| /* | 
|  * Copyright (c) 2009 Atheros Communications Inc. | 
|  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org> | 
|  * | 
|  * Permission to use, copy, modify, and/or distribute this software for any | 
|  * purpose with or without fee is hereby granted, provided that the above | 
|  * copyright notice and this permission notice appear in all copies. | 
|  * | 
|  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  */ | 
|   | 
| #include <linux/export.h> | 
| #include <asm/unaligned.h> | 
| #include <net/mac80211.h> | 
|   | 
| #include "ath.h" | 
| #include "reg.h" | 
|   | 
| #define REG_READ            (common->ops->read) | 
| #define REG_WRITE(_ah, _reg, _val)    (common->ops->write)(_ah, _val, _reg) | 
| #define ENABLE_REGWRITE_BUFFER(_ah)            \ | 
|     if (common->ops->enable_write_buffer)        \ | 
|         common->ops->enable_write_buffer((_ah)); | 
|   | 
| #define REGWRITE_BUFFER_FLUSH(_ah)            \ | 
|     if (common->ops->write_flush)            \ | 
|         common->ops->write_flush((_ah)); | 
|   | 
|   | 
| #define IEEE80211_WEP_NKID      4       /* number of key ids */ | 
|   | 
| /************************/ | 
| /* Key Cache Management */ | 
| /************************/ | 
|   | 
| bool ath_hw_keyreset(struct ath_common *common, u16 entry) | 
| { | 
|     u32 keyType; | 
|     void *ah = common->ah; | 
|   | 
|     if (entry >= common->keymax) { | 
|         ath_err(common, "keyreset: keycache entry %u out of range\n", | 
|             entry); | 
|         return false; | 
|     } | 
|   | 
|     keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); | 
|   | 
|     ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|     REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); | 
|     REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); | 
|     REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); | 
|   | 
|     if (keyType == AR_KEYTABLE_TYPE_TKIP) { | 
|         u16 micentry = entry + 64; | 
|   | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); | 
|         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) { | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); | 
|             REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), | 
|                   AR_KEYTABLE_TYPE_CLR); | 
|         } | 
|   | 
|     } | 
|   | 
|     REGWRITE_BUFFER_FLUSH(ah); | 
|   | 
|     return true; | 
| } | 
| EXPORT_SYMBOL(ath_hw_keyreset); | 
|   | 
| bool ath_hw_keysetmac(struct ath_common *common, u16 entry, const u8 *mac) | 
| { | 
|     u32 macHi, macLo; | 
|     u32 unicast_flag = AR_KEYTABLE_VALID; | 
|     void *ah = common->ah; | 
|   | 
|     if (entry >= common->keymax) { | 
|         ath_err(common, "keysetmac: keycache entry %u out of range\n", | 
|             entry); | 
|         return false; | 
|     } | 
|   | 
|     if (mac != NULL) { | 
|         /* | 
|          * AR_KEYTABLE_VALID indicates that the address is a unicast | 
|          * address, which must match the transmitter address for | 
|          * decrypting frames. | 
|          * Not setting this bit allows the hardware to use the key | 
|          * for multicast frame decryption. | 
|          */ | 
|         if (mac[0] & 0x01) | 
|             unicast_flag = 0; | 
|   | 
|         macLo = get_unaligned_le32(mac); | 
|         macHi = get_unaligned_le16(mac + 4); | 
|         macLo >>= 1; | 
|         macLo |= (macHi & 1) << 31; | 
|         macHi >>= 1; | 
|     } else { | 
|         macLo = macHi = 0; | 
|     } | 
|     ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|     REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); | 
|     REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag); | 
|   | 
|     REGWRITE_BUFFER_FLUSH(ah); | 
|   | 
|     return true; | 
| } | 
| EXPORT_SYMBOL(ath_hw_keysetmac); | 
|   | 
| static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry, | 
|                       const struct ath_keyval *k, | 
|                       const u8 *mac) | 
| { | 
|     void *ah = common->ah; | 
|     u32 key0, key1, key2, key3, key4; | 
|     u32 keyType; | 
|   | 
|     if (entry >= common->keymax) { | 
|         ath_err(common, "set-entry: keycache entry %u out of range\n", | 
|             entry); | 
|         return false; | 
|     } | 
|   | 
|     switch (k->kv_type) { | 
|     case ATH_CIPHER_AES_OCB: | 
|         keyType = AR_KEYTABLE_TYPE_AES; | 
|         break; | 
|     case ATH_CIPHER_AES_CCM: | 
|         if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) { | 
|             ath_dbg(common, ANY, | 
|                 "AES-CCM not supported by this mac rev\n"); | 
|             return false; | 
|         } | 
|         keyType = AR_KEYTABLE_TYPE_CCM; | 
|         break; | 
|     case ATH_CIPHER_TKIP: | 
|         keyType = AR_KEYTABLE_TYPE_TKIP; | 
|         if (entry + 64 >= common->keymax) { | 
|             ath_dbg(common, ANY, | 
|                 "entry %u inappropriate for TKIP\n", entry); | 
|             return false; | 
|         } | 
|         break; | 
|     case ATH_CIPHER_WEP: | 
|         if (k->kv_len < WLAN_KEY_LEN_WEP40) { | 
|             ath_dbg(common, ANY, "WEP key length %u too small\n", | 
|                 k->kv_len); | 
|             return false; | 
|         } | 
|         if (k->kv_len <= WLAN_KEY_LEN_WEP40) | 
|             keyType = AR_KEYTABLE_TYPE_40; | 
|         else if (k->kv_len <= WLAN_KEY_LEN_WEP104) | 
|             keyType = AR_KEYTABLE_TYPE_104; | 
|         else | 
|             keyType = AR_KEYTABLE_TYPE_128; | 
|         break; | 
|     case ATH_CIPHER_CLR: | 
|         keyType = AR_KEYTABLE_TYPE_CLR; | 
|         break; | 
|     default: | 
|         ath_err(common, "cipher %u not supported\n", k->kv_type); | 
|         return false; | 
|     } | 
|   | 
|     key0 = get_unaligned_le32(k->kv_val + 0); | 
|     key1 = get_unaligned_le16(k->kv_val + 4); | 
|     key2 = get_unaligned_le32(k->kv_val + 6); | 
|     key3 = get_unaligned_le16(k->kv_val + 10); | 
|     key4 = get_unaligned_le32(k->kv_val + 12); | 
|     if (k->kv_len <= WLAN_KEY_LEN_WEP104) | 
|         key4 &= 0xff; | 
|   | 
|     /* | 
|      * Note: Key cache registers access special memory area that requires | 
|      * two 32-bit writes to actually update the values in the internal | 
|      * memory. Consequently, the exact order and pairs used here must be | 
|      * maintained. | 
|      */ | 
|   | 
|     if (keyType == AR_KEYTABLE_TYPE_TKIP) { | 
|         u16 micentry = entry + 64; | 
|   | 
|         /* | 
|          * Write inverted key[47:0] first to avoid Michael MIC errors | 
|          * on frames that could be sent or received at the same time. | 
|          * The correct key will be written in the end once everything | 
|          * else is ready. | 
|          */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); | 
|   | 
|         /* Write key[95:48] */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); | 
|   | 
|         /* Write key[127:96] and key type */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); | 
|         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); | 
|   | 
|         /* Write MAC address for the entry */ | 
|         (void) ath_hw_keysetmac(common, entry, mac); | 
|   | 
|         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) { | 
|             /* | 
|              * TKIP uses two key cache entries: | 
|              * Michael MIC TX/RX keys in the same key cache entry | 
|              * (idx = main index + 64): | 
|              * key0 [31:0] = RX key [31:0] | 
|              * key1 [15:0] = TX key [31:16] | 
|              * key1 [31:16] = reserved | 
|              * key2 [31:0] = RX key [63:32] | 
|              * key3 [15:0] = TX key [15:0] | 
|              * key3 [31:16] = reserved | 
|              * key4 [31:0] = TX key [63:32] | 
|              */ | 
|             u32 mic0, mic1, mic2, mic3, mic4; | 
|   | 
|             mic0 = get_unaligned_le32(k->kv_mic + 0); | 
|             mic2 = get_unaligned_le32(k->kv_mic + 4); | 
|             mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; | 
|             mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; | 
|             mic4 = get_unaligned_le32(k->kv_txmic + 4); | 
|   | 
|             ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|             /* Write RX[31:0] and TX[31:16] */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); | 
|   | 
|             /* Write RX[63:32] and TX[15:0] */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); | 
|   | 
|             /* Write TX[63:32] and keyType(reserved) */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); | 
|             REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), | 
|                   AR_KEYTABLE_TYPE_CLR); | 
|   | 
|             REGWRITE_BUFFER_FLUSH(ah); | 
|   | 
|         } else { | 
|             /* | 
|              * TKIP uses four key cache entries (two for group | 
|              * keys): | 
|              * Michael MIC TX/RX keys are in different key cache | 
|              * entries (idx = main index + 64 for TX and | 
|              * main index + 32 + 96 for RX): | 
|              * key0 [31:0] = TX/RX MIC key [31:0] | 
|              * key1 [31:0] = reserved | 
|              * key2 [31:0] = TX/RX MIC key [63:32] | 
|              * key3 [31:0] = reserved | 
|              * key4 [31:0] = reserved | 
|              * | 
|              * Upper layer code will call this function separately | 
|              * for TX and RX keys when these registers offsets are | 
|              * used. | 
|              */ | 
|             u32 mic0, mic2; | 
|   | 
|             mic0 = get_unaligned_le32(k->kv_mic + 0); | 
|             mic2 = get_unaligned_le32(k->kv_mic + 4); | 
|   | 
|             ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|             /* Write MIC key[31:0] */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); | 
|   | 
|             /* Write MIC key[63:32] */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); | 
|   | 
|             /* Write TX[63:32] and keyType(reserved) */ | 
|             REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); | 
|             REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), | 
|                   AR_KEYTABLE_TYPE_CLR); | 
|   | 
|             REGWRITE_BUFFER_FLUSH(ah); | 
|         } | 
|   | 
|         ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|         /* MAC address registers are reserved for the MIC entry */ | 
|         REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); | 
|         REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); | 
|   | 
|         /* | 
|          * Write the correct (un-inverted) key[47:0] last to enable | 
|          * TKIP now that all other registers are set with correct | 
|          * values. | 
|          */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); | 
|   | 
|         REGWRITE_BUFFER_FLUSH(ah); | 
|     } else { | 
|         ENABLE_REGWRITE_BUFFER(ah); | 
|   | 
|         /* Write key[47:0] */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); | 
|   | 
|         /* Write key[95:48] */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); | 
|   | 
|         /* Write key[127:96] and key type */ | 
|         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); | 
|         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); | 
|   | 
|         REGWRITE_BUFFER_FLUSH(ah); | 
|   | 
|         /* Write MAC address for the entry */ | 
|         (void) ath_hw_keysetmac(common, entry, mac); | 
|     } | 
|   | 
|     return true; | 
| } | 
|   | 
| static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key, | 
|                struct ath_keyval *hk, const u8 *addr, | 
|                bool authenticator) | 
| { | 
|     const u8 *key_rxmic; | 
|     const u8 *key_txmic; | 
|   | 
|     key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; | 
|     key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; | 
|   | 
|     if (addr == NULL) { | 
|         /* | 
|          * Group key installation - only two key cache entries are used | 
|          * regardless of splitmic capability since group key is only | 
|          * used either for TX or RX. | 
|          */ | 
|         if (authenticator) { | 
|             memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); | 
|             memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic)); | 
|         } else { | 
|             memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); | 
|             memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic)); | 
|         } | 
|         return ath_hw_set_keycache_entry(common, keyix, hk, addr); | 
|     } | 
|     if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) { | 
|         /* TX and RX keys share the same key cache entry. */ | 
|         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); | 
|         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); | 
|         return ath_hw_set_keycache_entry(common, keyix, hk, addr); | 
|     } | 
|   | 
|     /* Separate key cache entries for TX and RX */ | 
|   | 
|     /* TX key goes at first index, RX key at +32. */ | 
|     memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); | 
|     if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) { | 
|         /* TX MIC entry failed. No need to proceed further */ | 
|         ath_err(common, "Setting TX MIC Key Failed\n"); | 
|         return 0; | 
|     } | 
|   | 
|     memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); | 
|     /* XXX delete tx key on failure? */ | 
|     return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr); | 
| } | 
|   | 
| static int ath_reserve_key_cache_slot_tkip(struct ath_common *common) | 
| { | 
|     int i; | 
|   | 
|     for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { | 
|         if (test_bit(i, common->keymap) || | 
|             test_bit(i + 64, common->keymap)) | 
|             continue; /* At least one part of TKIP key allocated */ | 
|         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) && | 
|             (test_bit(i + 32, common->keymap) || | 
|              test_bit(i + 64 + 32, common->keymap))) | 
|             continue; /* At least one part of TKIP key allocated */ | 
|   | 
|         /* Found a free slot for a TKIP key */ | 
|         return i; | 
|     } | 
|     return -1; | 
| } | 
|   | 
| static int ath_reserve_key_cache_slot(struct ath_common *common, | 
|                       u32 cipher) | 
| { | 
|     int i; | 
|   | 
|     if (cipher == WLAN_CIPHER_SUITE_TKIP) | 
|         return ath_reserve_key_cache_slot_tkip(common); | 
|   | 
|     /* First, try to find slots that would not be available for TKIP. */ | 
|     if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) { | 
|         for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) { | 
|             if (!test_bit(i, common->keymap) && | 
|                 (test_bit(i + 32, common->keymap) || | 
|                  test_bit(i + 64, common->keymap) || | 
|                  test_bit(i + 64 + 32, common->keymap))) | 
|                 return i; | 
|             if (!test_bit(i + 32, common->keymap) && | 
|                 (test_bit(i, common->keymap) || | 
|                  test_bit(i + 64, common->keymap) || | 
|                  test_bit(i + 64 + 32, common->keymap))) | 
|                 return i + 32; | 
|             if (!test_bit(i + 64, common->keymap) && | 
|                 (test_bit(i , common->keymap) || | 
|                  test_bit(i + 32, common->keymap) || | 
|                  test_bit(i + 64 + 32, common->keymap))) | 
|                 return i + 64; | 
|             if (!test_bit(i + 64 + 32, common->keymap) && | 
|                 (test_bit(i, common->keymap) || | 
|                  test_bit(i + 32, common->keymap) || | 
|                  test_bit(i + 64, common->keymap))) | 
|                 return i + 64 + 32; | 
|         } | 
|     } else { | 
|         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { | 
|             if (!test_bit(i, common->keymap) && | 
|                 test_bit(i + 64, common->keymap)) | 
|                 return i; | 
|             if (test_bit(i, common->keymap) && | 
|                 !test_bit(i + 64, common->keymap)) | 
|                 return i + 64; | 
|         } | 
|     } | 
|   | 
|     /* No partially used TKIP slots, pick any available slot */ | 
|     for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) { | 
|         /* Do not allow slots that could be needed for TKIP group keys | 
|          * to be used. This limitation could be removed if we know that | 
|          * TKIP will not be used. */ | 
|         if (i >= 64 && i < 64 + IEEE80211_WEP_NKID) | 
|             continue; | 
|         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) { | 
|             if (i >= 32 && i < 32 + IEEE80211_WEP_NKID) | 
|                 continue; | 
|             if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID) | 
|                 continue; | 
|         } | 
|   | 
|         if (!test_bit(i, common->keymap)) | 
|             return i; /* Found a free slot for a key */ | 
|     } | 
|   | 
|     /* No free slot found */ | 
|     return -1; | 
| } | 
|   | 
| /* | 
|  * Configure encryption in the HW. | 
|  */ | 
| int ath_key_config(struct ath_common *common, | 
|               struct ieee80211_vif *vif, | 
|               struct ieee80211_sta *sta, | 
|               struct ieee80211_key_conf *key) | 
| { | 
|     struct ath_keyval hk; | 
|     const u8 *mac = NULL; | 
|     u8 gmac[ETH_ALEN]; | 
|     int ret = 0; | 
|     int idx; | 
|   | 
|     memset(&hk, 0, sizeof(hk)); | 
|   | 
|     switch (key->cipher) { | 
|     case 0: | 
|         hk.kv_type = ATH_CIPHER_CLR; | 
|         break; | 
|     case WLAN_CIPHER_SUITE_WEP40: | 
|     case WLAN_CIPHER_SUITE_WEP104: | 
|         hk.kv_type = ATH_CIPHER_WEP; | 
|         break; | 
|     case WLAN_CIPHER_SUITE_TKIP: | 
|         hk.kv_type = ATH_CIPHER_TKIP; | 
|         break; | 
|     case WLAN_CIPHER_SUITE_CCMP: | 
|         hk.kv_type = ATH_CIPHER_AES_CCM; | 
|         break; | 
|     default: | 
|         return -EOPNOTSUPP; | 
|     } | 
|   | 
|     hk.kv_len = key->keylen; | 
|     if (key->keylen) | 
|         memcpy(&hk.kv_values, key->key, key->keylen); | 
|   | 
|     if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { | 
|         switch (vif->type) { | 
|         case NL80211_IFTYPE_AP: | 
|             memcpy(gmac, vif->addr, ETH_ALEN); | 
|             gmac[0] |= 0x01; | 
|             mac = gmac; | 
|             idx = ath_reserve_key_cache_slot(common, key->cipher); | 
|             break; | 
|         case NL80211_IFTYPE_ADHOC: | 
|             if (!sta) { | 
|                 idx = key->keyidx; | 
|                 break; | 
|             } | 
|             memcpy(gmac, sta->addr, ETH_ALEN); | 
|             gmac[0] |= 0x01; | 
|             mac = gmac; | 
|             idx = ath_reserve_key_cache_slot(common, key->cipher); | 
|             break; | 
|         default: | 
|             idx = key->keyidx; | 
|             break; | 
|         } | 
|     } else if (key->keyidx) { | 
|         if (WARN_ON(!sta)) | 
|             return -EOPNOTSUPP; | 
|         mac = sta->addr; | 
|   | 
|         if (vif->type != NL80211_IFTYPE_AP) { | 
|             /* Only keyidx 0 should be used with unicast key, but | 
|              * allow this for client mode for now. */ | 
|             idx = key->keyidx; | 
|         } else | 
|             return -EIO; | 
|     } else { | 
|         if (WARN_ON(!sta)) | 
|             return -EOPNOTSUPP; | 
|         mac = sta->addr; | 
|   | 
|         idx = ath_reserve_key_cache_slot(common, key->cipher); | 
|     } | 
|   | 
|     if (idx < 0) | 
|         return -ENOSPC; /* no free key cache entries */ | 
|   | 
|     if (key->cipher == WLAN_CIPHER_SUITE_TKIP) | 
|         ret = ath_setkey_tkip(common, idx, key->key, &hk, mac, | 
|                       vif->type == NL80211_IFTYPE_AP); | 
|     else | 
|         ret = ath_hw_set_keycache_entry(common, idx, &hk, mac); | 
|   | 
|     if (!ret) | 
|         return -EIO; | 
|   | 
|     set_bit(idx, common->keymap); | 
|     if (key->cipher == WLAN_CIPHER_SUITE_CCMP) | 
|         set_bit(idx, common->ccmp_keymap); | 
|   | 
|     if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { | 
|         set_bit(idx + 64, common->keymap); | 
|         set_bit(idx, common->tkip_keymap); | 
|         set_bit(idx + 64, common->tkip_keymap); | 
|         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) { | 
|             set_bit(idx + 32, common->keymap); | 
|             set_bit(idx + 64 + 32, common->keymap); | 
|             set_bit(idx + 32, common->tkip_keymap); | 
|             set_bit(idx + 64 + 32, common->tkip_keymap); | 
|         } | 
|     } | 
|   | 
|     return idx; | 
| } | 
| EXPORT_SYMBOL(ath_key_config); | 
|   | 
| /* | 
|  * Delete Key. | 
|  */ | 
| void ath_key_delete(struct ath_common *common, u8 hw_key_idx) | 
| { | 
|     /* Leave CCMP and TKIP (main key) configured to avoid disabling | 
|      * encryption for potentially pending frames already in a TXQ with the | 
|      * keyix pointing to this key entry. Instead, only clear the MAC address | 
|      * to prevent RX processing from using this key cache entry. | 
|      */ | 
|     if (test_bit(hw_key_idx, common->ccmp_keymap) || | 
|         test_bit(hw_key_idx, common->tkip_keymap)) | 
|         ath_hw_keysetmac(common, hw_key_idx, NULL); | 
|     else | 
|         ath_hw_keyreset(common, hw_key_idx); | 
|     if (hw_key_idx < IEEE80211_WEP_NKID) | 
|         return; | 
|   | 
|     clear_bit(hw_key_idx, common->keymap); | 
|     clear_bit(hw_key_idx, common->ccmp_keymap); | 
|     if (!test_bit(hw_key_idx, common->tkip_keymap)) | 
|         return; | 
|   | 
|     clear_bit(hw_key_idx + 64, common->keymap); | 
|   | 
|     clear_bit(hw_key_idx, common->tkip_keymap); | 
|     clear_bit(hw_key_idx + 64, common->tkip_keymap); | 
|   | 
|     if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) { | 
|         ath_hw_keyreset(common, hw_key_idx + 32); | 
|         clear_bit(hw_key_idx + 32, common->keymap); | 
|         clear_bit(hw_key_idx + 64 + 32, common->keymap); | 
|   | 
|         clear_bit(hw_key_idx + 32, common->tkip_keymap); | 
|         clear_bit(hw_key_idx + 64 + 32, common->tkip_keymap); | 
|     } | 
| } | 
| EXPORT_SYMBOL(ath_key_delete); |