/*
|
* Copyright 2018 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice shall be included in
|
* all copies or substantial portions of the Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
* OTHER DEALINGS IN THE SOFTWARE.
|
*
|
* Authors: AMD
|
*
|
*/
|
|
#include <linux/delay.h>
|
|
#include "dce_i2c.h"
|
#include "dce_i2c_sw.h"
|
#include "include/gpio_service_interface.h"
|
#define SCL false
|
#define SDA true
|
|
void dce_i2c_sw_construct(
|
struct dce_i2c_sw *dce_i2c_sw,
|
struct dc_context *ctx)
|
{
|
dce_i2c_sw->ctx = ctx;
|
}
|
|
static inline bool read_bit_from_ddc(
|
struct ddc *ddc,
|
bool data_nor_clock)
|
{
|
uint32_t value = 0;
|
|
if (data_nor_clock)
|
dal_gpio_get_value(ddc->pin_data, &value);
|
else
|
dal_gpio_get_value(ddc->pin_clock, &value);
|
|
return (value != 0);
|
}
|
|
static inline void write_bit_to_ddc(
|
struct ddc *ddc,
|
bool data_nor_clock,
|
bool bit)
|
{
|
uint32_t value = bit ? 1 : 0;
|
|
if (data_nor_clock)
|
dal_gpio_set_value(ddc->pin_data, value);
|
else
|
dal_gpio_set_value(ddc->pin_clock, value);
|
}
|
|
static void release_engine_dce_sw(
|
struct resource_pool *pool,
|
struct dce_i2c_sw *dce_i2c_sw)
|
{
|
dal_ddc_close(dce_i2c_sw->ddc);
|
dce_i2c_sw->ddc = NULL;
|
}
|
|
static bool wait_for_scl_high_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t scl_retry = 0;
|
uint32_t scl_retry_max = I2C_SW_TIMEOUT_DELAY / clock_delay_div_4;
|
|
udelay(clock_delay_div_4);
|
|
do {
|
if (read_bit_from_ddc(ddc, SCL))
|
return true;
|
|
udelay(clock_delay_div_4);
|
|
++scl_retry;
|
} while (scl_retry <= scl_retry_max);
|
|
return false;
|
}
|
static bool write_byte_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t byte)
|
{
|
int32_t shift = 7;
|
bool ack;
|
|
/* bits are transmitted serially, starting from MSB */
|
|
do {
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, (byte >> shift) & 1);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
--shift;
|
} while (shift >= 0);
|
|
/* The display sends ACK by preventing the SDA from going high
|
* after the SCL pulse we use to send our last data bit.
|
* If the SDA goes high after that bit, it's a NACK
|
*/
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
/* read ACK bit */
|
|
ack = !read_bit_from_ddc(ddc_handle, SDA);
|
|
udelay(clock_delay_div_4 << 1);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4 << 1);
|
|
return ack;
|
}
|
|
static bool read_byte_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t *byte,
|
bool more)
|
{
|
int32_t shift = 7;
|
|
uint8_t data = 0;
|
|
/* The data bits are read from MSB to LSB;
|
* bit is read while SCL is high
|
*/
|
|
do {
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
if (read_bit_from_ddc(ddc_handle, SDA))
|
data |= (1 << shift);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4 << 1);
|
|
--shift;
|
} while (shift >= 0);
|
|
/* read only whole byte */
|
|
*byte = data;
|
|
udelay(clock_delay_div_4);
|
|
/* send the acknowledge bit:
|
* SDA low means ACK, SDA high means NACK
|
*/
|
|
write_bit_to_ddc(ddc_handle, SDA, !more);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
udelay(clock_delay_div_4);
|
|
return true;
|
}
|
static bool stop_sync_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t retry = 0;
|
|
/* The I2C communications stop signal is:
|
* the SDA going high from low, while the SCL is high.
|
*/
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SDA, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
return false;
|
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
do {
|
udelay(clock_delay_div_4);
|
|
if (read_bit_from_ddc(ddc_handle, SDA))
|
return true;
|
|
++retry;
|
} while (retry <= 2);
|
|
return false;
|
}
|
static bool i2c_write_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t address,
|
uint32_t length,
|
const uint8_t *data)
|
{
|
uint32_t i = 0;
|
|
if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address))
|
return false;
|
|
while (i < length) {
|
if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, data[i]))
|
return false;
|
++i;
|
}
|
|
return true;
|
}
|
|
static bool i2c_read_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4,
|
uint8_t address,
|
uint32_t length,
|
uint8_t *data)
|
{
|
uint32_t i = 0;
|
|
if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address))
|
return false;
|
|
while (i < length) {
|
if (!read_byte_sw(ctx, ddc_handle, clock_delay_div_4, data + i,
|
i < length - 1))
|
return false;
|
++i;
|
}
|
|
return true;
|
}
|
|
|
|
static bool start_sync_sw(
|
struct dc_context *ctx,
|
struct ddc *ddc_handle,
|
uint16_t clock_delay_div_4)
|
{
|
uint32_t retry = 0;
|
|
/* The I2C communications start signal is:
|
* the SDA going low from high, while the SCL is high.
|
*/
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
udelay(clock_delay_div_4);
|
|
do {
|
write_bit_to_ddc(ddc_handle, SDA, true);
|
|
if (!read_bit_from_ddc(ddc_handle, SDA)) {
|
++retry;
|
continue;
|
}
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, true);
|
|
if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
|
break;
|
|
write_bit_to_ddc(ddc_handle, SDA, false);
|
|
udelay(clock_delay_div_4);
|
|
write_bit_to_ddc(ddc_handle, SCL, false);
|
|
udelay(clock_delay_div_4);
|
|
return true;
|
} while (retry <= I2C_SW_RETRIES);
|
|
return false;
|
}
|
|
void dce_i2c_sw_engine_set_speed(
|
struct dce_i2c_sw *engine,
|
uint32_t speed)
|
{
|
ASSERT(speed);
|
|
engine->speed = speed ? speed : DCE_I2C_DEFAULT_I2C_SW_SPEED;
|
|
engine->clock_delay = 1000 / engine->speed;
|
|
if (engine->clock_delay < 12)
|
engine->clock_delay = 12;
|
}
|
|
bool dce_i2c_sw_engine_acquire_engine(
|
struct dce_i2c_sw *engine,
|
struct ddc *ddc)
|
{
|
enum gpio_result result;
|
|
result = dal_ddc_open(ddc, GPIO_MODE_FAST_OUTPUT,
|
GPIO_DDC_CONFIG_TYPE_MODE_I2C);
|
|
if (result != GPIO_RESULT_OK)
|
return false;
|
|
engine->ddc = ddc;
|
|
return true;
|
}
|
bool dce_i2c_engine_acquire_sw(
|
struct dce_i2c_sw *dce_i2c_sw,
|
struct ddc *ddc_handle)
|
{
|
uint32_t counter = 0;
|
bool result;
|
|
do {
|
|
result = dce_i2c_sw_engine_acquire_engine(
|
dce_i2c_sw, ddc_handle);
|
|
if (result)
|
break;
|
|
/* i2c_engine is busy by VBios, lets wait and retry */
|
|
udelay(10);
|
|
++counter;
|
} while (counter < 2);
|
|
return result;
|
}
|
|
|
|
|
void dce_i2c_sw_engine_submit_channel_request(
|
struct dce_i2c_sw *engine,
|
struct i2c_request_transaction_data *req)
|
{
|
struct ddc *ddc = engine->ddc;
|
uint16_t clock_delay_div_4 = engine->clock_delay >> 2;
|
|
/* send sync (start / repeated start) */
|
|
bool result = start_sync_sw(engine->ctx, ddc, clock_delay_div_4);
|
|
/* process payload */
|
|
if (result) {
|
switch (req->action) {
|
case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE:
|
case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT:
|
result = i2c_write_sw(engine->ctx, ddc, clock_delay_div_4,
|
req->address, req->length, req->data);
|
break;
|
case DCE_I2C_TRANSACTION_ACTION_I2C_READ:
|
case DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT:
|
result = i2c_read_sw(engine->ctx, ddc, clock_delay_div_4,
|
req->address, req->length, req->data);
|
break;
|
default:
|
result = false;
|
break;
|
}
|
}
|
|
/* send stop if not 'mot' or operation failed */
|
|
if (!result ||
|
(req->action == DCE_I2C_TRANSACTION_ACTION_I2C_WRITE) ||
|
(req->action == DCE_I2C_TRANSACTION_ACTION_I2C_READ))
|
if (!stop_sync_sw(engine->ctx, ddc, clock_delay_div_4))
|
result = false;
|
|
req->status = result ?
|
I2C_CHANNEL_OPERATION_SUCCEEDED :
|
I2C_CHANNEL_OPERATION_FAILED;
|
}
|
bool dce_i2c_sw_engine_submit_payload(
|
struct dce_i2c_sw *engine,
|
struct i2c_payload *payload,
|
bool middle_of_transaction)
|
{
|
struct i2c_request_transaction_data request;
|
|
if (!payload->write)
|
request.action = middle_of_transaction ?
|
DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT :
|
DCE_I2C_TRANSACTION_ACTION_I2C_READ;
|
else
|
request.action = middle_of_transaction ?
|
DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT :
|
DCE_I2C_TRANSACTION_ACTION_I2C_WRITE;
|
|
request.address = (uint8_t) ((payload->address << 1) | !payload->write);
|
request.length = payload->length;
|
request.data = payload->data;
|
|
dce_i2c_sw_engine_submit_channel_request(engine, &request);
|
|
if ((request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY) ||
|
(request.status == I2C_CHANNEL_OPERATION_FAILED))
|
return false;
|
|
return true;
|
}
|
bool dce_i2c_submit_command_sw(
|
struct resource_pool *pool,
|
struct ddc *ddc,
|
struct i2c_command *cmd,
|
struct dce_i2c_sw *dce_i2c_sw)
|
{
|
uint8_t index_of_payload = 0;
|
bool result;
|
|
dce_i2c_sw_engine_set_speed(dce_i2c_sw, cmd->speed);
|
|
result = true;
|
|
while (index_of_payload < cmd->number_of_payloads) {
|
bool mot = (index_of_payload != cmd->number_of_payloads - 1);
|
|
struct i2c_payload *payload = cmd->payloads + index_of_payload;
|
|
if (!dce_i2c_sw_engine_submit_payload(
|
dce_i2c_sw, payload, mot)) {
|
result = false;
|
break;
|
}
|
|
++index_of_payload;
|
}
|
|
release_engine_dce_sw(pool, dce_i2c_sw);
|
|
return result;
|
}
|