t *ai, uint32 cid, uint32 addr, bool verbose)
|
{
|
/* TODO: This is WIP and will be developed once the
|
* implementation is done based on the NCI.
|
*/
|
}
|
|
void
|
nci_view(si_t *sih, bool verbose)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = (const nci_cores_t *)nci->cores;
|
osl_t *osh;
|
/* TODO: We need to do the structure mapping correctly based on the BOOKER/NIC type */
|
aidmp_t *ai;
|
uint32 cid, addr;
|
|
ai = sii->curwrap;
|
osh = sii->osh;
|
|
if ((core_info[sii->curidx].coreid) == PMU_CORE_ID) {
|
SI_ERROR(("Cannot access pmu DMP\n"));
|
return;
|
}
|
cid = core_info[sii->curidx].coreid;
|
addr = nci_get_nth_wrapper(sih, 0u);
|
_nci_view(osh, ai, cid, addr, verbose);
|
}
|
|
void
|
nci_viewall(si_t *sih, bool verbose)
|
{
|
const si_info_t *sii = SI_INFO(sih);
|
nci_info_t *nci = sii->nci_info;
|
const nci_cores_t *core_info = (const nci_cores_t *)nci->cores;
|
osl_t *osh;
|
aidmp_t *ai;
|
uint32 cid, addr;
|
uint i;
|
|
osh = sii->osh;
|
for (i = 0; i < sii->numcores; i++) {
|
nci_setcoreidx(sih, i);
|
|
if ((core_info[i].coreid) == PMU_CORE_ID) {
|
SI_ERROR(("Skipping pmu DMP\n"));
|
continue;
|
}
|
ai = sii->curwrap;
|
cid = core_info[i].coreid;
|
addr = nci_get_nth_wrapper(sih, 0u);
|
_nci_view(osh, ai, cid, addr, verbose);
|
}
|
}
|
#endif /* BCMDBG */
|
|
uint32
|
nci_clear_backplane_to(si_t *sih)
|
{
|
/* TODO: This is WIP and will be developed once the
|
* implementation is done based on the NCI.
|
*/
|
return 0;
|
}
|
|
#if defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC)
|
static bool g_disable_backplane_logs = FALSE;
|
|
static uint32 last_axi_error = AXI_WRAP_STS_NONE;
|
static uint32 last_axi_error_log_status = 0;
|
static uint32 last_axi_error_core = 0;
|
static uint32 last_axi_error_wrap = 0;
|
static uint32 last_axi_errlog_lo = 0;
|
static uint32 last_axi_errlog_hi = 0;
|
static uint32 last_axi_errlog_id = 0;
|
|
/* slave error is ignored, so account for those cases */
|
static uint32 si_ignore_errlog_cnt = 0;
|
|
static void
|
nci_reset_APB(const si_info_t *sii, aidmp_t *ai, int *ret,
|
uint32 errlog_status, uint32 errlog_id)
|
{
|
/* only reset APB Bridge on timeout (not slave error, or dec error) */
|
switch (errlog_status & AIELS_ERROR_MASK) {
|
case AIELS_SLAVE_ERR:
|
NCI_PRINT(("AXI slave error\n"));
|
*ret |= AXI_WRAP_STS_SLAVE_ERR;
|
break;
|
|
case AIELS_TIMEOUT:
|
nci_reset_axi_to(sii, ai);
|
*ret |= AXI_WRAP_STS_TIMEOUT;
|
break;
|
|
case AIELS_DECODE:
|
NCI_PRINT(("AXI decode error\n"));
|
#ifdef USE_HOSTMEM
|
/* Ignore known cases of CR4 prefetch abort bugs */
|
if ((errlog_id & (BCM_AXI_ID_MASK | BCM_AXI_ACCESS_TYPE_MASK)) !=
|
(BCM43xx_AXI_ACCESS_TYPE_PREFETCH | BCM43xx_CR4_AXI_ID))
|
#endif /* USE_HOSTMEM */
|
{
|
*ret |= AXI_WRAP_STS_DECODE_ERR;
|
}
|
break;
|
default:
|
ASSERT(0); /* should be impossible */
|
}
|
if (errlog_status & AIELS_MULTIPLE_ERRORS) {
|
NCI_PRINT(("Multiple AXI Errors\n"));
|
/* Set multiple errors bit only if actual error is not ignored */
|
if (*ret) {
|
*ret |= AXI_WRAP_STS_MULTIPLE_ERRORS;
|
}
|
}
|
return;
|
}
|
/*
|
* API to clear the back plane timeout per core.
|
* Caller may passs optional wrapper address. If present this will be used as
|
* the wrapper base address. If wrapper base address is provided then caller
|
* must provide the coreid also.
|
* If both coreid and wrapper is zero, then err status of current bridge
|
* will be verified.
|
*/
|
|
uint32
|
nci_clear_backplane_to_per_core(si_t *sih, uint coreid, uint coreunit, void *wrap)
|
{
|
int ret = AXI_WRAP_STS_NONE;
|
aidmp_t *ai = NULL;
|
uint32 errlog_status = 0;
|
const si_info_t *sii = SI_INFO(sih);
|
uint32 errlog_lo = 0, errlog_hi = 0, errlog_id = 0, errlog_flags = 0;
|
uint32 current_coreidx = si_coreidx(sih);
|
uint32 target_coreidx = nci_findcoreidx(sih, coreid, coreunit);
|
|
#if defined(AXI_TIMEOUTS_NIC)
|
si_axi_error_t * axi_error = sih->err_info ?
|
&sih->err_info->axi_error[sih->err_info->count] : NULL;
|
#endif /* AXI_TIMEOUTS_NIC */
|
bool restore_core = FALSE;
|
|
if ((sii->axi_num_wrappers == 0) ||
|
#ifdef AXI_TIMEOUTS_NIC
|
(!PCIE(sii)) ||
|
#endif /* AXI_TIMEOUTS_NIC */
|
FALSE) {
|
SI_VMSG(("nci_clear_backplane_to_per_core, axi_num_wrappers:%d, Is_PCIE:%d,"
|
" BUS_TYPE:%d, ID:%x\n",
|
sii->axi_num_wrappers, PCIE(sii),
|
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
|
return AXI_WRAP_STS_NONE;
|
}
|
|
if (wrap != NULL) {
|
ai = (aidmp_t *)wrap;
|
} else if (coreid && (target_coreidx != current_coreidx)) {
|
if (nci_setcoreidx(sih, target_coreidx) == NULL) {
|
/* Unable to set the core */
|
NCI_PRINT(("Set Code Failed: coreid:%x, unit:%d, target_coreidx:%d\n",
|
coreid, coreunit, target_coreidx));
|
errlog_lo = target_coreidx;
|
ret = AXI_WRAP_STS_SET_CORE_FAIL;
|
goto end;
|
}
|
restore_core = TRUE;
|
ai = (aidmp_t *)si_wrapperregs(sih);
|
} else {
|
/* Read error status of current wrapper */
|
ai = (aidmp_t *)si_wrapperregs(sih);
|
|
/* Update CoreID to current Code ID */
|
coreid = nci_coreid(sih, sii->curidx);
|
}
|
|
/* read error log status */
|
errlog_status = R_REG(sii->osh, &ai->errlogstatus);
|
|
if (errlog_status == ID32_INVALID) {
|
/* Do not try to peek further */
|
NCI_PRINT(("nci_clear_backplane_to_per_core, errlogstatus:%x - "
|
"Slave Wrapper:%x\n", errlog_status, coreid));
|
ret = AXI_WRAP_STS_WRAP_RD_ERR;
|
errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
|
goto end;
|
}
|
|
if ((errlog_status & AIELS_ERROR_MASK) != 0) {
|
uint32 tmp;
|
uint32 count = 0;
|
/* set ErrDone to clear the condition */
|
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
|
|
/* SPINWAIT on errlogstatus timeout status bits */
|
while ((tmp = R_REG(sii->osh, &ai->errlogstatus)) & AIELS_ERROR_MASK) {
|
|
if (tmp == ID32_INVALID) {
|
NCI_PRINT(("nci_clear_backplane_to_per_core: prev errlogstatus:%x,"
|
" errlogstatus:%x\n",
|
errlog_status, tmp));
|
ret = AXI_WRAP_STS_WRAP_RD_ERR;
|
|
errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
|
goto end;
|
}
|
/*
|
* Clear again, to avoid getting stuck in the loop, if a new error
|
* is logged after we cleared the first timeout
|
*/
|
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
|
|
count++;
|
OSL_DELAY(10);
|
if ((10 * count) > AI_REG_READ_TIMEOUT) {
|
errlog_status = tmp;
|
break;
|
}
|
}
|
|
errlog_lo = R_REG(sii->osh, &ai->errlogaddrlo);
|
errlog_hi = R_REG(sii->osh, &ai->errlogaddrhi);
|
errlog_id = R_REG(sii->osh, &ai->errlogid);
|
errlog_flags = R_REG(sii->osh, &ai->errlogflags);
|
|
/* we are already in the error path, so OK to check for the slave error */
|
if (nci_ignore_errlog(sii, ai, errlog_lo, errlog_hi, errlog_id, errlog_status)) {
|
si_ignore_errlog_cnt++;
|
goto end;
|
}
|
|
nci_reset_APB(sii, ai, &ret, errlog_status, errlog_id);
|
|
NCI_PRINT(("\tCoreID: %x\n", coreid));
|
NCI_PRINT(("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x"
|
", status 0x%08x\n",
|
errlog_lo, errlog_hi, errlog_id, errlog_flags,
|
errlog_status));
|
}
|
|
end:
|
if (ret != AXI_WRAP_STS_NONE) {
|
last_axi_error = ret;
|
last_axi_error_log_status = errlog_status;
|
last_axi_error_core = coreid;
|
last_axi_error_wrap = (uint32)ai;
|
last_axi_errlog_lo = errlog_lo;
|
last_axi_errlog_hi = errlog_hi;
|
last_axi_errlog_id = errlog_id;
|
}
|
|
#if defined(AXI_TIMEOUTS_NIC)
|
if (axi_error && (ret != AXI_WRAP_STS_NONE)) {
|
axi_error->error = ret;
|
axi_error->coreid = coreid;
|
axi_error->errlog_lo = errlog_lo;
|
axi_error->errlog_hi = errlog_hi;
|
axi_error->errlog_id = errlog_id;
|
axi_error->errlog_flags = errlog_flags;
|
axi_error->errlog_status = errlog_status;
|
sih->err_info->count++;
|
|
if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
|
sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
|
NCI_PRINT(("AXI Error log overflow\n"));
|
}
|
}
|
#endif /* AXI_TIMEOUTS_NIC */
|
|
if (restore_core) {
|
if (nci_setcoreidx(sih, current_coreidx) == NULL) {
|
/* Unable to set the core */
|
return ID32_INVALID;
|
}
|
}
|
return ret;
|
}
|
|
/* TODO: It needs to be handled based on BOOKER/NCI DMP. */
|
/* reset AXI timeout */
|
static void
|
nci_reset_axi_to(const si_info_t *sii, aidmp_t *ai)
|
{
|
/* reset APB Bridge */
|
OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
|
/* sync write */
|
(void)R_REG(sii->osh, &ai->resetctrl);
|
/* clear Reset bit */
|
AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET));
|
/* sync write */
|
(void)R_REG(sii->osh, &ai->resetctrl);
|
NCI_PRINT(("AXI timeout\n"));
|
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
|
NCI_PRINT(("reset failed on wrapper %p\n", ai));
|
g_disable_backplane_logs = TRUE;
|
}
|
}
|
|
void
|
nci_wrapper_get_last_error(const si_t *sih, uint32 *error_status, uint32 *core, uint32 *lo,
|
uint32 *hi, uint32 *id)
|
{
|
*error_status = last_axi_error_log_status;
|
*core = last_axi_error_core;
|
*lo = last_axi_errlog_lo;
|
*hi = last_axi_errlog_hi;
|
*id = last_axi_errlog_id;
|
}
|
|
uint32
|
nci_get_axi_timeout_reg(void)
|
{
|
return (GOODREGS(last_axi_errlog_lo) ? last_axi_errlog_lo : 0);
|
}
|
#endif /* AXI_TIMEOUTS || AXI_TIMEOUTS_NIC */
|
|
/* TODO: This function should be able to handle NIC as well as BOOKER */
|
bool
|
nci_ignore_errlog(const si_info_t *sii, const aidmp_t *ai,
|
uint32 lo_addr, uint32 hi_addr, uint32 err_axi_id, uint32 errsts)
|
{
|
uint32 ignore_errsts = AIELS_SLAVE_ERR;
|
uint32 ignore_errsts_2 = 0;
|
uint32 ignore_hi = BT_CC_SPROM_BADREG_HI;
|
uint32 ignore_lo = BT_CC_SPROM_BADREG_LO;
|
uint32 ignore_size = BT_CC_SPROM_BADREG_SIZE;
|
bool address_check = TRUE;
|
uint32 axi_id = 0;
|
uint32 axi_id2 = 0;
|
bool extd_axi_id_mask = FALSE;
|
uint32 axi_id_mask;
|
|
NCI_PRINT(("err check: core %p, error %d, axi id 0x%04x, addr(0x%08x:%08x)\n",
|
ai, errsts, err_axi_id, hi_addr, lo_addr));
|
|
/* ignore the BT slave errors if the errlog is to chipcommon addr 0x190 */
|
switch (CHIPID(sii->pub.chip)) {
|
case BCM4397_CHIP_GRPID: /* TODO: Are these IDs same for 4397 as well? */
|
#ifdef BTOVERPCIE
|
axi_id = BCM4378_BT_AXI_ID;
|
/* For BT over PCIE, ignore any slave error from BT. */
|
/* No need to check any address range */
|
address_check = FALSE;
|
#endif /* BTOVERPCIE */
|
axi_id2 = BCM4378_ARM_PREFETCH_AXI_ID;
|
extd_axi_id_mask = TRUE;
|
ignore_errsts_2 = AIELS_DECODE;
|
break;
|
default:
|
return FALSE;
|
}
|
|
axi_id_mask = extd_axi_id_mask ? AI_ERRLOGID_AXI_ID_MASK_EXTD : AI_ERRLOGID_AXI_ID_MASK;
|
|
/* AXI ID check */
|
err_axi_id &= axi_id_mask;
|
errsts &= AIELS_ERROR_MASK;
|
|
/* check the ignore error cases. 2 checks */
|
if (!(((err_axi_id == axi_id) && (errsts == ignore_errsts)) ||
|
((err_axi_id == axi_id2) && (errsts == ignore_errsts_2)))) {
|
/* not the error ignore cases */
|
return FALSE;
|
|
}
|
|
/* check the specific address checks now, if specified */
|
if (address_check) {
|
/* address range check */
|
if ((hi_addr != ignore_hi) ||
|
(lo_addr < ignore_lo) || (lo_addr >= (ignore_lo + ignore_size))) {
|
return FALSE;
|
}
|
}
|
|
NCI_PRINT(("err check: ignored\n"));
|
return TRUE;
|
}
|
|
/* TODO: Check the CORE to AXI ID mapping for 4397 */
|
uint32
|
nci_findcoreidx_by_axiid(const si_t *sih, uint32 axiid)
|
{
|
uint coreid = 0;
|
uint coreunit = 0;
|
const nci_axi_to_coreidx_t *axi2coreidx = NULL;
|
switch (CHIPID(sih->chip)) {
|
case BCM4397_CHIP_GRPID:
|
axi2coreidx = axi2coreidx_4397;
|
break;
|
default:
|
NCI_PRINT(("Chipid mapping not found\n"));
|
break;
|
}
|
|
if (!axi2coreidx) {
|
return (BADIDX);
|
}
|
|
coreid = axi2coreidx[axiid].coreid;
|
coreunit = axi2coreidx[axiid].coreunit;
|
|
return nci_findcoreidx(sih, coreid, coreunit);
|
}
|
|
void nci_coreaddrspaceX(const si_t *sih, uint asidx, uint32 *addr, uint32 *size)
|
{
|
/* Adding just a wrapper. Will implement when required. */
|
}
|
|
/*
|
* this is not declared as static const, although that is the right thing to do
|
* reason being if declared as static const, compile/link process would that in
|
* read only section...
|
* currently this code/array is used to identify the registers which are dumped
|
* during trap processing
|
* and usually for the trap buffer, .rodata buffer is reused, so for now just static
|
*/
|
/* TODO: Should we do another mapping for BOOKER and used correct one based on type of DMP. */
|
#ifdef DONGLEBUILD
|
static uint32 BCMPOST_TRAP_RODATA(wrapper_offsets_to_dump)[] = {
|
OFFSETOF(aidmp_t, ioctrl),
|
OFFSETOF(aidmp_t, iostatus),
|
OFFSETOF(aidmp_t, resetctrl),
|
OFFSETOF(aidmp_t, resetstatus),
|
OFFSETOF(aidmp_t, resetreadid),
|
OFFSETOF(aidmp_t, resetwriteid),
|
OFFSETOF(aidmp_t, errlogctrl),
|
OFFSETOF(aidmp_t, errlogdone),
|
OFFSETOF(aidmp_t, errlogstatus),
|
OFFSETOF(aidmp_t, errlogaddrlo),
|
OFFSETOF(aidmp_t, errlogaddrhi),
|
OFFSETOF(aidmp_t, errlogid),
|
OFFSETOF(aidmp_t, errloguser),
|
OFFSETOF(aidmp_t, errlogflags),
|
OFFSETOF(aidmp_t, itipoobaout),
|
OFFSETOF(aidmp_t, itipoobbout),
|
OFFSETOF(aidmp_t, itipoobcout),
|
OFFSETOF(aidmp_t, itipoobdout)
|
};
|
|
static uint32
|
BCMRAMFN(nci_get_sizeof_wrapper_offsets_to_dump)(void)
|
{
|
return (sizeof(wrapper_offsets_to_dump));
|
}
|
|
static uint32
|
BCMRAMFN(nci_get_wrapper_base_addr)(uint32 **offset)
|
{
|
uint32 arr_size = ARRAYSIZE(wrapper_offsets_to_dump);
|
|
*offset = &wrapper_offsets_to_dump[0];
|
return arr_size;
|
}
|
|
#ifdef UART_TRAP_DBG
|
/* TODO: Is br_wrapba populated for 4397 NCI? */
|
void
|
nci_dump_APB_Bridge_registers(const si_t *sih)
|
{
|
aidmp_t *ai;
|
const si_info_t *sii = SI_INFO(sih);
|
|
ai = (aidmp_t *)sii->br_wrapba[0];
|
printf("APB Bridge 0\n");
|
printf("lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x",
|
R_REG(sii->osh, &ai->errlogaddrlo),
|
R_REG(sii->osh, &ai->errlogaddrhi),
|
R_REG(sii->osh, &ai->errlogid),
|
R_REG(sii->osh, &ai->errlogflags));
|
printf("\n status 0x%08x\n", R_REG(sii->osh, &ai->errlogstatus));
|
}
|
#endif /* UART_TRAP_DBG */
|
|
uint32
|
BCMATTACHFN(nci_wrapper_dump_buf_size)(const si_t *sih)
|
{
|
uint32 buf_size = 0;
|
uint32 wrapper_count = 0;
|
const si_info_t *sii = SI_INFO(sih);
|
|
wrapper_count = sii->axi_num_wrappers;
|
if (wrapper_count == 0) {
|
return 0;
|
}
|
|
/* cnt indicates how many registers, tag_id 0 will say these are address/value */
|
/* address/value pairs */
|
buf_size += 2 * (nci_get_sizeof_wrapper_offsets_to_dump() * wrapper_count);
|
|
return buf_size;
|
}
|
|
uint32*
|
nci_wrapper_dump_binary_one(const si_info_t *sii, uint32 *p32, uint32 wrap_ba)
|
{
|
uint i;
|
uint32 *addr;
|
uint32 arr_size;
|
uint32 *offset_base;
|
|
arr_size = nci_get_wrapper_base_addr(&offset_base);
|
|
for (i = 0; i < arr_size; i++) {
|
addr = (uint32 *)(wrap_ba + *(offset_base + i));
|
*p32++ = (uint32)addr;
|
*p32++ = R_REG(sii->osh, addr);
|
}
|
return p32;
|
}
|
|
uint32
|
nci_wrapper_dump_binary(const si_t *sih, uchar *p)
|
{
|
uint32 *p32 = (uint32 *)p;
|
uint32 i;
|
const si_info_t *sii = SI_INFO(sih);
|
|
for (i = 0; i < sii->axi_num_wrappers; i++) {
|
p32 = nci_wrapper_dump_binary_one(sii, p32, sii->axi_wrapper[i].wrapper_addr);
|
}
|
return 0;
|
}
|
|
#if defined(ETD)
|
uint32
|
nci_wrapper_dump_last_timeout(const si_t *sih, uint32 *error, uint32 *core, uint32 *ba, uchar *p)
|
{
|
#if defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC)
|
uint32 *p32;
|
uint32 wrap_ba = last_axi_error_wrap;
|
uint i;
|
uint32 *addr;
|
|
const si_info_t *sii = SI_INFO(sih);
|
|
if (last_axi_error != AXI_WRAP_STS_NONE) {
|
if (wrap_ba) {
|
p32 = (uint32 *)p;
|
uint32 arr_size;
|
uint32 *offset_base;
|
|
arr_size = nci_get_wrapper_base_addr(&offset_base);
|
for (i = 0; i < arr_size; i++) {
|
addr = (uint32 *)(wrap_ba + *(offset_base + i));
|
*p32++ = R_REG(sii->osh, addr);
|
}
|
}
|
*error = last_axi_error;
|
*core = last_axi_error_core;
|
*ba = wrap_ba;
|
}
|
#else
|
*error = 0;
|
*core = 0;
|
*ba = 0;
|
#endif /* AXI_TIMEOUTS || AXI_TIMEOUTS_NIC */
|
return 0;
|
}
|
#endif /* ETD */
|
|
bool
|
nci_check_enable_backplane_log(const si_t *sih)
|
{
|
#if defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC)
|
if (g_disable_backplane_logs) {
|
return FALSE;
|
}
|
else {
|
return TRUE;
|
}
|
#else /* (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC) */
|
return FALSE;
|
#endif /* (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC) */
|
}
|
#endif /* DONGLEBUILD */
|