/*M/////////////////////////////////////////////////////////////////////////////////////// 
 | 
// 
 | 
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 
 | 
// 
 | 
//  By downloading, copying, installing or using the software you agree to this license. 
 | 
//  If you do not agree to this license, do not download, install, 
 | 
//  copy or use the software. 
 | 
// 
 | 
// 
 | 
//                           License Agreement 
 | 
//                For Open Source Computer Vision Library 
 | 
// 
 | 
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 
 | 
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. 
 | 
// Third party copyrights are property of their respective owners. 
 | 
// 
 | 
// Redistribution and use in source and binary forms, with or without modification, 
 | 
// are permitted provided that the following conditions are met: 
 | 
// 
 | 
//   * Redistribution's of source code must retain the above copyright notice, 
 | 
//     this list of conditions and the following disclaimer. 
 | 
// 
 | 
//   * Redistribution's in binary form must reproduce the above copyright notice, 
 | 
//     this list of conditions and the following disclaimer in the documentation 
 | 
//     and/or other materials provided with the distribution. 
 | 
// 
 | 
//   * The name of the copyright holders may not be used to endorse or promote products 
 | 
//     derived from this software without specific prior written permission. 
 | 
// 
 | 
// This software is provided by the copyright holders and contributors "as is" and 
 | 
// any express or implied warranties, including, but not limited to, the implied 
 | 
// warranties of merchantability and fitness for a particular purpose are disclaimed. 
 | 
// In no event shall the Intel Corporation or contributors be liable for any direct, 
 | 
// indirect, incidental, special, exemplary, or consequential damages 
 | 
// (including, but not limited to, procurement of substitute goods or services; 
 | 
// loss of use, data, or profits; or business interruption) however caused 
 | 
// and on any theory of liability, whether in contract, strict liability, 
 | 
// or tort (including negligence or otherwise) arising in any way out of 
 | 
// the use of this software, even if advised of the possibility of such damage. 
 | 
// 
 | 
//M*/ 
 | 
  
 | 
#ifndef OPENCV_IMGPROC_HPP 
 | 
#define OPENCV_IMGPROC_HPP 
 | 
  
 | 
#include "opencv2/core.hpp" 
 | 
  
 | 
/** 
 | 
  @defgroup imgproc Image Processing 
 | 
  
 | 
This module includes image-processing functions. 
 | 
  
 | 
  @{ 
 | 
    @defgroup imgproc_filter Image Filtering 
 | 
  
 | 
Functions and classes described in this section are used to perform various linear or non-linear 
 | 
filtering operations on 2D images (represented as Mat's). It means that for each pixel location 
 | 
\f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to 
 | 
compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of 
 | 
morphological operations, it is the minimum or maximum values, and so on. The computed response is 
 | 
stored in the destination image at the same location \f$(x,y)\f$. It means that the output image 
 | 
will be of the same size as the input image. Normally, the functions support multi-channel arrays, 
 | 
in which case every channel is processed independently. Therefore, the output image will also have 
 | 
the same number of channels as the input one. 
 | 
  
 | 
Another common feature of the functions and classes described in this section is that, unlike 
 | 
simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For 
 | 
example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when 
 | 
processing the left-most pixels in each row, you need pixels to the left of them, that is, outside 
 | 
of the image. You can let these pixels be the same as the left-most image pixels ("replicated 
 | 
border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant 
 | 
border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method. 
 | 
For details, see #BorderTypes 
 | 
  
 | 
@anchor filter_depths 
 | 
### Depth combinations 
 | 
Input depth (src.depth()) | Output depth (ddepth) 
 | 
--------------------------|---------------------- 
 | 
CV_8U                     | -1/CV_16S/CV_32F/CV_64F 
 | 
CV_16U/CV_16S             | -1/CV_32F/CV_64F 
 | 
CV_32F                    | -1/CV_32F/CV_64F 
 | 
CV_64F                    | -1/CV_64F 
 | 
  
 | 
@note when ddepth=-1, the output image will have the same depth as the source. 
 | 
  
 | 
    @defgroup imgproc_transform Geometric Image Transformations 
 | 
  
 | 
The functions in this section perform various geometrical transformations of 2D images. They do not 
 | 
change the image content but deform the pixel grid and map this deformed grid to the destination 
 | 
image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from 
 | 
destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the 
 | 
functions compute coordinates of the corresponding "donor" pixel in the source image and copy the 
 | 
pixel value: 
 | 
  
 | 
\f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f] 
 | 
  
 | 
In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow 
 | 
\texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping 
 | 
\f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula. 
 | 
  
 | 
The actual implementations of the geometrical transformations, from the most generic remap and to 
 | 
the simplest and the fastest resize, need to solve two main problems with the above formula: 
 | 
  
 | 
- Extrapolation of non-existing pixels. Similarly to the filtering functions described in the 
 | 
previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both 
 | 
of them may fall outside of the image. In this case, an extrapolation method needs to be used. 
 | 
OpenCV provides the same selection of extrapolation methods as in the filtering functions. In 
 | 
addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in 
 | 
the destination image will not be modified at all. 
 | 
  
 | 
- Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point 
 | 
numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective 
 | 
transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional 
 | 
coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the 
 | 
nearest integer coordinates and the corresponding pixel can be used. This is called a 
 | 
nearest-neighbor interpolation. However, a better result can be achieved by using more 
 | 
sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) , 
 | 
where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y), 
 | 
f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the 
 | 
interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See 
 | 
resize for details. 
 | 
  
 | 
@note The geometrical transformations do not work with `CV_8S` or `CV_32S` images. 
 | 
  
 | 
    @defgroup imgproc_misc Miscellaneous Image Transformations 
 | 
    @defgroup imgproc_draw Drawing Functions 
 | 
  
 | 
Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be 
 | 
rendered with antialiasing (implemented only for 8-bit images for now). All the functions include 
 | 
the parameter color that uses an RGB value (that may be constructed with the Scalar constructor ) 
 | 
for color images and brightness for grayscale images. For color images, the channel ordering is 
 | 
normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a 
 | 
color using the Scalar constructor, it should look like: 
 | 
  
 | 
\f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f] 
 | 
  
 | 
If you are using your own image rendering and I/O functions, you can use any channel ordering. The 
 | 
drawing functions process each channel independently and do not depend on the channel order or even 
 | 
on the used color space. The whole image can be converted from BGR to RGB or to a different color 
 | 
space using cvtColor . 
 | 
  
 | 
If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, 
 | 
many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means 
 | 
that the coordinates can be passed as fixed-point numbers encoded as integers. The number of 
 | 
fractional bits is specified by the shift parameter and the real point coordinates are calculated as 
 | 
\f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is 
 | 
especially effective when rendering antialiased shapes. 
 | 
  
 | 
@note The functions do not support alpha-transparency when the target image is 4-channel. In this 
 | 
case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint 
 | 
semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main 
 | 
image. 
 | 
  
 | 
    @defgroup imgproc_color_conversions Color Space Conversions 
 | 
    @defgroup imgproc_colormap ColorMaps in OpenCV 
 | 
  
 | 
The human perception isn't built for observing fine changes in grayscale images. Human eyes are more 
 | 
sensitive to observing changes between colors, so you often need to recolor your grayscale images to 
 | 
get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your 
 | 
computer vision application. 
 | 
  
 | 
In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample 
 | 
code reads the path to an image from command line, applies a Jet colormap on it and shows the 
 | 
result: 
 | 
  
 | 
@include snippets/imgproc_applyColorMap.cpp 
 | 
  
 | 
@see #ColormapTypes 
 | 
  
 | 
    @defgroup imgproc_subdiv2d Planar Subdivision 
 | 
  
 | 
The Subdiv2D class described in this section is used to perform various planar subdivision on 
 | 
a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles 
 | 
using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram. 
 | 
In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi 
 | 
diagram with red lines. 
 | 
  
 | 
 
 | 
  
 | 
The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast 
 | 
location of points on the plane, building special graphs (such as NNG,RNG), and so forth. 
 | 
  
 | 
    @defgroup imgproc_hist Histograms 
 | 
    @defgroup imgproc_shape Structural Analysis and Shape Descriptors 
 | 
    @defgroup imgproc_motion Motion Analysis and Object Tracking 
 | 
    @defgroup imgproc_feature Feature Detection 
 | 
    @defgroup imgproc_object Object Detection 
 | 
    @defgroup imgproc_c C API 
 | 
    @defgroup imgproc_hal Hardware Acceleration Layer 
 | 
    @{ 
 | 
        @defgroup imgproc_hal_functions Functions 
 | 
        @defgroup imgproc_hal_interface Interface 
 | 
    @} 
 | 
  @} 
 | 
*/ 
 | 
  
 | 
namespace cv 
 | 
{ 
 | 
  
 | 
/** @addtogroup imgproc 
 | 
@{ 
 | 
*/ 
 | 
  
 | 
//! @addtogroup imgproc_filter 
 | 
//! @{ 
 | 
  
 | 
enum SpecialFilter { 
 | 
    FILTER_SCHARR = -1 
 | 
}; 
 | 
  
 | 
//! type of morphological operation 
 | 
enum MorphTypes{ 
 | 
    MORPH_ERODE    = 0, //!< see #erode 
 | 
    MORPH_DILATE   = 1, //!< see #dilate 
 | 
    MORPH_OPEN     = 2, //!< an opening operation 
 | 
                        //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f] 
 | 
    MORPH_CLOSE    = 3, //!< a closing operation 
 | 
                        //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f] 
 | 
    MORPH_GRADIENT = 4, //!< a morphological gradient 
 | 
                        //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f] 
 | 
    MORPH_TOPHAT   = 5, //!< "top hat" 
 | 
                        //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f] 
 | 
    MORPH_BLACKHAT = 6, //!< "black hat" 
 | 
                        //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f] 
 | 
    MORPH_HITMISS  = 7  //!< "hit or miss" 
 | 
                        //!<   .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation 
 | 
}; 
 | 
  
 | 
//! shape of the structuring element 
 | 
enum MorphShapes { 
 | 
    MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f] 
 | 
    MORPH_CROSS   = 1, //!< a cross-shaped structuring element: 
 | 
                       //!< \f[E_{ij} =  \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}\f] 
 | 
    MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed 
 | 
                      //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height) 
 | 
}; 
 | 
  
 | 
//! @} imgproc_filter 
 | 
  
 | 
//! @addtogroup imgproc_transform 
 | 
//! @{ 
 | 
  
 | 
//! interpolation algorithm 
 | 
enum InterpolationFlags{ 
 | 
    /** nearest neighbor interpolation */ 
 | 
    INTER_NEAREST        = 0, 
 | 
    /** bilinear interpolation */ 
 | 
    INTER_LINEAR         = 1, 
 | 
    /** bicubic interpolation */ 
 | 
    INTER_CUBIC          = 2, 
 | 
    /** resampling using pixel area relation. It may be a preferred method for image decimation, as 
 | 
    it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST 
 | 
    method. */ 
 | 
    INTER_AREA           = 3, 
 | 
    /** Lanczos interpolation over 8x8 neighborhood */ 
 | 
    INTER_LANCZOS4       = 4, 
 | 
    /** Bit exact bilinear interpolation */ 
 | 
    INTER_LINEAR_EXACT = 5, 
 | 
    /** mask for interpolation codes */ 
 | 
    INTER_MAX            = 7, 
 | 
    /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the 
 | 
    source image, they are set to zero */ 
 | 
    WARP_FILL_OUTLIERS   = 8, 
 | 
    /** flag, inverse transformation 
 | 
  
 | 
    For example, #linearPolar or #logPolar transforms: 
 | 
    - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$ 
 | 
    - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$ 
 | 
    */ 
 | 
    WARP_INVERSE_MAP     = 16 
 | 
}; 
 | 
  
 | 
/** \brief Specify the polar mapping mode 
 | 
@sa warpPolar 
 | 
*/ 
 | 
enum WarpPolarMode 
 | 
{ 
 | 
    WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space. 
 | 
    WARP_POLAR_LOG = 256   ///< Remaps an image to/from semilog-polar space. 
 | 
}; 
 | 
  
 | 
enum InterpolationMasks { 
 | 
       INTER_BITS      = 5, 
 | 
       INTER_BITS2     = INTER_BITS * 2, 
 | 
       INTER_TAB_SIZE  = 1 << INTER_BITS, 
 | 
       INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE 
 | 
     }; 
 | 
  
 | 
//! @} imgproc_transform 
 | 
  
 | 
//! @addtogroup imgproc_misc 
 | 
//! @{ 
 | 
  
 | 
//! Distance types for Distance Transform and M-estimators 
 | 
//! @see distanceTransform, fitLine 
 | 
enum DistanceTypes { 
 | 
    DIST_USER    = -1,  //!< User defined distance 
 | 
    DIST_L1      = 1,   //!< distance = |x1-x2| + |y1-y2| 
 | 
    DIST_L2      = 2,   //!< the simple euclidean distance 
 | 
    DIST_C       = 3,   //!< distance = max(|x1-x2|,|y1-y2|) 
 | 
    DIST_L12     = 4,   //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) 
 | 
    DIST_FAIR    = 5,   //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 
 | 
    DIST_WELSCH  = 6,   //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 
 | 
    DIST_HUBER   = 7    //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 
 | 
}; 
 | 
  
 | 
//! Mask size for distance transform 
 | 
enum DistanceTransformMasks { 
 | 
    DIST_MASK_3       = 3, //!< mask=3 
 | 
    DIST_MASK_5       = 5, //!< mask=5 
 | 
    DIST_MASK_PRECISE = 0  //!< 
 | 
}; 
 | 
  
 | 
//! type of the threshold operation 
 | 
//!  
 | 
enum ThresholdTypes { 
 | 
    THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] 
 | 
    THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f] 
 | 
    THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] 
 | 
    THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] 
 | 
    THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] 
 | 
    THRESH_MASK       = 7, 
 | 
    THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value 
 | 
    THRESH_TRIANGLE   = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value 
 | 
}; 
 | 
  
 | 
//! adaptive threshold algorithm 
 | 
//! @see adaptiveThreshold 
 | 
enum AdaptiveThresholdTypes { 
 | 
    /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times 
 | 
    \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */ 
 | 
    ADAPTIVE_THRESH_MEAN_C     = 0, 
 | 
    /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian 
 | 
    window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ 
 | 
    minus C . The default sigma (standard deviation) is used for the specified blockSize . See 
 | 
    #getGaussianKernel*/ 
 | 
    ADAPTIVE_THRESH_GAUSSIAN_C = 1 
 | 
}; 
 | 
  
 | 
//! class of the pixel in GrabCut algorithm 
 | 
enum GrabCutClasses { 
 | 
    GC_BGD    = 0,  //!< an obvious background pixels 
 | 
    GC_FGD    = 1,  //!< an obvious foreground (object) pixel 
 | 
    GC_PR_BGD = 2,  //!< a possible background pixel 
 | 
    GC_PR_FGD = 3   //!< a possible foreground pixel 
 | 
}; 
 | 
  
 | 
//! GrabCut algorithm flags 
 | 
enum GrabCutModes { 
 | 
    /** The function initializes the state and the mask using the provided rectangle. After that it 
 | 
    runs iterCount iterations of the algorithm. */ 
 | 
    GC_INIT_WITH_RECT  = 0, 
 | 
    /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT 
 | 
    and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are 
 | 
    automatically initialized with GC_BGD .*/ 
 | 
    GC_INIT_WITH_MASK  = 1, 
 | 
    /** The value means that the algorithm should just resume. */ 
 | 
    GC_EVAL            = 2, 
 | 
    /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */ 
 | 
    GC_EVAL_FREEZE_MODEL = 3 
 | 
}; 
 | 
  
 | 
//! distanceTransform algorithm flags 
 | 
enum DistanceTransformLabelTypes { 
 | 
    /** each connected component of zeros in src (as well as all the non-zero pixels closest to the 
 | 
    connected component) will be assigned the same label */ 
 | 
    DIST_LABEL_CCOMP = 0, 
 | 
    /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */ 
 | 
    DIST_LABEL_PIXEL = 1 
 | 
}; 
 | 
  
 | 
//! floodfill algorithm flags 
 | 
enum FloodFillFlags { 
 | 
    /** If set, the difference between the current pixel and seed pixel is considered. Otherwise, 
 | 
    the difference between neighbor pixels is considered (that is, the range is floating). */ 
 | 
    FLOODFILL_FIXED_RANGE = 1 << 16, 
 | 
    /** If set, the function does not change the image ( newVal is ignored), and only fills the 
 | 
    mask with the value specified in bits 8-16 of flags as described above. This option only make 
 | 
    sense in function variants that have the mask parameter. */ 
 | 
    FLOODFILL_MASK_ONLY   = 1 << 17 
 | 
}; 
 | 
  
 | 
//! @} imgproc_misc 
 | 
  
 | 
//! @addtogroup imgproc_shape 
 | 
//! @{ 
 | 
  
 | 
//! connected components algorithm output formats 
 | 
enum ConnectedComponentsTypes { 
 | 
    CC_STAT_LEFT   = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding 
 | 
                        //!< box in the horizontal direction. 
 | 
    CC_STAT_TOP    = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding 
 | 
                        //!< box in the vertical direction. 
 | 
    CC_STAT_WIDTH  = 2, //!< The horizontal size of the bounding box 
 | 
    CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box 
 | 
    CC_STAT_AREA   = 4, //!< The total area (in pixels) of the connected component 
 | 
#ifndef CV_DOXYGEN 
 | 
    CC_STAT_MAX    = 5 //!< Max enumeration value. Used internally only for memory allocation 
 | 
#endif 
 | 
}; 
 | 
  
 | 
//! connected components algorithm 
 | 
enum ConnectedComponentsAlgorithmsTypes { 
 | 
    CCL_WU      = 0,  //!< SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity 
 | 
    CCL_DEFAULT = -1, //!< BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity 
 | 
    CCL_GRANA   = 1   //!< BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity 
 | 
}; 
 | 
  
 | 
//! mode of the contour retrieval algorithm 
 | 
enum RetrievalModes { 
 | 
    /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for 
 | 
    all the contours. */ 
 | 
    RETR_EXTERNAL  = 0, 
 | 
    /** retrieves all of the contours without establishing any hierarchical relationships. */ 
 | 
    RETR_LIST      = 1, 
 | 
    /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top 
 | 
    level, there are external boundaries of the components. At the second level, there are 
 | 
    boundaries of the holes. If there is another contour inside a hole of a connected component, it 
 | 
    is still put at the top level. */ 
 | 
    RETR_CCOMP     = 2, 
 | 
    /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/ 
 | 
    RETR_TREE      = 3, 
 | 
    RETR_FLOODFILL = 4 //!< 
 | 
}; 
 | 
  
 | 
//! the contour approximation algorithm 
 | 
enum ContourApproximationModes { 
 | 
    /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and 
 | 
    (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is, 
 | 
    max(abs(x1-x2),abs(y2-y1))==1. */ 
 | 
    CHAIN_APPROX_NONE      = 1, 
 | 
    /** compresses horizontal, vertical, and diagonal segments and leaves only their end points. 
 | 
    For example, an up-right rectangular contour is encoded with 4 points. */ 
 | 
    CHAIN_APPROX_SIMPLE    = 2, 
 | 
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ 
 | 
    CHAIN_APPROX_TC89_L1   = 3, 
 | 
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ 
 | 
    CHAIN_APPROX_TC89_KCOS = 4 
 | 
}; 
 | 
  
 | 
/** @brief Shape matching methods 
 | 
  
 | 
\f$A\f$ denotes object1,\f$B\f$ denotes object2 
 | 
  
 | 
\f$\begin{array}{l} m^A_i =  \mathrm{sign} (h^A_i)  \cdot \log{h^A_i} \\ m^B_i =  \mathrm{sign} (h^B_i)  \cdot \log{h^B_i} \end{array}\f$ 
 | 
  
 | 
and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively. 
 | 
*/ 
 | 
enum ShapeMatchModes { 
 | 
    CONTOURS_MATCH_I1  =1, //!< \f[I_1(A,B) =  \sum _{i=1...7}  \left |  \frac{1}{m^A_i} -  \frac{1}{m^B_i} \right |\f] 
 | 
    CONTOURS_MATCH_I2  =2, //!< \f[I_2(A,B) =  \sum _{i=1...7}  \left | m^A_i - m^B_i  \right |\f] 
 | 
    CONTOURS_MATCH_I3  =3  //!< \f[I_3(A,B) =  \max _{i=1...7}  \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f] 
 | 
}; 
 | 
  
 | 
//! @} imgproc_shape 
 | 
  
 | 
//! @addtogroup imgproc_feature 
 | 
//! @{ 
 | 
  
 | 
//! Variants of a Hough transform 
 | 
enum HoughModes { 
 | 
  
 | 
    /** classical or standard Hough transform. Every line is represented by two floating-point 
 | 
    numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line, 
 | 
    and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must 
 | 
    be (the created sequence will be) of CV_32FC2 type */ 
 | 
    HOUGH_STANDARD      = 0, 
 | 
    /** probabilistic Hough transform (more efficient in case if the picture contains a few long 
 | 
    linear segments). It returns line segments rather than the whole line. Each segment is 
 | 
    represented by starting and ending points, and the matrix must be (the created sequence will 
 | 
    be) of the CV_32SC4 type. */ 
 | 
    HOUGH_PROBABILISTIC = 1, 
 | 
    /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as 
 | 
    HOUGH_STANDARD. */ 
 | 
    HOUGH_MULTI_SCALE   = 2, 
 | 
    HOUGH_GRADIENT      = 3 //!< basically *21HT*, described in @cite Yuen90 
 | 
}; 
 | 
  
 | 
//! Variants of Line Segment %Detector 
 | 
enum LineSegmentDetectorModes { 
 | 
    LSD_REFINE_NONE = 0, //!< No refinement applied 
 | 
    LSD_REFINE_STD  = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations. 
 | 
    LSD_REFINE_ADV  = 2  //!< Advanced refinement. Number of false alarms is calculated, lines are 
 | 
                         //!< refined through increase of precision, decrement in size, etc. 
 | 
}; 
 | 
  
 | 
//! @} imgproc_feature 
 | 
  
 | 
/** Histogram comparison methods 
 | 
  @ingroup imgproc_hist 
 | 
*/ 
 | 
enum HistCompMethods { 
 | 
    /** Correlation 
 | 
    \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f] 
 | 
    where 
 | 
    \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f] 
 | 
    and \f$N\f$ is a total number of histogram bins. */ 
 | 
    HISTCMP_CORREL        = 0, 
 | 
    /** Chi-Square 
 | 
    \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */ 
 | 
    HISTCMP_CHISQR        = 1, 
 | 
    /** Intersection 
 | 
    \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f] */ 
 | 
    HISTCMP_INTERSECT     = 2, 
 | 
    /** Bhattacharyya distance 
 | 
    (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.) 
 | 
    \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */ 
 | 
    HISTCMP_BHATTACHARYYA = 3, 
 | 
    HISTCMP_HELLINGER     = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA 
 | 
    /** Alternative Chi-Square 
 | 
    \f[d(H_1,H_2) =  2 * \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f] 
 | 
    This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */ 
 | 
    HISTCMP_CHISQR_ALT    = 4, 
 | 
    /** Kullback-Leibler divergence 
 | 
    \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */ 
 | 
    HISTCMP_KL_DIV        = 5 
 | 
}; 
 | 
  
 | 
/** the color conversion codes 
 | 
@see @ref imgproc_color_conversions 
 | 
@ingroup imgproc_color_conversions 
 | 
 */ 
 | 
enum ColorConversionCodes { 
 | 
    COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image 
 | 
    COLOR_RGB2RGBA     = COLOR_BGR2BGRA, 
 | 
  
 | 
    COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image 
 | 
    COLOR_RGBA2RGB     = COLOR_BGRA2BGR, 
 | 
  
 | 
    COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel) 
 | 
    COLOR_RGB2BGRA     = COLOR_BGR2RGBA, 
 | 
  
 | 
    COLOR_RGBA2BGR     = 3, 
 | 
    COLOR_BGRA2RGB     = COLOR_RGBA2BGR, 
 | 
  
 | 
    COLOR_BGR2RGB      = 4, 
 | 
    COLOR_RGB2BGR      = COLOR_BGR2RGB, 
 | 
  
 | 
    COLOR_BGRA2RGBA    = 5, 
 | 
    COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA, 
 | 
  
 | 
    COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions" 
 | 
    COLOR_RGB2GRAY     = 7, 
 | 
    COLOR_GRAY2BGR     = 8, 
 | 
    COLOR_GRAY2RGB     = COLOR_GRAY2BGR, 
 | 
    COLOR_GRAY2BGRA    = 9, 
 | 
    COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA, 
 | 
    COLOR_BGRA2GRAY    = 10, 
 | 
    COLOR_RGBA2GRAY    = 11, 
 | 
  
 | 
    COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images) 
 | 
    COLOR_RGB2BGR565   = 13, 
 | 
    COLOR_BGR5652BGR   = 14, 
 | 
    COLOR_BGR5652RGB   = 15, 
 | 
    COLOR_BGRA2BGR565  = 16, 
 | 
    COLOR_RGBA2BGR565  = 17, 
 | 
    COLOR_BGR5652BGRA  = 18, 
 | 
    COLOR_BGR5652RGBA  = 19, 
 | 
  
 | 
    COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images) 
 | 
    COLOR_BGR5652GRAY  = 21, 
 | 
  
 | 
    COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images) 
 | 
    COLOR_RGB2BGR555   = 23, 
 | 
    COLOR_BGR5552BGR   = 24, 
 | 
    COLOR_BGR5552RGB   = 25, 
 | 
    COLOR_BGRA2BGR555  = 26, 
 | 
    COLOR_RGBA2BGR555  = 27, 
 | 
    COLOR_BGR5552BGRA  = 28, 
 | 
    COLOR_BGR5552RGBA  = 29, 
 | 
  
 | 
    COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images) 
 | 
    COLOR_BGR5552GRAY  = 31, 
 | 
  
 | 
    COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions" 
 | 
    COLOR_RGB2XYZ      = 33, 
 | 
    COLOR_XYZ2BGR      = 34, 
 | 
    COLOR_XYZ2RGB      = 35, 
 | 
  
 | 
    COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions" 
 | 
    COLOR_RGB2YCrCb    = 37, 
 | 
    COLOR_YCrCb2BGR    = 38, 
 | 
    COLOR_YCrCb2RGB    = 39, 
 | 
  
 | 
    COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions" 
 | 
    COLOR_RGB2HSV      = 41, 
 | 
  
 | 
    COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions" 
 | 
    COLOR_RGB2Lab      = 45, 
 | 
  
 | 
    COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions" 
 | 
    COLOR_RGB2Luv      = 51, 
 | 
    COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions" 
 | 
    COLOR_RGB2HLS      = 53, 
 | 
  
 | 
    COLOR_HSV2BGR      = 54, //!< backward conversions to RGB/BGR 
 | 
    COLOR_HSV2RGB      = 55, 
 | 
  
 | 
    COLOR_Lab2BGR      = 56, 
 | 
    COLOR_Lab2RGB      = 57, 
 | 
    COLOR_Luv2BGR      = 58, 
 | 
    COLOR_Luv2RGB      = 59, 
 | 
    COLOR_HLS2BGR      = 60, 
 | 
    COLOR_HLS2RGB      = 61, 
 | 
  
 | 
    COLOR_BGR2HSV_FULL = 66, 
 | 
    COLOR_RGB2HSV_FULL = 67, 
 | 
    COLOR_BGR2HLS_FULL = 68, 
 | 
    COLOR_RGB2HLS_FULL = 69, 
 | 
  
 | 
    COLOR_HSV2BGR_FULL = 70, 
 | 
    COLOR_HSV2RGB_FULL = 71, 
 | 
    COLOR_HLS2BGR_FULL = 72, 
 | 
    COLOR_HLS2RGB_FULL = 73, 
 | 
  
 | 
    COLOR_LBGR2Lab     = 74, 
 | 
    COLOR_LRGB2Lab     = 75, 
 | 
    COLOR_LBGR2Luv     = 76, 
 | 
    COLOR_LRGB2Luv     = 77, 
 | 
  
 | 
    COLOR_Lab2LBGR     = 78, 
 | 
    COLOR_Lab2LRGB     = 79, 
 | 
    COLOR_Luv2LBGR     = 80, 
 | 
    COLOR_Luv2LRGB     = 81, 
 | 
  
 | 
    COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV 
 | 
    COLOR_RGB2YUV      = 83, 
 | 
    COLOR_YUV2BGR      = 84, 
 | 
    COLOR_YUV2RGB      = 85, 
 | 
  
 | 
    //! YUV 4:2:0 family to RGB 
 | 
    COLOR_YUV2RGB_NV12  = 90, 
 | 
    COLOR_YUV2BGR_NV12  = 91, 
 | 
    COLOR_YUV2RGB_NV21  = 92, 
 | 
    COLOR_YUV2BGR_NV21  = 93, 
 | 
    COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21, 
 | 
    COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21, 
 | 
  
 | 
    COLOR_YUV2RGBA_NV12 = 94, 
 | 
    COLOR_YUV2BGRA_NV12 = 95, 
 | 
    COLOR_YUV2RGBA_NV21 = 96, 
 | 
    COLOR_YUV2BGRA_NV21 = 97, 
 | 
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, 
 | 
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, 
 | 
  
 | 
    COLOR_YUV2RGB_YV12  = 98, 
 | 
    COLOR_YUV2BGR_YV12  = 99, 
 | 
    COLOR_YUV2RGB_IYUV  = 100, 
 | 
    COLOR_YUV2BGR_IYUV  = 101, 
 | 
    COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV, 
 | 
    COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV, 
 | 
    COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12, 
 | 
    COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12, 
 | 
  
 | 
    COLOR_YUV2RGBA_YV12 = 102, 
 | 
    COLOR_YUV2BGRA_YV12 = 103, 
 | 
    COLOR_YUV2RGBA_IYUV = 104, 
 | 
    COLOR_YUV2BGRA_IYUV = 105, 
 | 
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, 
 | 
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, 
 | 
    COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12, 
 | 
    COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12, 
 | 
  
 | 
    COLOR_YUV2GRAY_420  = 106, 
 | 
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, 
 | 
    COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420, 
 | 
  
 | 
    //! YUV 4:2:2 family to RGB 
 | 
    COLOR_YUV2RGB_UYVY = 107, 
 | 
    COLOR_YUV2BGR_UYVY = 108, 
 | 
    //COLOR_YUV2RGB_VYUY = 109, 
 | 
    //COLOR_YUV2BGR_VYUY = 110, 
 | 
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, 
 | 
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, 
 | 
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, 
 | 
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, 
 | 
  
 | 
    COLOR_YUV2RGBA_UYVY = 111, 
 | 
    COLOR_YUV2BGRA_UYVY = 112, 
 | 
    //COLOR_YUV2RGBA_VYUY = 113, 
 | 
    //COLOR_YUV2BGRA_VYUY = 114, 
 | 
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, 
 | 
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, 
 | 
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, 
 | 
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, 
 | 
  
 | 
    COLOR_YUV2RGB_YUY2 = 115, 
 | 
    COLOR_YUV2BGR_YUY2 = 116, 
 | 
    COLOR_YUV2RGB_YVYU = 117, 
 | 
    COLOR_YUV2BGR_YVYU = 118, 
 | 
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, 
 | 
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, 
 | 
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, 
 | 
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, 
 | 
  
 | 
    COLOR_YUV2RGBA_YUY2 = 119, 
 | 
    COLOR_YUV2BGRA_YUY2 = 120, 
 | 
    COLOR_YUV2RGBA_YVYU = 121, 
 | 
    COLOR_YUV2BGRA_YVYU = 122, 
 | 
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, 
 | 
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, 
 | 
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, 
 | 
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, 
 | 
  
 | 
    COLOR_YUV2GRAY_UYVY = 123, 
 | 
    COLOR_YUV2GRAY_YUY2 = 124, 
 | 
    //CV_YUV2GRAY_VYUY    = CV_YUV2GRAY_UYVY, 
 | 
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, 
 | 
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, 
 | 
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, 
 | 
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, 
 | 
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, 
 | 
  
 | 
    //! alpha premultiplication 
 | 
    COLOR_RGBA2mRGBA    = 125, 
 | 
    COLOR_mRGBA2RGBA    = 126, 
 | 
  
 | 
    //! RGB to YUV 4:2:0 family 
 | 
    COLOR_RGB2YUV_I420  = 127, 
 | 
    COLOR_BGR2YUV_I420  = 128, 
 | 
    COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420, 
 | 
    COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420, 
 | 
  
 | 
    COLOR_RGBA2YUV_I420 = 129, 
 | 
    COLOR_BGRA2YUV_I420 = 130, 
 | 
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, 
 | 
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, 
 | 
    COLOR_RGB2YUV_YV12  = 131, 
 | 
    COLOR_BGR2YUV_YV12  = 132, 
 | 
    COLOR_RGBA2YUV_YV12 = 133, 
 | 
    COLOR_BGRA2YUV_YV12 = 134, 
 | 
  
 | 
    //! Demosaicing 
 | 
    COLOR_BayerBG2BGR = 46, 
 | 
    COLOR_BayerGB2BGR = 47, 
 | 
    COLOR_BayerRG2BGR = 48, 
 | 
    COLOR_BayerGR2BGR = 49, 
 | 
  
 | 
    COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, 
 | 
    COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, 
 | 
    COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, 
 | 
    COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, 
 | 
  
 | 
    COLOR_BayerBG2GRAY = 86, 
 | 
    COLOR_BayerGB2GRAY = 87, 
 | 
    COLOR_BayerRG2GRAY = 88, 
 | 
    COLOR_BayerGR2GRAY = 89, 
 | 
  
 | 
    //! Demosaicing using Variable Number of Gradients 
 | 
    COLOR_BayerBG2BGR_VNG = 62, 
 | 
    COLOR_BayerGB2BGR_VNG = 63, 
 | 
    COLOR_BayerRG2BGR_VNG = 64, 
 | 
    COLOR_BayerGR2BGR_VNG = 65, 
 | 
  
 | 
    COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, 
 | 
    COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, 
 | 
    COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, 
 | 
    COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, 
 | 
  
 | 
    //! Edge-Aware Demosaicing 
 | 
    COLOR_BayerBG2BGR_EA  = 135, 
 | 
    COLOR_BayerGB2BGR_EA  = 136, 
 | 
    COLOR_BayerRG2BGR_EA  = 137, 
 | 
    COLOR_BayerGR2BGR_EA  = 138, 
 | 
  
 | 
    COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA, 
 | 
    COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA, 
 | 
    COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA, 
 | 
    COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA, 
 | 
  
 | 
    //! Demosaicing with alpha channel 
 | 
    COLOR_BayerBG2BGRA = 139, 
 | 
    COLOR_BayerGB2BGRA = 140, 
 | 
    COLOR_BayerRG2BGRA = 141, 
 | 
    COLOR_BayerGR2BGRA = 142, 
 | 
  
 | 
    COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, 
 | 
    COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, 
 | 
    COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, 
 | 
    COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, 
 | 
  
 | 
    COLOR_COLORCVT_MAX  = 143 
 | 
}; 
 | 
  
 | 
//! @addtogroup imgproc_shape 
 | 
//! @{ 
 | 
  
 | 
//! types of intersection between rectangles 
 | 
enum RectanglesIntersectTypes { 
 | 
    INTERSECT_NONE = 0, //!< No intersection 
 | 
    INTERSECT_PARTIAL  = 1, //!< There is a partial intersection 
 | 
    INTERSECT_FULL  = 2 //!< One of the rectangle is fully enclosed in the other 
 | 
}; 
 | 
  
 | 
/** types of line 
 | 
@ingroup imgproc_draw 
 | 
*/ 
 | 
enum LineTypes { 
 | 
    FILLED  = -1, 
 | 
    LINE_4  = 4, //!< 4-connected line 
 | 
    LINE_8  = 8, //!< 8-connected line 
 | 
    LINE_AA = 16 //!< antialiased line 
 | 
}; 
 | 
  
 | 
/** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported 
 | 
@ingroup imgproc_draw 
 | 
*/ 
 | 
enum HersheyFonts { 
 | 
    FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font 
 | 
    FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font 
 | 
    FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) 
 | 
    FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font 
 | 
    FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) 
 | 
    FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX 
 | 
    FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font 
 | 
    FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX 
 | 
    FONT_ITALIC                 = 16 //!< flag for italic font 
 | 
}; 
 | 
  
 | 
/** Possible set of marker types used for the cv::drawMarker function 
 | 
@ingroup imgproc_draw 
 | 
*/ 
 | 
enum MarkerTypes 
 | 
{ 
 | 
    MARKER_CROSS = 0,           //!< A crosshair marker shape 
 | 
    MARKER_TILTED_CROSS = 1,    //!< A 45 degree tilted crosshair marker shape 
 | 
    MARKER_STAR = 2,            //!< A star marker shape, combination of cross and tilted cross 
 | 
    MARKER_DIAMOND = 3,         //!< A diamond marker shape 
 | 
    MARKER_SQUARE = 4,          //!< A square marker shape 
 | 
    MARKER_TRIANGLE_UP = 5,     //!< An upwards pointing triangle marker shape 
 | 
    MARKER_TRIANGLE_DOWN = 6    //!< A downwards pointing triangle marker shape 
 | 
}; 
 | 
  
 | 
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform 
 | 
*/ 
 | 
class CV_EXPORTS_W GeneralizedHough : public Algorithm 
 | 
{ 
 | 
public: 
 | 
    //! set template to search 
 | 
    CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0; 
 | 
    CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; 
 | 
  
 | 
    //! find template on image 
 | 
    CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0; 
 | 
    CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0; 
 | 
  
 | 
    //! Canny low threshold. 
 | 
    CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0; 
 | 
    CV_WRAP virtual int getCannyLowThresh() const = 0; 
 | 
  
 | 
    //! Canny high threshold. 
 | 
    CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0; 
 | 
    CV_WRAP virtual int getCannyHighThresh() const = 0; 
 | 
  
 | 
    //! Minimum distance between the centers of the detected objects. 
 | 
    CV_WRAP virtual void setMinDist(double minDist) = 0; 
 | 
    CV_WRAP virtual double getMinDist() const = 0; 
 | 
  
 | 
    //! Inverse ratio of the accumulator resolution to the image resolution. 
 | 
    CV_WRAP virtual void setDp(double dp) = 0; 
 | 
    CV_WRAP virtual double getDp() const = 0; 
 | 
  
 | 
    //! Maximal size of inner buffers. 
 | 
    CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0; 
 | 
    CV_WRAP virtual int getMaxBufferSize() const = 0; 
 | 
}; 
 | 
  
 | 
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform 
 | 
  
 | 
Detects position only without translation and rotation @cite Ballard1981 . 
 | 
*/ 
 | 
class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough 
 | 
{ 
 | 
public: 
 | 
    //! R-Table levels. 
 | 
    CV_WRAP virtual void setLevels(int levels) = 0; 
 | 
    CV_WRAP virtual int getLevels() const = 0; 
 | 
  
 | 
    //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected. 
 | 
    CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0; 
 | 
    CV_WRAP virtual int getVotesThreshold() const = 0; 
 | 
}; 
 | 
  
 | 
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform 
 | 
  
 | 
Detects position, translation and rotation @cite Guil1999 . 
 | 
*/ 
 | 
class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough 
 | 
{ 
 | 
public: 
 | 
    //! Angle difference in degrees between two points in feature. 
 | 
    CV_WRAP virtual void setXi(double xi) = 0; 
 | 
    CV_WRAP virtual double getXi() const = 0; 
 | 
  
 | 
    //! Feature table levels. 
 | 
    CV_WRAP virtual void setLevels(int levels) = 0; 
 | 
    CV_WRAP virtual int getLevels() const = 0; 
 | 
  
 | 
    //! Maximal difference between angles that treated as equal. 
 | 
    CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0; 
 | 
    CV_WRAP virtual double getAngleEpsilon() const = 0; 
 | 
  
 | 
    //! Minimal rotation angle to detect in degrees. 
 | 
    CV_WRAP virtual void setMinAngle(double minAngle) = 0; 
 | 
    CV_WRAP virtual double getMinAngle() const = 0; 
 | 
  
 | 
    //! Maximal rotation angle to detect in degrees. 
 | 
    CV_WRAP virtual void setMaxAngle(double maxAngle) = 0; 
 | 
    CV_WRAP virtual double getMaxAngle() const = 0; 
 | 
  
 | 
    //! Angle step in degrees. 
 | 
    CV_WRAP virtual void setAngleStep(double angleStep) = 0; 
 | 
    CV_WRAP virtual double getAngleStep() const = 0; 
 | 
  
 | 
    //! Angle votes threshold. 
 | 
    CV_WRAP virtual void setAngleThresh(int angleThresh) = 0; 
 | 
    CV_WRAP virtual int getAngleThresh() const = 0; 
 | 
  
 | 
    //! Minimal scale to detect. 
 | 
    CV_WRAP virtual void setMinScale(double minScale) = 0; 
 | 
    CV_WRAP virtual double getMinScale() const = 0; 
 | 
  
 | 
    //! Maximal scale to detect. 
 | 
    CV_WRAP virtual void setMaxScale(double maxScale) = 0; 
 | 
    CV_WRAP virtual double getMaxScale() const = 0; 
 | 
  
 | 
    //! Scale step. 
 | 
    CV_WRAP virtual void setScaleStep(double scaleStep) = 0; 
 | 
    CV_WRAP virtual double getScaleStep() const = 0; 
 | 
  
 | 
    //! Scale votes threshold. 
 | 
    CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0; 
 | 
    CV_WRAP virtual int getScaleThresh() const = 0; 
 | 
  
 | 
    //! Position votes threshold. 
 | 
    CV_WRAP virtual void setPosThresh(int posThresh) = 0; 
 | 
    CV_WRAP virtual int getPosThresh() const = 0; 
 | 
}; 
 | 
  
 | 
//! @} imgproc_shape 
 | 
  
 | 
//! @addtogroup imgproc_hist 
 | 
//! @{ 
 | 
  
 | 
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. 
 | 
*/ 
 | 
class CV_EXPORTS_W CLAHE : public Algorithm 
 | 
{ 
 | 
public: 
 | 
    /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization. 
 | 
  
 | 
    @param src Source image of type CV_8UC1 or CV_16UC1. 
 | 
    @param dst Destination image. 
 | 
     */ 
 | 
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; 
 | 
  
 | 
    /** @brief Sets threshold for contrast limiting. 
 | 
  
 | 
    @param clipLimit threshold value. 
 | 
    */ 
 | 
    CV_WRAP virtual void setClipLimit(double clipLimit) = 0; 
 | 
  
 | 
    //! Returns threshold value for contrast limiting. 
 | 
    CV_WRAP virtual double getClipLimit() const = 0; 
 | 
  
 | 
    /** @brief Sets size of grid for histogram equalization. Input image will be divided into 
 | 
    equally sized rectangular tiles. 
 | 
  
 | 
    @param tileGridSize defines the number of tiles in row and column. 
 | 
    */ 
 | 
    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; 
 | 
  
 | 
    //!@brief Returns Size defines the number of tiles in row and column. 
 | 
    CV_WRAP virtual Size getTilesGridSize() const = 0; 
 | 
  
 | 
    CV_WRAP virtual void collectGarbage() = 0; 
 | 
}; 
 | 
  
 | 
//! @} imgproc_hist 
 | 
  
 | 
//! @addtogroup imgproc_subdiv2d 
 | 
//! @{ 
 | 
  
 | 
class CV_EXPORTS_W Subdiv2D 
 | 
{ 
 | 
public: 
 | 
    /** Subdiv2D point location cases */ 
 | 
    enum { PTLOC_ERROR        = -2, //!< Point location error 
 | 
           PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect 
 | 
           PTLOC_INSIDE       = 0, //!< Point inside some facet 
 | 
           PTLOC_VERTEX       = 1, //!< Point coincides with one of the subdivision vertices 
 | 
           PTLOC_ON_EDGE      = 2  //!< Point on some edge 
 | 
         }; 
 | 
  
 | 
    /** Subdiv2D edge type navigation (see: getEdge()) */ 
 | 
    enum { NEXT_AROUND_ORG   = 0x00, 
 | 
           NEXT_AROUND_DST   = 0x22, 
 | 
           PREV_AROUND_ORG   = 0x11, 
 | 
           PREV_AROUND_DST   = 0x33, 
 | 
           NEXT_AROUND_LEFT  = 0x13, 
 | 
           NEXT_AROUND_RIGHT = 0x31, 
 | 
           PREV_AROUND_LEFT  = 0x20, 
 | 
           PREV_AROUND_RIGHT = 0x02 
 | 
         }; 
 | 
  
 | 
    /** creates an empty Subdiv2D object. 
 | 
    To create a new empty Delaunay subdivision you need to use the #initDelaunay function. 
 | 
     */ 
 | 
    CV_WRAP Subdiv2D(); 
 | 
  
 | 
    /** @overload 
 | 
  
 | 
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. 
 | 
  
 | 
    The function creates an empty Delaunay subdivision where 2D points can be added using the function 
 | 
    insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime 
 | 
    error is raised. 
 | 
     */ 
 | 
    CV_WRAP Subdiv2D(Rect rect); 
 | 
  
 | 
    /** @brief Creates a new empty Delaunay subdivision 
 | 
  
 | 
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. 
 | 
  
 | 
     */ 
 | 
    CV_WRAP void initDelaunay(Rect rect); 
 | 
  
 | 
    /** @brief Insert a single point into a Delaunay triangulation. 
 | 
  
 | 
    @param pt Point to insert. 
 | 
  
 | 
    The function inserts a single point into a subdivision and modifies the subdivision topology 
 | 
    appropriately. If a point with the same coordinates exists already, no new point is added. 
 | 
    @returns the ID of the point. 
 | 
  
 | 
    @note If the point is outside of the triangulation specified rect a runtime error is raised. 
 | 
     */ 
 | 
    CV_WRAP int insert(Point2f pt); 
 | 
  
 | 
    /** @brief Insert multiple points into a Delaunay triangulation. 
 | 
  
 | 
    @param ptvec Points to insert. 
 | 
  
 | 
    The function inserts a vector of points into a subdivision and modifies the subdivision topology 
 | 
    appropriately. 
 | 
     */ 
 | 
    CV_WRAP void insert(const std::vector<Point2f>& ptvec); 
 | 
  
 | 
    /** @brief Returns the location of a point within a Delaunay triangulation. 
 | 
  
 | 
    @param pt Point to locate. 
 | 
    @param edge Output edge that the point belongs to or is located to the right of it. 
 | 
    @param vertex Optional output vertex the input point coincides with. 
 | 
  
 | 
    The function locates the input point within the subdivision and gives one of the triangle edges 
 | 
    or vertices. 
 | 
  
 | 
    @returns an integer which specify one of the following five cases for point location: 
 | 
    -  The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of 
 | 
       edges of the facet. 
 | 
    -  The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge. 
 | 
    -  The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and 
 | 
       vertex will contain a pointer to the vertex. 
 | 
    -  The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT 
 | 
       and no pointers are filled. 
 | 
    -  One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error 
 | 
       processing mode is selected, #PTLOC_ERROR is returned. 
 | 
     */ 
 | 
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); 
 | 
  
 | 
    /** @brief Finds the subdivision vertex closest to the given point. 
 | 
  
 | 
    @param pt Input point. 
 | 
    @param nearestPt Output subdivision vertex point. 
 | 
  
 | 
    The function is another function that locates the input point within the subdivision. It finds the 
 | 
    subdivision vertex that is the closest to the input point. It is not necessarily one of vertices 
 | 
    of the facet containing the input point, though the facet (located using locate() ) is used as a 
 | 
    starting point. 
 | 
  
 | 
    @returns vertex ID. 
 | 
     */ 
 | 
    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); 
 | 
  
 | 
    /** @brief Returns a list of all edges. 
 | 
  
 | 
    @param edgeList Output vector. 
 | 
  
 | 
    The function gives each edge as a 4 numbers vector, where each two are one of the edge 
 | 
    vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3]. 
 | 
     */ 
 | 
    CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const; 
 | 
  
 | 
    /** @brief Returns a list of the leading edge ID connected to each triangle. 
 | 
  
 | 
    @param leadingEdgeList Output vector. 
 | 
  
 | 
    The function gives one edge ID for each triangle. 
 | 
     */ 
 | 
    CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const; 
 | 
  
 | 
    /** @brief Returns a list of all triangles. 
 | 
  
 | 
    @param triangleList Output vector. 
 | 
  
 | 
    The function gives each triangle as a 6 numbers vector, where each two are one of the triangle 
 | 
    vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5]. 
 | 
     */ 
 | 
    CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const; 
 | 
  
 | 
    /** @brief Returns a list of all Voronoi facets. 
 | 
  
 | 
    @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector. 
 | 
    @param facetList Output vector of the Voronoi facets. 
 | 
    @param facetCenters Output vector of the Voronoi facets center points. 
 | 
  
 | 
     */ 
 | 
    CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, 
 | 
                                     CV_OUT std::vector<Point2f>& facetCenters); 
 | 
  
 | 
    /** @brief Returns vertex location from vertex ID. 
 | 
  
 | 
    @param vertex vertex ID. 
 | 
    @param firstEdge Optional. The first edge ID which is connected to the vertex. 
 | 
    @returns vertex (x,y) 
 | 
  
 | 
     */ 
 | 
    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; 
 | 
  
 | 
    /** @brief Returns one of the edges related to the given edge. 
 | 
  
 | 
    @param edge Subdivision edge ID. 
 | 
    @param nextEdgeType Parameter specifying which of the related edges to return. 
 | 
    The following values are possible: 
 | 
    -   NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge) 
 | 
    -   NEXT_AROUND_DST next around the edge vertex ( eDnext ) 
 | 
    -   PREV_AROUND_ORG previous around the edge origin (reversed eRnext ) 
 | 
    -   PREV_AROUND_DST previous around the edge destination (reversed eLnext ) 
 | 
    -   NEXT_AROUND_LEFT next around the left facet ( eLnext ) 
 | 
    -   NEXT_AROUND_RIGHT next around the right facet ( eRnext ) 
 | 
    -   PREV_AROUND_LEFT previous around the left facet (reversed eOnext ) 
 | 
    -   PREV_AROUND_RIGHT previous around the right facet (reversed eDnext ) 
 | 
  
 | 
     
 | 
  
 | 
    @returns edge ID related to the input edge. 
 | 
     */ 
 | 
    CV_WRAP int getEdge( int edge, int nextEdgeType ) const; 
 | 
  
 | 
    /** @brief Returns next edge around the edge origin. 
 | 
  
 | 
    @param edge Subdivision edge ID. 
 | 
  
 | 
    @returns an integer which is next edge ID around the edge origin: eOnext on the 
 | 
    picture above if e is the input edge). 
 | 
     */ 
 | 
    CV_WRAP int nextEdge(int edge) const; 
 | 
  
 | 
    /** @brief Returns another edge of the same quad-edge. 
 | 
  
 | 
    @param edge Subdivision edge ID. 
 | 
    @param rotate Parameter specifying which of the edges of the same quad-edge as the input 
 | 
    one to return. The following values are possible: 
 | 
    -   0 - the input edge ( e on the picture below if e is the input edge) 
 | 
    -   1 - the rotated edge ( eRot ) 
 | 
    -   2 - the reversed edge (reversed e (in green)) 
 | 
    -   3 - the reversed rotated edge (reversed eRot (in green)) 
 | 
  
 | 
    @returns one of the edges ID of the same quad-edge as the input edge. 
 | 
     */ 
 | 
    CV_WRAP int rotateEdge(int edge, int rotate) const; 
 | 
    CV_WRAP int symEdge(int edge) const; 
 | 
  
 | 
    /** @brief Returns the edge origin. 
 | 
  
 | 
    @param edge Subdivision edge ID. 
 | 
    @param orgpt Output vertex location. 
 | 
  
 | 
    @returns vertex ID. 
 | 
     */ 
 | 
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; 
 | 
  
 | 
    /** @brief Returns the edge destination. 
 | 
  
 | 
    @param edge Subdivision edge ID. 
 | 
    @param dstpt Output vertex location. 
 | 
  
 | 
    @returns vertex ID. 
 | 
     */ 
 | 
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; 
 | 
  
 | 
protected: 
 | 
    int newEdge(); 
 | 
    void deleteEdge(int edge); 
 | 
    int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); 
 | 
    void deletePoint(int vtx); 
 | 
    void setEdgePoints( int edge, int orgPt, int dstPt ); 
 | 
    void splice( int edgeA, int edgeB ); 
 | 
    int connectEdges( int edgeA, int edgeB ); 
 | 
    void swapEdges( int edge ); 
 | 
    int isRightOf(Point2f pt, int edge) const; 
 | 
    void calcVoronoi(); 
 | 
    void clearVoronoi(); 
 | 
    void checkSubdiv() const; 
 | 
  
 | 
    struct CV_EXPORTS Vertex 
 | 
    { 
 | 
        Vertex(); 
 | 
        Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); 
 | 
        bool isvirtual() const; 
 | 
        bool isfree() const; 
 | 
  
 | 
        int firstEdge; 
 | 
        int type; 
 | 
        Point2f pt; 
 | 
    }; 
 | 
  
 | 
    struct CV_EXPORTS QuadEdge 
 | 
    { 
 | 
        QuadEdge(); 
 | 
        QuadEdge(int edgeidx); 
 | 
        bool isfree() const; 
 | 
  
 | 
        int next[4]; 
 | 
        int pt[4]; 
 | 
    }; 
 | 
  
 | 
    //! All of the vertices 
 | 
    std::vector<Vertex> vtx; 
 | 
    //! All of the edges 
 | 
    std::vector<QuadEdge> qedges; 
 | 
    int freeQEdge; 
 | 
    int freePoint; 
 | 
    bool validGeometry; 
 | 
  
 | 
    int recentEdge; 
 | 
    //! Top left corner of the bounding rect 
 | 
    Point2f topLeft; 
 | 
    //! Bottom right corner of the bounding rect 
 | 
    Point2f bottomRight; 
 | 
}; 
 | 
  
 | 
//! @} imgproc_subdiv2d 
 | 
  
 | 
//! @addtogroup imgproc_feature 
 | 
//! @{ 
 | 
  
 | 
/** @brief Line segment detector class 
 | 
  
 | 
following the algorithm described at @cite Rafael12 . 
 | 
  
 | 
@note Implementation has been removed due original code license conflict 
 | 
  
 | 
*/ 
 | 
class CV_EXPORTS_W LineSegmentDetector : public Algorithm 
 | 
{ 
 | 
public: 
 | 
  
 | 
    /** @brief Finds lines in the input image. 
 | 
  
 | 
    This is the output of the default parameters of the algorithm on the above shown image. 
 | 
  
 | 
     
 | 
  
 | 
    @param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: 
 | 
    `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);` 
 | 
    @param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where 
 | 
    Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly 
 | 
    oriented depending on the gradient. 
 | 
    @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. 
 | 
    @param prec Vector of precisions with which the lines are found. 
 | 
    @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The 
 | 
    bigger the value, logarithmically better the detection. 
 | 
    - -1 corresponds to 10 mean false alarms 
 | 
    - 0 corresponds to 1 mean false alarm 
 | 
    - 1 corresponds to 0.1 mean false alarms 
 | 
    This vector will be calculated only when the objects type is #LSD_REFINE_ADV. 
 | 
    */ 
 | 
    CV_WRAP virtual void detect(InputArray _image, OutputArray _lines, 
 | 
                        OutputArray width = noArray(), OutputArray prec = noArray(), 
 | 
                        OutputArray nfa = noArray()) = 0; 
 | 
  
 | 
    /** @brief Draws the line segments on a given image. 
 | 
    @param _image The image, where the lines will be drawn. Should be bigger or equal to the image, 
 | 
    where the lines were found. 
 | 
    @param lines A vector of the lines that needed to be drawn. 
 | 
     */ 
 | 
    CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0; 
 | 
  
 | 
    /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. 
 | 
  
 | 
    @param size The size of the image, where lines1 and lines2 were found. 
 | 
    @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. 
 | 
    @param lines2 The second group of lines. They visualized in red color. 
 | 
    @param _image Optional image, where the lines will be drawn. The image should be color(3-channel) 
 | 
    in order for lines1 and lines2 to be drawn in the above mentioned colors. 
 | 
     */ 
 | 
    CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0; 
 | 
  
 | 
    virtual ~LineSegmentDetector() { } 
 | 
}; 
 | 
  
 | 
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it. 
 | 
  
 | 
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want 
 | 
to edit those, as to tailor it for their own application. 
 | 
  
 | 
@param _refine The way found lines will be refined, see #LineSegmentDetectorModes 
 | 
@param _scale The scale of the image that will be used to find the lines. Range (0..1]. 
 | 
@param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale. 
 | 
@param _quant Bound to the quantization error on the gradient norm. 
 | 
@param _ang_th Gradient angle tolerance in degrees. 
 | 
@param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement 
 | 
is chosen. 
 | 
@param _density_th Minimal density of aligned region points in the enclosing rectangle. 
 | 
@param _n_bins Number of bins in pseudo-ordering of gradient modulus. 
 | 
  
 | 
@note Implementation has been removed due original code license conflict 
 | 
 */ 
 | 
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector( 
 | 
    int _refine = LSD_REFINE_STD, double _scale = 0.8, 
 | 
    double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, 
 | 
    double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024); 
 | 
  
 | 
//! @} imgproc_feature 
 | 
  
 | 
//! @addtogroup imgproc_filter 
 | 
//! @{ 
 | 
  
 | 
/** @brief Returns Gaussian filter coefficients. 
 | 
  
 | 
The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter 
 | 
coefficients: 
 | 
  
 | 
\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f] 
 | 
  
 | 
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$. 
 | 
  
 | 
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize 
 | 
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. 
 | 
You may also use the higher-level GaussianBlur. 
 | 
@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive. 
 | 
@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as 
 | 
`sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. 
 | 
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . 
 | 
@sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur 
 | 
 */ 
 | 
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); 
 | 
  
 | 
/** @brief Returns filter coefficients for computing spatial image derivatives. 
 | 
  
 | 
The function computes and returns the filter coefficients for spatial image derivatives. When 
 | 
`ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel 
 | 
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to 
 | 
  
 | 
@param kx Output matrix of row filter coefficients. It has the type ktype . 
 | 
@param ky Output matrix of column filter coefficients. It has the type ktype . 
 | 
@param dx Derivative order in respect of x. 
 | 
@param dy Derivative order in respect of y. 
 | 
@param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. 
 | 
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. 
 | 
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are 
 | 
going to filter floating-point images, you are likely to use the normalized kernels. But if you 
 | 
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve 
 | 
all the fractional bits, you may want to set normalize=false . 
 | 
@param ktype Type of filter coefficients. It can be CV_32f or CV_64F . 
 | 
 */ 
 | 
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, 
 | 
                                   int dx, int dy, int ksize, 
 | 
                                   bool normalize = false, int ktype = CV_32F ); 
 | 
  
 | 
/** @brief Returns Gabor filter coefficients. 
 | 
  
 | 
For more details about gabor filter equations and parameters, see: [Gabor 
 | 
Filter](http://en.wikipedia.org/wiki/Gabor_filter). 
 | 
  
 | 
@param ksize Size of the filter returned. 
 | 
@param sigma Standard deviation of the gaussian envelope. 
 | 
@param theta Orientation of the normal to the parallel stripes of a Gabor function. 
 | 
@param lambd Wavelength of the sinusoidal factor. 
 | 
@param gamma Spatial aspect ratio. 
 | 
@param psi Phase offset. 
 | 
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . 
 | 
 */ 
 | 
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, 
 | 
                                 double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); 
 | 
  
 | 
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. 
 | 
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } 
 | 
  
 | 
/** @brief Returns a structuring element of the specified size and shape for morphological operations. 
 | 
  
 | 
The function constructs and returns the structuring element that can be further passed to #erode, 
 | 
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as 
 | 
the structuring element. 
 | 
  
 | 
@param shape Element shape that could be one of #MorphShapes 
 | 
@param ksize Size of the structuring element. 
 | 
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the 
 | 
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor 
 | 
position. In other cases the anchor just regulates how much the result of the morphological 
 | 
operation is shifted. 
 | 
 */ 
 | 
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp 
 | 
Sample code for simple filters 
 | 
 
 | 
Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details 
 | 
 */ 
 | 
  
 | 
/** @brief Blurs an image using the median filter. 
 | 
  
 | 
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times 
 | 
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently. 
 | 
In-place operation is supported. 
 | 
  
 | 
@note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes 
 | 
  
 | 
@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be 
 | 
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. 
 | 
@param dst destination array of the same size and type as src. 
 | 
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... 
 | 
@sa  bilateralFilter, blur, boxFilter, GaussianBlur 
 | 
 */ 
 | 
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); 
 | 
  
 | 
/** @brief Blurs an image using a Gaussian filter. 
 | 
  
 | 
The function convolves the source image with the specified Gaussian kernel. In-place filtering is 
 | 
supported. 
 | 
  
 | 
@param src input image; the image can have any number of channels, which are processed 
 | 
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 | 
@param dst output image of the same size and type as src. 
 | 
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be 
 | 
positive and odd. Or, they can be zero's and then they are computed from sigma. 
 | 
@param sigmaX Gaussian kernel standard deviation in X direction. 
 | 
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be 
 | 
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, 
 | 
respectively (see #getGaussianKernel for details); to fully control the result regardless of 
 | 
possible future modifications of all this semantics, it is recommended to specify all of ksize, 
 | 
sigmaX, and sigmaY. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
  
 | 
@sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur 
 | 
 */ 
 | 
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, 
 | 
                                double sigmaX, double sigmaY = 0, 
 | 
                                int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Applies the bilateral filter to an image. 
 | 
  
 | 
The function applies bilateral filtering to the input image, as described in 
 | 
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html 
 | 
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is 
 | 
very slow compared to most filters. 
 | 
  
 | 
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\< 
 | 
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very 
 | 
strong effect, making the image look "cartoonish". 
 | 
  
 | 
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time 
 | 
applications, and perhaps d=9 for offline applications that need heavy noise filtering. 
 | 
  
 | 
This filter does not work inplace. 
 | 
@param src Source 8-bit or floating-point, 1-channel or 3-channel image. 
 | 
@param dst Destination image of the same size and type as src . 
 | 
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, 
 | 
it is computed from sigmaSpace. 
 | 
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that 
 | 
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting 
 | 
in larger areas of semi-equal color. 
 | 
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that 
 | 
farther pixels will influence each other as long as their colors are close enough (see sigmaColor 
 | 
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is 
 | 
proportional to sigmaSpace. 
 | 
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes 
 | 
 */ 
 | 
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, 
 | 
                                   double sigmaColor, double sigmaSpace, 
 | 
                                   int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Blurs an image using the box filter. 
 | 
  
 | 
The function smooths an image using the kernel: 
 | 
  
 | 
\f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f] 
 | 
  
 | 
where 
 | 
  
 | 
\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f] 
 | 
  
 | 
Unnormalized box filter is useful for computing various integral characteristics over each pixel 
 | 
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow 
 | 
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image of the same size and type as src. 
 | 
@param ddepth the output image depth (-1 to use src.depth()). 
 | 
@param ksize blurring kernel size. 
 | 
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel 
 | 
center. 
 | 
@param normalize flag, specifying whether the kernel is normalized by its area or not. 
 | 
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes 
 | 
@sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral 
 | 
 */ 
 | 
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, 
 | 
                             Size ksize, Point anchor = Point(-1,-1), 
 | 
                             bool normalize = true, 
 | 
                             int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter. 
 | 
  
 | 
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring 
 | 
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. 
 | 
  
 | 
The unnormalized square box filter can be useful in computing local image statistics such as the the local 
 | 
variance and standard deviation around the neighborhood of a pixel. 
 | 
  
 | 
@param src input image 
 | 
@param dst output image of the same size and type as _src 
 | 
@param ddepth the output image depth (-1 to use src.depth()) 
 | 
@param ksize kernel size 
 | 
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel 
 | 
center. 
 | 
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not. 
 | 
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes 
 | 
@sa boxFilter 
 | 
*/ 
 | 
CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth, 
 | 
                                Size ksize, Point anchor = Point(-1, -1), 
 | 
                                bool normalize = true, 
 | 
                                int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Blurs an image using the normalized box filter. 
 | 
  
 | 
The function smooths an image using the kernel: 
 | 
  
 | 
\f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f] 
 | 
  
 | 
The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), 
 | 
anchor, true, borderType)`. 
 | 
  
 | 
@param src input image; it can have any number of channels, which are processed independently, but 
 | 
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 | 
@param dst output image of the same size and type as src. 
 | 
@param ksize blurring kernel size. 
 | 
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel 
 | 
center. 
 | 
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes 
 | 
@sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur 
 | 
 */ 
 | 
CV_EXPORTS_W void blur( InputArray src, OutputArray dst, 
 | 
                        Size ksize, Point anchor = Point(-1,-1), 
 | 
                        int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Convolves an image with the kernel. 
 | 
  
 | 
The function applies an arbitrary linear filter to an image. In-place operation is supported. When 
 | 
the aperture is partially outside the image, the function interpolates outlier pixel values 
 | 
according to the specified border mode. 
 | 
  
 | 
The function does actually compute correlation, not the convolution: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} }  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] 
 | 
  
 | 
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip 
 | 
the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - 
 | 
anchor.y - 1)`. 
 | 
  
 | 
The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or 
 | 
larger) and the direct algorithm for small kernels. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image of the same size and the same number of channels as src. 
 | 
@param ddepth desired depth of the destination image, see @ref filter_depths "combinations" 
 | 
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point 
 | 
matrix; if you want to apply different kernels to different channels, split the image into 
 | 
separate color planes using split and process them individually. 
 | 
@param anchor anchor of the kernel that indicates the relative position of a filtered point within 
 | 
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor 
 | 
is at the kernel center. 
 | 
@param delta optional value added to the filtered pixels before storing them in dst. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
@sa  sepFilter2D, dft, matchTemplate 
 | 
 */ 
 | 
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, 
 | 
                            InputArray kernel, Point anchor = Point(-1,-1), 
 | 
                            double delta = 0, int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Applies a separable linear filter to an image. 
 | 
  
 | 
The function applies a separable linear filter to the image. That is, first, every row of src is 
 | 
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D 
 | 
kernel kernelY. The final result shifted by delta is stored in dst . 
 | 
  
 | 
@param src Source image. 
 | 
@param dst Destination image of the same size and the same number of channels as src . 
 | 
@param ddepth Destination image depth, see @ref filter_depths "combinations" 
 | 
@param kernelX Coefficients for filtering each row. 
 | 
@param kernelY Coefficients for filtering each column. 
 | 
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor 
 | 
is at the kernel center. 
 | 
@param delta Value added to the filtered results before storing them. 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes 
 | 
@sa  filter2D, Sobel, GaussianBlur, boxFilter, blur 
 | 
 */ 
 | 
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, 
 | 
                               InputArray kernelX, InputArray kernelY, 
 | 
                               Point anchor = Point(-1,-1), 
 | 
                               double delta = 0, int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp 
 | 
Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector 
 | 
 
 | 
Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details 
 | 
*/ 
 | 
  
 | 
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. 
 | 
  
 | 
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to 
 | 
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$ 
 | 
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first 
 | 
or the second x- or y- derivatives. 
 | 
  
 | 
There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr 
 | 
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is 
 | 
  
 | 
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f] 
 | 
  
 | 
for the x-derivative, or transposed for the y-derivative. 
 | 
  
 | 
The function calculates an image derivative by convolving the image with the appropriate kernel: 
 | 
  
 | 
\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f] 
 | 
  
 | 
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less 
 | 
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) 
 | 
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first 
 | 
case corresponds to a kernel of: 
 | 
  
 | 
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f] 
 | 
  
 | 
The second case corresponds to a kernel of: 
 | 
  
 | 
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f] 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image of the same size and the same number of channels as src . 
 | 
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of 
 | 
    8-bit input images it will result in truncated derivatives. 
 | 
@param dx order of the derivative x. 
 | 
@param dy order of the derivative y. 
 | 
@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. 
 | 
@param scale optional scale factor for the computed derivative values; by default, no scaling is 
 | 
applied (see #getDerivKernels for details). 
 | 
@param delta optional delta value that is added to the results prior to storing them in dst. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
@sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar 
 | 
 */ 
 | 
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, 
 | 
                         int dx, int dy, int ksize = 3, 
 | 
                         double scale = 1, double delta = 0, 
 | 
                         int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator 
 | 
  
 | 
Equivalent to calling: 
 | 
  
 | 
@code 
 | 
Sobel( src, dx, CV_16SC1, 1, 0, 3 ); 
 | 
Sobel( src, dy, CV_16SC1, 0, 1, 3 ); 
 | 
@endcode 
 | 
  
 | 
@param src input image. 
 | 
@param dx output image with first-order derivative in x. 
 | 
@param dy output image with first-order derivative in y. 
 | 
@param ksize size of Sobel kernel. It must be 3. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
  
 | 
@sa Sobel 
 | 
 */ 
 | 
  
 | 
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx, 
 | 
                                   OutputArray dy, int ksize = 3, 
 | 
                                   int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Calculates the first x- or y- image derivative using Scharr operator. 
 | 
  
 | 
The function computes the first x- or y- spatial image derivative using the Scharr operator. The 
 | 
call 
 | 
  
 | 
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f] 
 | 
  
 | 
is equivalent to 
 | 
  
 | 
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f] 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image of the same size and the same number of channels as src. 
 | 
@param ddepth output image depth, see @ref filter_depths "combinations" 
 | 
@param dx order of the derivative x. 
 | 
@param dy order of the derivative y. 
 | 
@param scale optional scale factor for the computed derivative values; by default, no scaling is 
 | 
applied (see #getDerivKernels for details). 
 | 
@param delta optional delta value that is added to the results prior to storing them in dst. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
@sa  cartToPolar 
 | 
 */ 
 | 
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, 
 | 
                          int dx, int dy, double scale = 1, double delta = 0, 
 | 
                          int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @example samples/cpp/laplace.cpp 
 | 
An example using Laplace transformations for edge detection 
 | 
*/ 
 | 
  
 | 
/** @brief Calculates the Laplacian of an image. 
 | 
  
 | 
The function calculates the Laplacian of the source image by adding up the second x and y 
 | 
derivatives calculated using the Sobel operator: 
 | 
  
 | 
\f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f] 
 | 
  
 | 
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image 
 | 
with the following \f$3 \times 3\f$ aperture: 
 | 
  
 | 
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f] 
 | 
  
 | 
@param src Source image. 
 | 
@param dst Destination image of the same size and the same number of channels as src . 
 | 
@param ddepth Desired depth of the destination image. 
 | 
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for 
 | 
details. The size must be positive and odd. 
 | 
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is 
 | 
applied. See #getDerivKernels for details. 
 | 
@param delta Optional delta value that is added to the results prior to storing them in dst . 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes 
 | 
@sa  Sobel, Scharr 
 | 
 */ 
 | 
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, 
 | 
                             int ksize = 1, double scale = 1, double delta = 0, 
 | 
                             int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
//! @} imgproc_filter 
 | 
  
 | 
//! @addtogroup imgproc_feature 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/edge.cpp 
 | 
This program demonstrates usage of the Canny edge detector 
 | 
  
 | 
Check @ref tutorial_canny_detector "the corresponding tutorial" for more details 
 | 
*/ 
 | 
  
 | 
/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 . 
 | 
  
 | 
The function finds edges in the input image and marks them in the output map edges using the 
 | 
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The 
 | 
largest value is used to find initial segments of strong edges. See 
 | 
<http://en.wikipedia.org/wiki/Canny_edge_detector> 
 | 
  
 | 
@param image 8-bit input image. 
 | 
@param edges output edge map; single channels 8-bit image, which has the same size as image . 
 | 
@param threshold1 first threshold for the hysteresis procedure. 
 | 
@param threshold2 second threshold for the hysteresis procedure. 
 | 
@param apertureSize aperture size for the Sobel operator. 
 | 
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm 
 | 
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( 
 | 
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( 
 | 
L2gradient=false ). 
 | 
 */ 
 | 
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, 
 | 
                         double threshold1, double threshold2, 
 | 
                         int apertureSize = 3, bool L2gradient = false ); 
 | 
  
 | 
/** \overload 
 | 
  
 | 
Finds edges in an image using the Canny algorithm with custom image gradient. 
 | 
  
 | 
@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). 
 | 
@param dy 16-bit y derivative of input image (same type as dx). 
 | 
@param edges output edge map; single channels 8-bit image, which has the same size as image . 
 | 
@param threshold1 first threshold for the hysteresis procedure. 
 | 
@param threshold2 second threshold for the hysteresis procedure. 
 | 
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm 
 | 
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( 
 | 
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( 
 | 
L2gradient=false ). 
 | 
 */ 
 | 
CV_EXPORTS_W void Canny( InputArray dx, InputArray dy, 
 | 
                         OutputArray edges, 
 | 
                         double threshold1, double threshold2, 
 | 
                         bool L2gradient = false ); 
 | 
  
 | 
/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection. 
 | 
  
 | 
The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal 
 | 
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms 
 | 
of the formulae in the cornerEigenValsAndVecs description. 
 | 
  
 | 
@param src Input single-channel 8-bit or floating-point image. 
 | 
@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as 
 | 
src . 
 | 
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). 
 | 
@param ksize Aperture parameter for the Sobel operator. 
 | 
@param borderType Pixel extrapolation method. See #BorderTypes. 
 | 
 */ 
 | 
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, 
 | 
                                     int blockSize, int ksize = 3, 
 | 
                                     int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Harris corner detector. 
 | 
  
 | 
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and 
 | 
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance 
 | 
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it 
 | 
computes the following characteristic: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f] 
 | 
  
 | 
Corners in the image can be found as the local maxima of this response map. 
 | 
  
 | 
@param src Input single-channel 8-bit or floating-point image. 
 | 
@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same 
 | 
size as src . 
 | 
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). 
 | 
@param ksize Aperture parameter for the Sobel operator. 
 | 
@param k Harris detector free parameter. See the formula above. 
 | 
@param borderType Pixel extrapolation method. See #BorderTypes. 
 | 
 */ 
 | 
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, 
 | 
                                int ksize, double k, 
 | 
                                int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection. 
 | 
  
 | 
For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize 
 | 
neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as: 
 | 
  
 | 
\f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f] 
 | 
  
 | 
where the derivatives are computed using the Sobel operator. 
 | 
  
 | 
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as 
 | 
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where 
 | 
  
 | 
-   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$ 
 | 
-   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$ 
 | 
-   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$ 
 | 
  
 | 
The output of the function can be used for robust edge or corner detection. 
 | 
  
 | 
@param src Input single-channel 8-bit or floating-point image. 
 | 
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . 
 | 
@param blockSize Neighborhood size (see details below). 
 | 
@param ksize Aperture parameter for the Sobel operator. 
 | 
@param borderType Pixel extrapolation method. See #BorderTypes. 
 | 
  
 | 
@sa  cornerMinEigenVal, cornerHarris, preCornerDetect 
 | 
 */ 
 | 
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, 
 | 
                                          int blockSize, int ksize, 
 | 
                                          int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Calculates a feature map for corner detection. 
 | 
  
 | 
The function calculates the complex spatial derivative-based function of the source image 
 | 
  
 | 
\f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f] 
 | 
  
 | 
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image 
 | 
derivatives, and \f$D_{xy}\f$ is the mixed derivative. 
 | 
  
 | 
The corners can be found as local maximums of the functions, as shown below: 
 | 
@code 
 | 
    Mat corners, dilated_corners; 
 | 
    preCornerDetect(image, corners, 3); 
 | 
    // dilation with 3x3 rectangular structuring element 
 | 
    dilate(corners, dilated_corners, Mat(), 1); 
 | 
    Mat corner_mask = corners == dilated_corners; 
 | 
@endcode 
 | 
  
 | 
@param src Source single-channel 8-bit of floating-point image. 
 | 
@param dst Output image that has the type CV_32F and the same size as src . 
 | 
@param ksize %Aperture size of the Sobel . 
 | 
@param borderType Pixel extrapolation method. See #BorderTypes. 
 | 
 */ 
 | 
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, 
 | 
                                   int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Refines the corner locations. 
 | 
  
 | 
The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as 
 | 
shown on the figure below. 
 | 
  
 | 
 
 | 
  
 | 
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$ 
 | 
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$ 
 | 
subject to image and measurement noise. Consider the expression: 
 | 
  
 | 
\f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f] 
 | 
  
 | 
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The 
 | 
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up 
 | 
with \f$\epsilon_i\f$ set to zero: 
 | 
  
 | 
\f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f] 
 | 
  
 | 
where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first 
 | 
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives: 
 | 
  
 | 
\f[q = G^{-1}  \cdot b\f] 
 | 
  
 | 
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates 
 | 
until the center stays within a set threshold. 
 | 
  
 | 
@param image Input single-channel, 8-bit or float image. 
 | 
@param corners Initial coordinates of the input corners and refined coordinates provided for 
 | 
output. 
 | 
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , 
 | 
then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used. 
 | 
@param zeroZone Half of the size of the dead region in the middle of the search zone over which 
 | 
the summation in the formula below is not done. It is used sometimes to avoid possible 
 | 
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such 
 | 
a size. 
 | 
@param criteria Criteria for termination of the iterative process of corner refinement. That is, 
 | 
the process of corner position refinement stops either after criteria.maxCount iterations or when 
 | 
the corner position moves by less than criteria.epsilon on some iteration. 
 | 
 */ 
 | 
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, 
 | 
                                Size winSize, Size zeroZone, 
 | 
                                TermCriteria criteria ); 
 | 
  
 | 
/** @brief Determines strong corners on an image. 
 | 
  
 | 
The function finds the most prominent corners in the image or in the specified image region, as 
 | 
described in @cite Shi94 
 | 
  
 | 
-   Function calculates the corner quality measure at every source image pixel using the 
 | 
    #cornerMinEigenVal or #cornerHarris . 
 | 
-   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are 
 | 
    retained). 
 | 
-   The corners with the minimal eigenvalue less than 
 | 
    \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected. 
 | 
-   The remaining corners are sorted by the quality measure in the descending order. 
 | 
-   Function throws away each corner for which there is a stronger corner at a distance less than 
 | 
    maxDistance. 
 | 
  
 | 
The function can be used to initialize a point-based tracker of an object. 
 | 
  
 | 
@note If the function is called with different values A and B of the parameter qualityLevel , and 
 | 
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector 
 | 
with qualityLevel=B . 
 | 
  
 | 
@param image Input 8-bit or floating-point 32-bit, single-channel image. 
 | 
@param corners Output vector of detected corners. 
 | 
@param maxCorners Maximum number of corners to return. If there are more corners than are found, 
 | 
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set 
 | 
and all detected corners are returned. 
 | 
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The 
 | 
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue 
 | 
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the 
 | 
quality measure less than the product are rejected. For example, if the best corner has the 
 | 
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure 
 | 
less than 15 are rejected. 
 | 
@param minDistance Minimum possible Euclidean distance between the returned corners. 
 | 
@param mask Optional region of interest. If the image is not empty (it needs to have the type 
 | 
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. 
 | 
@param blockSize Size of an average block for computing a derivative covariation matrix over each 
 | 
pixel neighborhood. See cornerEigenValsAndVecs . 
 | 
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) 
 | 
or #cornerMinEigenVal. 
 | 
@param k Free parameter of the Harris detector. 
 | 
  
 | 
@sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, 
 | 
 */ 
 | 
  
 | 
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, 
 | 
                                     int maxCorners, double qualityLevel, double minDistance, 
 | 
                                     InputArray mask = noArray(), int blockSize = 3, 
 | 
                                     bool useHarrisDetector = false, double k = 0.04 ); 
 | 
  
 | 
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, 
 | 
                                     int maxCorners, double qualityLevel, double minDistance, 
 | 
                                     InputArray mask, int blockSize, 
 | 
                                     int gradientSize, bool useHarrisDetector = false, 
 | 
                                     double k = 0.04 ); 
 | 
/** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp 
 | 
An example using the Hough line detector 
 | 
  
 | 
*/ 
 | 
  
 | 
/** @brief Finds lines in a binary image using the standard Hough transform. 
 | 
  
 | 
The function implements the standard or standard multi-scale Hough transform algorithm for line 
 | 
detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough 
 | 
transform. 
 | 
  
 | 
@param image 8-bit, single-channel binary source image. The image may be modified by the function. 
 | 
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector 
 | 
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of 
 | 
the image). \f$\theta\f$ is the line rotation angle in radians ( 
 | 
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ). 
 | 
\f$\textrm{votes}\f$ is the value of accumulator. 
 | 
@param rho Distance resolution of the accumulator in pixels. 
 | 
@param theta Angle resolution of the accumulator in radians. 
 | 
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough 
 | 
votes ( \f$>\texttt{threshold}\f$ ). 
 | 
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho . 
 | 
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is 
 | 
rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these 
 | 
parameters should be positive. 
 | 
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. 
 | 
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. 
 | 
Must fall between 0 and max_theta. 
 | 
@param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines. 
 | 
Must fall between min_theta and CV_PI. 
 | 
 */ 
 | 
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, 
 | 
                              double rho, double theta, int threshold, 
 | 
                              double srn = 0, double stn = 0, 
 | 
                              double min_theta = 0, double max_theta = CV_PI ); 
 | 
  
 | 
/** @brief Finds line segments in a binary image using the probabilistic Hough transform. 
 | 
  
 | 
The function implements the probabilistic Hough transform algorithm for line detection, described 
 | 
in @cite Matas00 
 | 
  
 | 
See the line detection example below: 
 | 
@include snippets/imgproc_HoughLinesP.cpp 
 | 
This is a sample picture the function parameters have been tuned for: 
 | 
  
 | 
 
 | 
  
 | 
And this is the output of the above program in case of the probabilistic Hough transform: 
 | 
  
 | 
 
 | 
  
 | 
@param image 8-bit, single-channel binary source image. The image may be modified by the function. 
 | 
@param lines Output vector of lines. Each line is represented by a 4-element vector 
 | 
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected 
 | 
line segment. 
 | 
@param rho Distance resolution of the accumulator in pixels. 
 | 
@param theta Angle resolution of the accumulator in radians. 
 | 
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough 
 | 
votes ( \f$>\texttt{threshold}\f$ ). 
 | 
@param minLineLength Minimum line length. Line segments shorter than that are rejected. 
 | 
@param maxLineGap Maximum allowed gap between points on the same line to link them. 
 | 
  
 | 
@sa LineSegmentDetector 
 | 
 */ 
 | 
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, 
 | 
                               double rho, double theta, int threshold, 
 | 
                               double minLineLength = 0, double maxLineGap = 0 ); 
 | 
  
 | 
/** @brief Finds lines in a set of points using the standard Hough transform. 
 | 
  
 | 
The function finds lines in a set of points using a modification of the Hough transform. 
 | 
@include snippets/imgproc_HoughLinesPointSet.cpp 
 | 
@param _point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2. 
 | 
@param _lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$. 
 | 
The larger the value of 'votes', the higher the reliability of the Hough line. 
 | 
@param lines_max Max count of hough lines. 
 | 
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough 
 | 
votes ( \f$>\texttt{threshold}\f$ ) 
 | 
@param min_rho Minimum Distance value of the accumulator in pixels. 
 | 
@param max_rho Maximum Distance value of the accumulator in pixels. 
 | 
@param rho_step Distance resolution of the accumulator in pixels. 
 | 
@param min_theta Minimum angle value of the accumulator in radians. 
 | 
@param max_theta Maximum angle value of the accumulator in radians. 
 | 
@param theta_step Angle resolution of the accumulator in radians. 
 | 
 */ 
 | 
CV_EXPORTS_W void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, int threshold, 
 | 
                                      double min_rho, double max_rho, double rho_step, 
 | 
                                      double min_theta, double max_theta, double theta_step ); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp 
 | 
An example using the Hough circle detector 
 | 
*/ 
 | 
  
 | 
/** @brief Finds circles in a grayscale image using the Hough transform. 
 | 
  
 | 
The function finds circles in a grayscale image using a modification of the Hough transform. 
 | 
  
 | 
Example: : 
 | 
@include snippets/imgproc_HoughLinesCircles.cpp 
 | 
  
 | 
@note Usually the function detects the centers of circles well. However, it may fail to find correct 
 | 
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if 
 | 
you know it. Or, you may set maxRadius to a negative number to return centers only without radius 
 | 
search, and find the correct radius using an additional procedure. 
 | 
  
 | 
@param image 8-bit, single-channel, grayscale input image. 
 | 
@param circles Output vector of found circles. Each vector is encoded as  3 or 4 element 
 | 
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ . 
 | 
@param method Detection method, see #HoughModes. Currently, the only implemented method is #HOUGH_GRADIENT 
 | 
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if 
 | 
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has 
 | 
half as big width and height. 
 | 
@param minDist Minimum distance between the centers of the detected circles. If the parameter is 
 | 
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is 
 | 
too large, some circles may be missed. 
 | 
@param param1 First method-specific parameter. In case of #HOUGH_GRADIENT , it is the higher 
 | 
threshold of the two passed to the Canny edge detector (the lower one is twice smaller). 
 | 
@param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT , it is the 
 | 
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more 
 | 
false circles may be detected. Circles, corresponding to the larger accumulator values, will be 
 | 
returned first. 
 | 
@param minRadius Minimum circle radius. 
 | 
@param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, returns 
 | 
centers without finding the radius. 
 | 
  
 | 
@sa fitEllipse, minEnclosingCircle 
 | 
 */ 
 | 
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, 
 | 
                               int method, double dp, double minDist, 
 | 
                               double param1 = 100, double param2 = 100, 
 | 
                               int minRadius = 0, int maxRadius = 0 ); 
 | 
  
 | 
//! @} imgproc_feature 
 | 
  
 | 
//! @addtogroup imgproc_filter 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp 
 | 
Advanced morphology Transformations sample code 
 | 
 
 | 
Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details 
 | 
*/ 
 | 
  
 | 
/** @brief Erodes an image by using a specific structuring element. 
 | 
  
 | 
The function erodes the source image using the specified structuring element that determines the 
 | 
shape of a pixel neighborhood over which the minimum is taken: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] 
 | 
  
 | 
The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In 
 | 
case of multi-channel images, each channel is processed independently. 
 | 
  
 | 
@param src input image; the number of channels can be arbitrary, but the depth should be one of 
 | 
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 | 
@param dst output image of the same size and type as src. 
 | 
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular 
 | 
structuring element is used. Kernel can be created using #getStructuringElement. 
 | 
@param anchor position of the anchor within the element; default value (-1, -1) means that the 
 | 
anchor is at the element center. 
 | 
@param iterations number of times erosion is applied. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
@param borderValue border value in case of a constant border 
 | 
@sa  dilate, morphologyEx, getStructuringElement 
 | 
 */ 
 | 
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, 
 | 
                         Point anchor = Point(-1,-1), int iterations = 1, 
 | 
                         int borderType = BORDER_CONSTANT, 
 | 
                         const Scalar& borderValue = morphologyDefaultBorderValue() ); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp 
 | 
Erosion and Dilation sample code 
 | 
 
 | 
Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details 
 | 
*/ 
 | 
  
 | 
/** @brief Dilates an image by using a specific structuring element. 
 | 
  
 | 
The function dilates the source image using the specified structuring element that determines the 
 | 
shape of a pixel neighborhood over which the maximum is taken: 
 | 
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] 
 | 
  
 | 
The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In 
 | 
case of multi-channel images, each channel is processed independently. 
 | 
  
 | 
@param src input image; the number of channels can be arbitrary, but the depth should be one of 
 | 
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 | 
@param dst output image of the same size and type as src. 
 | 
@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular 
 | 
structuring element is used. Kernel can be created using #getStructuringElement 
 | 
@param anchor position of the anchor within the element; default value (-1, -1) means that the 
 | 
anchor is at the element center. 
 | 
@param iterations number of times dilation is applied. 
 | 
@param borderType pixel extrapolation method, see #BorderTypes 
 | 
@param borderValue border value in case of a constant border 
 | 
@sa  erode, morphologyEx, getStructuringElement 
 | 
 */ 
 | 
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, 
 | 
                          Point anchor = Point(-1,-1), int iterations = 1, 
 | 
                          int borderType = BORDER_CONSTANT, 
 | 
                          const Scalar& borderValue = morphologyDefaultBorderValue() ); 
 | 
  
 | 
/** @brief Performs advanced morphological transformations. 
 | 
  
 | 
The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as 
 | 
basic operations. 
 | 
  
 | 
Any of the operations can be done in-place. In case of multi-channel images, each channel is 
 | 
processed independently. 
 | 
  
 | 
@param src Source image. The number of channels can be arbitrary. The depth should be one of 
 | 
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 | 
@param dst Destination image of the same size and type as source image. 
 | 
@param op Type of a morphological operation, see #MorphTypes 
 | 
@param kernel Structuring element. It can be created using #getStructuringElement. 
 | 
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the 
 | 
kernel center. 
 | 
@param iterations Number of times erosion and dilation are applied. 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes 
 | 
@param borderValue Border value in case of a constant border. The default value has a special 
 | 
meaning. 
 | 
@sa  dilate, erode, getStructuringElement 
 | 
@note The number of iterations is the number of times erosion or dilatation operation will be applied. 
 | 
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply 
 | 
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). 
 | 
 */ 
 | 
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, 
 | 
                                int op, InputArray kernel, 
 | 
                                Point anchor = Point(-1,-1), int iterations = 1, 
 | 
                                int borderType = BORDER_CONSTANT, 
 | 
                                const Scalar& borderValue = morphologyDefaultBorderValue() ); 
 | 
  
 | 
//! @} imgproc_filter 
 | 
  
 | 
//! @addtogroup imgproc_transform 
 | 
//! @{ 
 | 
  
 | 
/** @brief Resizes an image. 
 | 
  
 | 
The function resize resizes the image src down to or up to the specified size. Note that the 
 | 
initial dst type or size are not taken into account. Instead, the size and type are derived from 
 | 
the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst, 
 | 
you may call the function as follows: 
 | 
@code 
 | 
    // explicitly specify dsize=dst.size(); fx and fy will be computed from that. 
 | 
    resize(src, dst, dst.size(), 0, 0, interpolation); 
 | 
@endcode 
 | 
If you want to decimate the image by factor of 2 in each direction, you can call the function this 
 | 
way: 
 | 
@code 
 | 
    // specify fx and fy and let the function compute the destination image size. 
 | 
    resize(src, dst, Size(), 0.5, 0.5, interpolation); 
 | 
@endcode 
 | 
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to 
 | 
enlarge an image, it will generally look best with c#INTER_CUBIC (slow) or #INTER_LINEAR 
 | 
(faster but still looks OK). 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from 
 | 
src.size(), fx, and fy; the type of dst is the same as of src. 
 | 
@param dsize output image size; if it equals zero, it is computed as: 
 | 
 \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] 
 | 
 Either dsize or both fx and fy must be non-zero. 
 | 
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as 
 | 
\f[\texttt{(double)dsize.width/src.cols}\f] 
 | 
@param fy scale factor along the vertical axis; when it equals 0, it is computed as 
 | 
\f[\texttt{(double)dsize.height/src.rows}\f] 
 | 
@param interpolation interpolation method, see #InterpolationFlags 
 | 
  
 | 
@sa  warpAffine, warpPerspective, remap 
 | 
 */ 
 | 
CV_EXPORTS_W void resize( InputArray src, OutputArray dst, 
 | 
                          Size dsize, double fx = 0, double fy = 0, 
 | 
                          int interpolation = INTER_LINEAR ); 
 | 
  
 | 
/** @brief Applies an affine transformation to an image. 
 | 
  
 | 
The function warpAffine transforms the source image using the specified matrix: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f] 
 | 
  
 | 
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted 
 | 
with #invertAffineTransform and then put in the formula above instead of M. The function cannot 
 | 
operate in-place. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image that has the size dsize and the same type as src . 
 | 
@param M \f$2\times 3\f$ transformation matrix. 
 | 
@param dsize size of the output image. 
 | 
@param flags combination of interpolation methods (see #InterpolationFlags) and the optional 
 | 
flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( 
 | 
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). 
 | 
@param borderMode pixel extrapolation method (see #BorderTypes); when 
 | 
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to 
 | 
the "outliers" in the source image are not modified by the function. 
 | 
@param borderValue value used in case of a constant border; by default, it is 0. 
 | 
  
 | 
@sa  warpPerspective, resize, remap, getRectSubPix, transform 
 | 
 */ 
 | 
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, 
 | 
                              InputArray M, Size dsize, 
 | 
                              int flags = INTER_LINEAR, 
 | 
                              int borderMode = BORDER_CONSTANT, 
 | 
                              const Scalar& borderValue = Scalar()); 
 | 
  
 | 
/** @example samples/cpp/warpPerspective_demo.cpp 
 | 
An example program shows using cv::findHomography and cv::warpPerspective for image warping 
 | 
*/ 
 | 
  
 | 
/** @brief Applies a perspective transformation to an image. 
 | 
  
 | 
The function warpPerspective transforms the source image using the specified matrix: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , 
 | 
     \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f] 
 | 
  
 | 
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert 
 | 
and then put in the formula above instead of M. The function cannot operate in-place. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image that has the size dsize and the same type as src . 
 | 
@param M \f$3\times 3\f$ transformation matrix. 
 | 
@param dsize size of the output image. 
 | 
@param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the 
 | 
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( 
 | 
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). 
 | 
@param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE). 
 | 
@param borderValue value used in case of a constant border; by default, it equals 0. 
 | 
  
 | 
@sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform 
 | 
 */ 
 | 
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, 
 | 
                                   InputArray M, Size dsize, 
 | 
                                   int flags = INTER_LINEAR, 
 | 
                                   int borderMode = BORDER_CONSTANT, 
 | 
                                   const Scalar& borderValue = Scalar()); 
 | 
  
 | 
/** @brief Applies a generic geometrical transformation to an image. 
 | 
  
 | 
The function remap transforms the source image using the specified map: 
 | 
  
 | 
\f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f] 
 | 
  
 | 
where values of pixels with non-integer coordinates are computed using one of available 
 | 
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps 
 | 
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in 
 | 
\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to 
 | 
convert from floating to fixed-point representations of a map is that they can yield much faster 
 | 
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x), 
 | 
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients. 
 | 
  
 | 
This function cannot operate in-place. 
 | 
  
 | 
@param src Source image. 
 | 
@param dst Destination image. It has the same size as map1 and the same type as src . 
 | 
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , 
 | 
CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point 
 | 
representation to fixed-point for speed. 
 | 
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map 
 | 
if map1 is (x,y) points), respectively. 
 | 
@param interpolation Interpolation method (see #InterpolationFlags). The method #INTER_AREA is 
 | 
not supported by this function. 
 | 
@param borderMode Pixel extrapolation method (see #BorderTypes). When 
 | 
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that 
 | 
corresponds to the "outliers" in the source image are not modified by the function. 
 | 
@param borderValue Value used in case of a constant border. By default, it is 0. 
 | 
@note 
 | 
Due to current implementation limitations the size of an input and output images should be less than 32767x32767. 
 | 
 */ 
 | 
CV_EXPORTS_W void remap( InputArray src, OutputArray dst, 
 | 
                         InputArray map1, InputArray map2, 
 | 
                         int interpolation, int borderMode = BORDER_CONSTANT, 
 | 
                         const Scalar& borderValue = Scalar()); 
 | 
  
 | 
/** @brief Converts image transformation maps from one representation to another. 
 | 
  
 | 
The function converts a pair of maps for remap from one representation to another. The following 
 | 
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are 
 | 
supported: 
 | 
  
 | 
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the 
 | 
most frequently used conversion operation, in which the original floating-point maps (see remap ) 
 | 
are converted to a more compact and much faster fixed-point representation. The first output array 
 | 
contains the rounded coordinates and the second array (created only when nninterpolation=false ) 
 | 
contains indices in the interpolation tables. 
 | 
  
 | 
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but 
 | 
the original maps are stored in one 2-channel matrix. 
 | 
  
 | 
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same 
 | 
as the originals. 
 | 
  
 | 
@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . 
 | 
@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), 
 | 
respectively. 
 | 
@param dstmap1 The first output map that has the type dstmap1type and the same size as src . 
 | 
@param dstmap2 The second output map. 
 | 
@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or 
 | 
CV_32FC2 . 
 | 
@param nninterpolation Flag indicating whether the fixed-point maps are used for the 
 | 
nearest-neighbor or for a more complex interpolation. 
 | 
  
 | 
@sa  remap, undistort, initUndistortRectifyMap 
 | 
 */ 
 | 
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, 
 | 
                               OutputArray dstmap1, OutputArray dstmap2, 
 | 
                               int dstmap1type, bool nninterpolation = false ); 
 | 
  
 | 
/** @brief Calculates an affine matrix of 2D rotation. 
 | 
  
 | 
The function calculates the following matrix: 
 | 
  
 | 
\f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f] 
 | 
  
 | 
where 
 | 
  
 | 
\f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f] 
 | 
  
 | 
The transformation maps the rotation center to itself. If this is not the target, adjust the shift. 
 | 
  
 | 
@param center Center of the rotation in the source image. 
 | 
@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the 
 | 
coordinate origin is assumed to be the top-left corner). 
 | 
@param scale Isotropic scale factor. 
 | 
  
 | 
@sa  getAffineTransform, warpAffine, transform 
 | 
 */ 
 | 
CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale); 
 | 
  
 | 
/** @sa getRotationMatrix2D */ 
 | 
CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale); 
 | 
  
 | 
inline 
 | 
Mat getRotationMatrix2D(Point2f center, double angle, double scale) 
 | 
{ 
 | 
    return Mat(getRotationMatrix2D_(center, angle, scale), true); 
 | 
} 
 | 
  
 | 
/** @brief Calculates an affine transform from three pairs of the corresponding points. 
 | 
  
 | 
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that: 
 | 
  
 | 
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] 
 | 
  
 | 
where 
 | 
  
 | 
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f] 
 | 
  
 | 
@param src Coordinates of triangle vertices in the source image. 
 | 
@param dst Coordinates of the corresponding triangle vertices in the destination image. 
 | 
  
 | 
@sa  warpAffine, transform 
 | 
 */ 
 | 
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); 
 | 
  
 | 
/** @brief Inverts an affine transformation. 
 | 
  
 | 
The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M: 
 | 
  
 | 
\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f] 
 | 
  
 | 
The result is also a \f$2 \times 3\f$ matrix of the same type as M. 
 | 
  
 | 
@param M Original affine transformation. 
 | 
@param iM Output reverse affine transformation. 
 | 
 */ 
 | 
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); 
 | 
  
 | 
/** @brief Calculates a perspective transform from four pairs of the corresponding points. 
 | 
  
 | 
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that: 
 | 
  
 | 
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] 
 | 
  
 | 
where 
 | 
  
 | 
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f] 
 | 
  
 | 
@param src Coordinates of quadrangle vertices in the source image. 
 | 
@param dst Coordinates of the corresponding quadrangle vertices in the destination image. 
 | 
@param solveMethod method passed to cv::solve (#DecompTypes) 
 | 
  
 | 
@sa  findHomography, warpPerspective, perspectiveTransform 
 | 
 */ 
 | 
CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU); 
 | 
  
 | 
  
 | 
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); 
 | 
  
 | 
/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy. 
 | 
  
 | 
The function getRectSubPix extracts pixels from src: 
 | 
  
 | 
\f[patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f] 
 | 
  
 | 
where the values of the pixels at non-integer coordinates are retrieved using bilinear 
 | 
interpolation. Every channel of multi-channel images is processed independently. Also 
 | 
the image should be a single channel or three channel image. While the center of the 
 | 
rectangle must be inside the image, parts of the rectangle may be outside. 
 | 
  
 | 
@param image Source image. 
 | 
@param patchSize Size of the extracted patch. 
 | 
@param center Floating point coordinates of the center of the extracted rectangle within the 
 | 
source image. The center must be inside the image. 
 | 
@param patch Extracted patch that has the size patchSize and the same number of channels as src . 
 | 
@param patchType Depth of the extracted pixels. By default, they have the same depth as src . 
 | 
  
 | 
@sa  warpAffine, warpPerspective 
 | 
 */ 
 | 
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, 
 | 
                                 Point2f center, OutputArray patch, int patchType = -1 ); 
 | 
  
 | 
/** @example samples/cpp/polar_transforms.cpp 
 | 
An example using the cv::linearPolar and cv::logPolar operations 
 | 
*/ 
 | 
  
 | 
/** @brief Remaps an image to semilog-polar coordinates space. 
 | 
  
 | 
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG); 
 | 
  
 | 
@internal 
 | 
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"): 
 | 
\f[\begin{array}{l} 
 | 
  dst( \rho , \phi ) = src(x,y) \\ 
 | 
  dst.size() \leftarrow src.size() 
 | 
\end{array}\f] 
 | 
  
 | 
where 
 | 
\f[\begin{array}{l} 
 | 
  I = (dx,dy) = (x - center.x,y - center.y) \\ 
 | 
  \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ 
 | 
  \phi = Kangle \cdot \texttt{angle} (I) \\ 
 | 
\end{array}\f] 
 | 
  
 | 
and 
 | 
\f[\begin{array}{l} 
 | 
  M = src.cols / log_e(maxRadius) \\ 
 | 
  Kangle = src.rows / 2\Pi \\ 
 | 
\end{array}\f] 
 | 
  
 | 
The function emulates the human "foveal" vision and can be used for fast scale and 
 | 
rotation-invariant template matching, for object tracking and so forth. 
 | 
@param src Source image 
 | 
@param dst Destination image. It will have same size and type as src. 
 | 
@param center The transformation center; where the output precision is maximal 
 | 
@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. 
 | 
@param flags A combination of interpolation methods, see #InterpolationFlags 
 | 
  
 | 
@note 
 | 
-   The function can not operate in-place. 
 | 
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. 
 | 
  
 | 
@sa cv::linearPolar 
 | 
@endinternal 
 | 
*/ 
 | 
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst, 
 | 
                            Point2f center, double M, int flags ); 
 | 
  
 | 
/** @brief Remaps an image to polar coordinates space. 
 | 
  
 | 
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags) 
 | 
  
 | 
@internal 
 | 
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"): 
 | 
\f[\begin{array}{l} 
 | 
  dst( \rho , \phi ) = src(x,y) \\ 
 | 
  dst.size() \leftarrow src.size() 
 | 
\end{array}\f] 
 | 
  
 | 
where 
 | 
\f[\begin{array}{l} 
 | 
  I = (dx,dy) = (x - center.x,y - center.y) \\ 
 | 
  \rho = Kmag \cdot \texttt{magnitude} (I) ,\\ 
 | 
  \phi = angle \cdot \texttt{angle} (I) 
 | 
\end{array}\f] 
 | 
  
 | 
and 
 | 
\f[\begin{array}{l} 
 | 
  Kx = src.cols / maxRadius \\ 
 | 
  Ky = src.rows / 2\Pi 
 | 
\end{array}\f] 
 | 
  
 | 
  
 | 
@param src Source image 
 | 
@param dst Destination image. It will have same size and type as src. 
 | 
@param center The transformation center; 
 | 
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. 
 | 
@param flags A combination of interpolation methods, see #InterpolationFlags 
 | 
  
 | 
@note 
 | 
-   The function can not operate in-place. 
 | 
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. 
 | 
  
 | 
@sa cv::logPolar 
 | 
@endinternal 
 | 
*/ 
 | 
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst, 
 | 
                               Point2f center, double maxRadius, int flags ); 
 | 
  
 | 
  
 | 
/** \brief Remaps an image to polar or semilog-polar coordinates space 
 | 
  
 | 
@anchor polar_remaps_reference_image 
 | 
 
 | 
  
 | 
Transform the source image using the following transformation: 
 | 
\f[ 
 | 
dst(\rho , \phi ) = src(x,y) 
 | 
\f] 
 | 
  
 | 
where 
 | 
\f[ 
 | 
\begin{array}{l} 
 | 
\vec{I} = (x - center.x, \;y - center.y) \\ 
 | 
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ 
 | 
\rho = \left\{\begin{matrix} 
 | 
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ 
 | 
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ 
 | 
\end{matrix}\right. 
 | 
\end{array} 
 | 
\f] 
 | 
  
 | 
and 
 | 
\f[ 
 | 
\begin{array}{l} 
 | 
Kangle = dsize.height / 2\Pi \\ 
 | 
Klin = dsize.width / maxRadius \\ 
 | 
Klog = dsize.width / log_e(maxRadius) \\ 
 | 
\end{array} 
 | 
\f] 
 | 
  
 | 
  
 | 
\par Linear vs semilog mapping 
 | 
  
 | 
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode. 
 | 
  
 | 
Linear is the default mode. 
 | 
  
 | 
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) 
 | 
in contrast to peripheral vision where acuity is minor. 
 | 
  
 | 
\par Option on `dsize`: 
 | 
  
 | 
- if both values in `dsize <=0 ` (default), 
 | 
the destination image will have (almost) same area of source bounding circle: 
 | 
\f[\begin{array}{l} 
 | 
dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\ 
 | 
dsize.width = \texttt{cvRound}(maxRadius) \\ 
 | 
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ 
 | 
\end{array}\f] 
 | 
  
 | 
  
 | 
- if only `dsize.height <= 0`, 
 | 
the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`: 
 | 
\f[\begin{array}{l} 
 | 
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ 
 | 
\end{array} 
 | 
\f] 
 | 
  
 | 
- if both values in `dsize > 0 `, 
 | 
the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`. 
 | 
  
 | 
  
 | 
\par Reverse mapping 
 | 
  
 | 
You can get reverse mapping adding #WARP_INVERSE_MAP to `flags` 
 | 
\snippet polar_transforms.cpp InverseMap 
 | 
  
 | 
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$: 
 | 
\snippet polar_transforms.cpp InverseCoordinate 
 | 
  
 | 
@param src Source image. 
 | 
@param dst Destination image. It will have same type as src. 
 | 
@param dsize The destination image size (see description for valid options). 
 | 
@param center The transformation center. 
 | 
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. 
 | 
@param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode. 
 | 
            - Add #WARP_POLAR_LINEAR to select linear polar mapping (default) 
 | 
            - Add #WARP_POLAR_LOG to select semilog polar mapping 
 | 
            - Add #WARP_INVERSE_MAP for reverse mapping. 
 | 
@note 
 | 
-  The function can not operate in-place. 
 | 
-  To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. 
 | 
-  This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767. 
 | 
  
 | 
@sa cv::remap 
 | 
*/ 
 | 
CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize, 
 | 
                            Point2f center, double maxRadius, int flags); 
 | 
  
 | 
  
 | 
//! @} imgproc_transform 
 | 
  
 | 
//! @addtogroup imgproc_misc 
 | 
//! @{ 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, 
 | 
                                        OutputArray sqsum, int sdepth = -1, int sqdepth = -1 ); 
 | 
  
 | 
/** @brief Calculates the integral of an image. 
 | 
  
 | 
The function calculates one or more integral images for the source image as follows: 
 | 
  
 | 
\f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f] 
 | 
  
 | 
\f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f] 
 | 
  
 | 
\f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f] 
 | 
  
 | 
Using these integral images, you can calculate sum, mean, and standard deviation over a specific 
 | 
up-right or rotated rectangular region of the image in a constant time, for example: 
 | 
  
 | 
\f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f] 
 | 
  
 | 
It makes possible to do a fast blurring or fast block correlation with a variable window size, for 
 | 
example. In case of multi-channel images, sums for each channel are accumulated independently. 
 | 
  
 | 
As a practical example, the next figure shows the calculation of the integral of a straight 
 | 
rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the 
 | 
original image are shown, as well as the relative pixels in the integral images sum and tilted . 
 | 
  
 | 
 
 | 
  
 | 
@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f). 
 | 
@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f). 
 | 
@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision 
 | 
floating-point (64f) array. 
 | 
@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with 
 | 
the same data type as sum. 
 | 
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or 
 | 
CV_64F. 
 | 
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F. 
 | 
 */ 
 | 
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, 
 | 
                                        OutputArray sqsum, OutputArray tilted, 
 | 
                                        int sdepth = -1, int sqdepth = -1 ); 
 | 
  
 | 
//! @} imgproc_misc 
 | 
  
 | 
//! @addtogroup imgproc_motion 
 | 
//! @{ 
 | 
  
 | 
/** @brief Adds an image to the accumulator image. 
 | 
  
 | 
The function adds src or some of its elements to dst : 
 | 
  
 | 
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f] 
 | 
  
 | 
The function supports multi-channel images. Each channel is processed independently. 
 | 
  
 | 
The function cv::accumulate can be used, for example, to collect statistics of a scene background 
 | 
viewed by a still camera and for the further foreground-background segmentation. 
 | 
  
 | 
@param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer. 
 | 
@param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F. 
 | 
@param mask Optional operation mask. 
 | 
  
 | 
@sa  accumulateSquare, accumulateProduct, accumulateWeighted 
 | 
 */ 
 | 
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, 
 | 
                              InputArray mask = noArray() ); 
 | 
  
 | 
/** @brief Adds the square of a source image to the accumulator image. 
 | 
  
 | 
The function adds the input image src or its selected region, raised to a power of 2, to the 
 | 
accumulator dst : 
 | 
  
 | 
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f] 
 | 
  
 | 
The function supports multi-channel images. Each channel is processed independently. 
 | 
  
 | 
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. 
 | 
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit 
 | 
floating-point. 
 | 
@param mask Optional operation mask. 
 | 
  
 | 
@sa  accumulateSquare, accumulateProduct, accumulateWeighted 
 | 
 */ 
 | 
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, 
 | 
                                    InputArray mask = noArray() ); 
 | 
  
 | 
/** @brief Adds the per-element product of two input images to the accumulator image. 
 | 
  
 | 
The function adds the product of two images or their selected regions to the accumulator dst : 
 | 
  
 | 
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f] 
 | 
  
 | 
The function supports multi-channel images. Each channel is processed independently. 
 | 
  
 | 
@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. 
 | 
@param src2 Second input image of the same type and the same size as src1 . 
 | 
@param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit 
 | 
floating-point. 
 | 
@param mask Optional operation mask. 
 | 
  
 | 
@sa  accumulate, accumulateSquare, accumulateWeighted 
 | 
 */ 
 | 
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, 
 | 
                                     InputOutputArray dst, InputArray mask=noArray() ); 
 | 
  
 | 
/** @brief Updates a running average. 
 | 
  
 | 
The function calculates the weighted sum of the input image src and the accumulator dst so that dst 
 | 
becomes a running average of a frame sequence: 
 | 
  
 | 
\f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f] 
 | 
  
 | 
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). 
 | 
The function supports multi-channel images. Each channel is processed independently. 
 | 
  
 | 
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. 
 | 
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit 
 | 
floating-point. 
 | 
@param alpha Weight of the input image. 
 | 
@param mask Optional operation mask. 
 | 
  
 | 
@sa  accumulate, accumulateSquare, accumulateProduct 
 | 
 */ 
 | 
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, 
 | 
                                      double alpha, InputArray mask = noArray() ); 
 | 
  
 | 
/** @brief The function is used to detect translational shifts that occur between two images. 
 | 
  
 | 
The operation takes advantage of the Fourier shift theorem for detecting the translational shift in 
 | 
the frequency domain. It can be used for fast image registration as well as motion estimation. For 
 | 
more information please see <http://en.wikipedia.org/wiki/Phase_correlation> 
 | 
  
 | 
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed 
 | 
with getOptimalDFTSize. 
 | 
  
 | 
The function performs the following equations: 
 | 
- First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each 
 | 
image to remove possible edge effects. This window is cached until the array size changes to speed 
 | 
up processing time. 
 | 
- Next it computes the forward DFTs of each source array: 
 | 
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f] 
 | 
where \f$\mathcal{F}\f$ is the forward DFT. 
 | 
- It then computes the cross-power spectrum of each frequency domain array: 
 | 
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f] 
 | 
- Next the cross-correlation is converted back into the time domain via the inverse DFT: 
 | 
\f[r = \mathcal{F}^{-1}\{R\}\f] 
 | 
- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to 
 | 
achieve sub-pixel accuracy. 
 | 
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f] 
 | 
- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5 
 | 
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single 
 | 
peak) and will be smaller when there are multiple peaks. 
 | 
  
 | 
@param src1 Source floating point array (CV_32FC1 or CV_64FC1) 
 | 
@param src2 Source floating point array (CV_32FC1 or CV_64FC1) 
 | 
@param window Floating point array with windowing coefficients to reduce edge effects (optional). 
 | 
@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). 
 | 
@returns detected phase shift (sub-pixel) between the two arrays. 
 | 
  
 | 
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow 
 | 
 */ 
 | 
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, 
 | 
                                    InputArray window = noArray(), CV_OUT double* response = 0); 
 | 
  
 | 
/** @brief This function computes a Hanning window coefficients in two dimensions. 
 | 
  
 | 
See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) 
 | 
for more information. 
 | 
  
 | 
An example is shown below: 
 | 
@code 
 | 
    // create hanning window of size 100x100 and type CV_32F 
 | 
    Mat hann; 
 | 
    createHanningWindow(hann, Size(100, 100), CV_32F); 
 | 
@endcode 
 | 
@param dst Destination array to place Hann coefficients in 
 | 
@param winSize The window size specifications (both width and height must be > 1) 
 | 
@param type Created array type 
 | 
 */ 
 | 
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); 
 | 
  
 | 
//! @} imgproc_motion 
 | 
  
 | 
//! @addtogroup imgproc_misc 
 | 
//! @{ 
 | 
  
 | 
/** @brief Applies a fixed-level threshold to each array element. 
 | 
  
 | 
The function applies fixed-level thresholding to a multiple-channel array. The function is typically 
 | 
used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for 
 | 
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large 
 | 
values. There are several types of thresholding supported by the function. They are determined by 
 | 
type parameter. 
 | 
  
 | 
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the 
 | 
above values. In these cases, the function determines the optimal threshold value using the Otsu's 
 | 
or Triangle algorithm and uses it instead of the specified thresh. 
 | 
  
 | 
@note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images. 
 | 
  
 | 
@param src input array (multiple-channel, 8-bit or 32-bit floating point). 
 | 
@param dst output array of the same size  and type and the same number of channels as src. 
 | 
@param thresh threshold value. 
 | 
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding 
 | 
types. 
 | 
@param type thresholding type (see #ThresholdTypes). 
 | 
@return the computed threshold value if Otsu's or Triangle methods used. 
 | 
  
 | 
@sa  adaptiveThreshold, findContours, compare, min, max 
 | 
 */ 
 | 
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, 
 | 
                               double thresh, double maxval, int type ); 
 | 
  
 | 
  
 | 
/** @brief Applies an adaptive threshold to an array. 
 | 
  
 | 
The function transforms a grayscale image to a binary image according to the formulae: 
 | 
-   **THRESH_BINARY** 
 | 
    \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f] 
 | 
-   **THRESH_BINARY_INV** 
 | 
    \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f] 
 | 
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter). 
 | 
  
 | 
The function can process the image in-place. 
 | 
  
 | 
@param src Source 8-bit single-channel image. 
 | 
@param dst Destination image of the same size and the same type as src. 
 | 
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied 
 | 
@param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes. 
 | 
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries. 
 | 
@param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV, 
 | 
see #ThresholdTypes. 
 | 
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the 
 | 
pixel: 3, 5, 7, and so on. 
 | 
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it 
 | 
is positive but may be zero or negative as well. 
 | 
  
 | 
@sa  threshold, blur, GaussianBlur 
 | 
 */ 
 | 
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, 
 | 
                                     double maxValue, int adaptiveMethod, 
 | 
                                     int thresholdType, int blockSize, double C ); 
 | 
  
 | 
//! @} imgproc_misc 
 | 
  
 | 
//! @addtogroup imgproc_filter 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp 
 | 
An example using pyrDown and pyrUp functions 
 | 
*/ 
 | 
  
 | 
/** @brief Blurs an image and downsamples it. 
 | 
  
 | 
By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in 
 | 
any case, the following conditions should be satisfied: 
 | 
  
 | 
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f] 
 | 
  
 | 
The function performs the downsampling step of the Gaussian pyramid construction. First, it 
 | 
convolves the source image with the kernel: 
 | 
  
 | 
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f] 
 | 
  
 | 
Then, it downsamples the image by rejecting even rows and columns. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image; it has the specified size and the same type as src. 
 | 
@param dstsize size of the output image. 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) 
 | 
 */ 
 | 
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, 
 | 
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Upsamples an image and then blurs it. 
 | 
  
 | 
By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any 
 | 
case, the following conditions should be satisfied: 
 | 
  
 | 
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f] 
 | 
  
 | 
The function performs the upsampling step of the Gaussian pyramid construction, though it can 
 | 
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by 
 | 
injecting even zero rows and columns and then convolves the result with the same kernel as in 
 | 
pyrDown multiplied by 4. 
 | 
  
 | 
@param src input image. 
 | 
@param dst output image. It has the specified size and the same type as src . 
 | 
@param dstsize size of the output image. 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported) 
 | 
 */ 
 | 
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, 
 | 
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
/** @brief Constructs the Gaussian pyramid for an image. 
 | 
  
 | 
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying 
 | 
pyrDown to the previously built pyramid layers, starting from `dst[0]==src`. 
 | 
  
 | 
@param src Source image. Check pyrDown for the list of supported types. 
 | 
@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the 
 | 
same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on. 
 | 
@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative. 
 | 
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) 
 | 
 */ 
 | 
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, 
 | 
                              int maxlevel, int borderType = BORDER_DEFAULT ); 
 | 
  
 | 
//! @} imgproc_filter 
 | 
  
 | 
//! @addtogroup imgproc_hist 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/demhist.cpp 
 | 
An example for creating histograms of an image 
 | 
*/ 
 | 
  
 | 
/** @brief Calculates a histogram of a set of arrays. 
 | 
  
 | 
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used 
 | 
to increment a histogram bin are taken from the corresponding input arrays at the same location. The 
 | 
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. : 
 | 
@include snippets/imgproc_calcHist.cpp 
 | 
  
 | 
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same 
 | 
size. Each of them can have an arbitrary number of channels. 
 | 
@param nimages Number of source images. 
 | 
@param channels List of the dims channels used to compute the histogram. The first array channels 
 | 
are numerated from 0 to images[0].channels()-1 , the second array channels are counted from 
 | 
images[0].channels() to images[0].channels() + images[1].channels()-1, and so on. 
 | 
@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size 
 | 
as images[i] . The non-zero mask elements mark the array elements counted in the histogram. 
 | 
@param hist Output histogram, which is a dense or sparse dims -dimensional array. 
 | 
@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS 
 | 
(equal to 32 in the current OpenCV version). 
 | 
@param histSize Array of histogram sizes in each dimension. 
 | 
@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the 
 | 
histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower 
 | 
(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary 
 | 
\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a 
 | 
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( 
 | 
uniform=false ), then each of ranges[i] contains histSize[i]+1 elements: 
 | 
\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$ 
 | 
. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not 
 | 
counted in the histogram. 
 | 
@param uniform Flag indicating whether the histogram is uniform or not (see above). 
 | 
@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning 
 | 
when it is allocated. This feature enables you to compute a single histogram from several sets of 
 | 
arrays, or to update the histogram in time. 
 | 
*/ 
 | 
CV_EXPORTS void calcHist( const Mat* images, int nimages, 
 | 
                          const int* channels, InputArray mask, 
 | 
                          OutputArray hist, int dims, const int* histSize, 
 | 
                          const float** ranges, bool uniform = true, bool accumulate = false ); 
 | 
  
 | 
/** @overload 
 | 
  
 | 
this variant uses %SparseMat for output 
 | 
*/ 
 | 
CV_EXPORTS void calcHist( const Mat* images, int nimages, 
 | 
                          const int* channels, InputArray mask, 
 | 
                          SparseMat& hist, int dims, 
 | 
                          const int* histSize, const float** ranges, 
 | 
                          bool uniform = true, bool accumulate = false ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS_W void calcHist( InputArrayOfArrays images, 
 | 
                            const std::vector<int>& channels, 
 | 
                            InputArray mask, OutputArray hist, 
 | 
                            const std::vector<int>& histSize, 
 | 
                            const std::vector<float>& ranges, 
 | 
                            bool accumulate = false ); 
 | 
  
 | 
/** @brief Calculates the back projection of a histogram. 
 | 
  
 | 
The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to 
 | 
#calcHist , at each location (x, y) the function collects the values from the selected channels 
 | 
in the input images and finds the corresponding histogram bin. But instead of incrementing it, the 
 | 
function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of 
 | 
statistics, the function computes probability of each element value in respect with the empirical 
 | 
probability distribution represented by the histogram. See how, for example, you can find and track 
 | 
a bright-colored object in a scene: 
 | 
  
 | 
- Before tracking, show the object to the camera so that it covers almost the whole frame. 
 | 
Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant 
 | 
colors in the object. 
 | 
  
 | 
- When tracking, calculate a back projection of a hue plane of each input video frame using that 
 | 
pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make 
 | 
sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels. 
 | 
  
 | 
- Find connected components in the resulting picture and choose, for example, the largest 
 | 
component. 
 | 
  
 | 
This is an approximate algorithm of the CamShift color object tracker. 
 | 
  
 | 
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same 
 | 
size. Each of them can have an arbitrary number of channels. 
 | 
@param nimages Number of source images. 
 | 
@param channels The list of channels used to compute the back projection. The number of channels 
 | 
must match the histogram dimensionality. The first array channels are numerated from 0 to 
 | 
images[0].channels()-1 , the second array channels are counted from images[0].channels() to 
 | 
images[0].channels() + images[1].channels()-1, and so on. 
 | 
@param hist Input histogram that can be dense or sparse. 
 | 
@param backProject Destination back projection array that is a single-channel array of the same 
 | 
size and depth as images[0] . 
 | 
@param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist . 
 | 
@param scale Optional scale factor for the output back projection. 
 | 
@param uniform Flag indicating whether the histogram is uniform or not (see above). 
 | 
  
 | 
@sa calcHist, compareHist 
 | 
 */ 
 | 
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, 
 | 
                                 const int* channels, InputArray hist, 
 | 
                                 OutputArray backProject, const float** ranges, 
 | 
                                 double scale = 1, bool uniform = true ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, 
 | 
                                 const int* channels, const SparseMat& hist, 
 | 
                                 OutputArray backProject, const float** ranges, 
 | 
                                 double scale = 1, bool uniform = true ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, 
 | 
                                   InputArray hist, OutputArray dst, 
 | 
                                   const std::vector<float>& ranges, 
 | 
                                   double scale ); 
 | 
  
 | 
/** @brief Compares two histograms. 
 | 
  
 | 
The function cv::compareHist compares two dense or two sparse histograms using the specified method. 
 | 
  
 | 
The function returns \f$d(H_1, H_2)\f$ . 
 | 
  
 | 
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable 
 | 
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling 
 | 
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms 
 | 
or more general sparse configurations of weighted points, consider using the #EMD function. 
 | 
  
 | 
@param H1 First compared histogram. 
 | 
@param H2 Second compared histogram of the same size as H1 . 
 | 
@param method Comparison method, see #HistCompMethods 
 | 
 */ 
 | 
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); 
 | 
  
 | 
/** @brief Equalizes the histogram of a grayscale image. 
 | 
  
 | 
The function equalizes the histogram of the input image using the following algorithm: 
 | 
  
 | 
- Calculate the histogram \f$H\f$ for src . 
 | 
- Normalize the histogram so that the sum of histogram bins is 255. 
 | 
- Compute the integral of the histogram: 
 | 
\f[H'_i =  \sum _{0  \le j < i} H(j)\f] 
 | 
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$ 
 | 
  
 | 
The algorithm normalizes the brightness and increases the contrast of the image. 
 | 
  
 | 
@param src Source 8-bit single channel image. 
 | 
@param dst Destination image of the same size and type as src . 
 | 
 */ 
 | 
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); 
 | 
  
 | 
/** @brief Creates a smart pointer to a cv::CLAHE class and initializes it. 
 | 
  
 | 
@param clipLimit Threshold for contrast limiting. 
 | 
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into 
 | 
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. 
 | 
 */ 
 | 
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); 
 | 
  
 | 
/** @brief Computes the "minimal work" distance between two weighted point configurations. 
 | 
  
 | 
The function computes the earth mover distance and/or a lower boundary of the distance between the 
 | 
two weighted point configurations. One of the applications described in @cite RubnerSept98, 
 | 
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation 
 | 
problem that is solved using some modification of a simplex algorithm, thus the complexity is 
 | 
exponential in the worst case, though, on average it is much faster. In the case of a real metric 
 | 
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used 
 | 
to determine roughly whether the two signatures are far enough so that they cannot relate to the 
 | 
same object. 
 | 
  
 | 
@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix. 
 | 
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have 
 | 
a single column (weights only) if the user-defined cost matrix is used. The weights must be 
 | 
non-negative and have at least one non-zero value. 
 | 
@param signature2 Second signature of the same format as signature1 , though the number of rows 
 | 
may be different. The total weights may be different. In this case an extra "dummy" point is added 
 | 
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero 
 | 
value. 
 | 
@param distType Used metric. See #DistanceTypes. 
 | 
@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix 
 | 
is used, lower boundary lowerBound cannot be calculated because it needs a metric function. 
 | 
@param lowerBound Optional input/output parameter: lower boundary of a distance between the two 
 | 
signatures that is a distance between mass centers. The lower boundary may not be calculated if 
 | 
the user-defined cost matrix is used, the total weights of point configurations are not equal, or 
 | 
if the signatures consist of weights only (the signature matrices have a single column). You 
 | 
**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or 
 | 
equal to \*lowerBound (it means that the signatures are far enough), the function does not 
 | 
calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on 
 | 
return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound 
 | 
should be set to 0. 
 | 
@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is 
 | 
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 . 
 | 
 */ 
 | 
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, 
 | 
                      int distType, InputArray cost=noArray(), 
 | 
                      float* lowerBound = 0, OutputArray flow = noArray() ); 
 | 
  
 | 
CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2, 
 | 
                      int distType, InputArray cost=noArray(), 
 | 
                      CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() ); 
 | 
  
 | 
//! @} imgproc_hist 
 | 
  
 | 
/** @example samples/cpp/watershed.cpp 
 | 
An example using the watershed algorithm 
 | 
*/ 
 | 
  
 | 
/** @brief Performs a marker-based image segmentation using the watershed algorithm. 
 | 
  
 | 
The function implements one of the variants of watershed, non-parametric marker-based segmentation 
 | 
algorithm, described in @cite Meyer92 . 
 | 
  
 | 
Before passing the image to the function, you have to roughly outline the desired regions in the 
 | 
image markers with positive (\>0) indices. So, every region is represented as one or more connected 
 | 
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary 
 | 
mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of 
 | 
the future image regions. All the other pixels in markers , whose relation to the outlined regions 
 | 
is not known and should be defined by the algorithm, should be set to 0's. In the function output, 
 | 
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the 
 | 
regions. 
 | 
  
 | 
@note Any two neighbor connected components are not necessarily separated by a watershed boundary 
 | 
(-1's pixels); for example, they can touch each other in the initial marker image passed to the 
 | 
function. 
 | 
  
 | 
@param image Input 8-bit 3-channel image. 
 | 
@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same 
 | 
size as image . 
 | 
  
 | 
@sa findContours 
 | 
  
 | 
@ingroup imgproc_misc 
 | 
 */ 
 | 
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); 
 | 
  
 | 
//! @addtogroup imgproc_filter 
 | 
//! @{ 
 | 
  
 | 
/** @brief Performs initial step of meanshift segmentation of an image. 
 | 
  
 | 
The function implements the filtering stage of meanshift segmentation, that is, the output of the 
 | 
function is the filtered "posterized" image with color gradients and fine-grain texture flattened. 
 | 
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes 
 | 
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is 
 | 
considered: 
 | 
  
 | 
\f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f] 
 | 
  
 | 
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively 
 | 
(though, the algorithm does not depend on the color space used, so any 3-component color space can 
 | 
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector 
 | 
(R',G',B') are found and they act as the neighborhood center on the next iteration: 
 | 
  
 | 
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f] 
 | 
  
 | 
After the iterations over, the color components of the initial pixel (that is, the pixel from where 
 | 
the iterations started) are set to the final value (average color at the last iteration): 
 | 
  
 | 
\f[I(X,Y) <- (R*,G*,B*)\f] 
 | 
  
 | 
When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is 
 | 
run on the smallest layer first. After that, the results are propagated to the larger layer and the 
 | 
iterations are run again only on those pixels where the layer colors differ by more than sr from the 
 | 
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the 
 | 
results will be actually different from the ones obtained by running the meanshift procedure on the 
 | 
whole original image (i.e. when maxLevel==0). 
 | 
  
 | 
@param src The source 8-bit, 3-channel image. 
 | 
@param dst The destination image of the same format and the same size as the source. 
 | 
@param sp The spatial window radius. 
 | 
@param sr The color window radius. 
 | 
@param maxLevel Maximum level of the pyramid for the segmentation. 
 | 
@param termcrit Termination criteria: when to stop meanshift iterations. 
 | 
 */ 
 | 
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, 
 | 
                                         double sp, double sr, int maxLevel = 1, 
 | 
                                         TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); 
 | 
  
 | 
//! @} 
 | 
  
 | 
//! @addtogroup imgproc_misc 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/grabcut.cpp 
 | 
An example using the GrabCut algorithm 
 | 
 
 | 
*/ 
 | 
  
 | 
/** @brief Runs the GrabCut algorithm. 
 | 
  
 | 
The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). 
 | 
  
 | 
@param img Input 8-bit 3-channel image. 
 | 
@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when 
 | 
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses. 
 | 
@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as 
 | 
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT . 
 | 
@param bgdModel Temporary array for the background model. Do not modify it while you are 
 | 
processing the same image. 
 | 
@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are 
 | 
processing the same image. 
 | 
@param iterCount Number of iterations the algorithm should make before returning the result. Note 
 | 
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or 
 | 
mode==GC_EVAL . 
 | 
@param mode Operation mode that could be one of the #GrabCutModes 
 | 
 */ 
 | 
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, 
 | 
                           InputOutputArray bgdModel, InputOutputArray fgdModel, 
 | 
                           int iterCount, int mode = GC_EVAL ); 
 | 
  
 | 
/** @example samples/cpp/distrans.cpp 
 | 
An example on using the distance transform 
 | 
*/ 
 | 
  
 | 
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image. 
 | 
  
 | 
The function cv::distanceTransform calculates the approximate or precise distance from every binary 
 | 
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. 
 | 
  
 | 
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the 
 | 
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library. 
 | 
  
 | 
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function 
 | 
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, 
 | 
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall 
 | 
distance is calculated as a sum of these basic distances. Since the distance function should be 
 | 
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all 
 | 
the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the 
 | 
same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated 
 | 
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a 
 | 
relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV 
 | 
uses the values suggested in the original paper: 
 | 
- DIST_L1: `a = 1, b = 2` 
 | 
- DIST_L2: 
 | 
    - `3 x 3`: `a=0.955, b=1.3693` 
 | 
    - `5 x 5`: `a=1, b=1.4, c=2.1969` 
 | 
- DIST_C: `a = 1, b = 1` 
 | 
  
 | 
Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a 
 | 
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used. 
 | 
Note that both the precise and the approximate algorithms are linear on the number of pixels. 
 | 
  
 | 
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$ 
 | 
but also identifies the nearest connected component consisting of zero pixels 
 | 
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the 
 | 
component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function 
 | 
automatically finds connected components of zero pixels in the input image and marks them with 
 | 
distinct labels. When labelType==#DIST_LABEL_CCOMP, the function scans through the input image and 
 | 
marks all the zero pixels with distinct labels. 
 | 
  
 | 
In this mode, the complexity is still linear. That is, the function provides a very fast way to 
 | 
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the 
 | 
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported 
 | 
yet. 
 | 
  
 | 
@param src 8-bit, single-channel (binary) source image. 
 | 
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, 
 | 
single-channel image of the same size as src. 
 | 
@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type 
 | 
CV_32SC1 and the same size as src. 
 | 
@param distanceType Type of distance, see #DistanceTypes 
 | 
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks. 
 | 
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type, 
 | 
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times 
 | 
5\f$ or any larger aperture. 
 | 
@param labelType Type of the label array to build, see #DistanceTransformLabelTypes. 
 | 
 */ 
 | 
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, 
 | 
                                     OutputArray labels, int distanceType, int maskSize, 
 | 
                                     int labelType = DIST_LABEL_CCOMP ); 
 | 
  
 | 
/** @overload 
 | 
@param src 8-bit, single-channel (binary) source image. 
 | 
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, 
 | 
single-channel image of the same size as src . 
 | 
@param distanceType Type of distance, see #DistanceTypes 
 | 
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the 
 | 
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives 
 | 
the same result as \f$5\times 5\f$ or any larger aperture. 
 | 
@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for 
 | 
the first variant of the function and distanceType == #DIST_L1. 
 | 
*/ 
 | 
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, 
 | 
                                     int distanceType, int maskSize, int dstType=CV_32F); 
 | 
  
 | 
/** @example samples/cpp/ffilldemo.cpp 
 | 
An example using the FloodFill technique 
 | 
*/ 
 | 
  
 | 
/** @overload 
 | 
  
 | 
variant without `mask` parameter 
 | 
*/ 
 | 
CV_EXPORTS int floodFill( InputOutputArray image, 
 | 
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, 
 | 
                          Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), 
 | 
                          int flags = 4 ); 
 | 
  
 | 
/** @brief Fills a connected component with the given color. 
 | 
  
 | 
The function cv::floodFill fills a connected component starting from the seed point with the specified 
 | 
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The 
 | 
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if: 
 | 
  
 | 
- in case of a grayscale image and floating range 
 | 
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f] 
 | 
  
 | 
  
 | 
- in case of a grayscale image and fixed range 
 | 
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f] 
 | 
  
 | 
  
 | 
- in case of a color image and floating range 
 | 
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f] 
 | 
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f] 
 | 
and 
 | 
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f] 
 | 
  
 | 
  
 | 
- in case of a color image and fixed range 
 | 
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f] 
 | 
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f] 
 | 
and 
 | 
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f] 
 | 
  
 | 
  
 | 
where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the 
 | 
component. That is, to be added to the connected component, a color/brightness of the pixel should 
 | 
be close enough to: 
 | 
- Color/brightness of one of its neighbors that already belong to the connected component in case 
 | 
of a floating range. 
 | 
- Color/brightness of the seed point in case of a fixed range. 
 | 
  
 | 
Use these functions to either mark a connected component with the specified color in-place, or build 
 | 
a mask and then extract the contour, or copy the region to another image, and so on. 
 | 
  
 | 
@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the 
 | 
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See 
 | 
the details below. 
 | 
@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels 
 | 
taller than image. Since this is both an input and output parameter, you must take responsibility 
 | 
of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example, 
 | 
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the 
 | 
mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags 
 | 
as described below. Additionally, the function fills the border of the mask with ones to simplify 
 | 
internal processing. It is therefore possible to use the same mask in multiple calls to the function 
 | 
to make sure the filled areas do not overlap. 
 | 
@param seedPoint Starting point. 
 | 
@param newVal New value of the repainted domain pixels. 
 | 
@param loDiff Maximal lower brightness/color difference between the currently observed pixel and 
 | 
one of its neighbors belonging to the component, or a seed pixel being added to the component. 
 | 
@param upDiff Maximal upper brightness/color difference between the currently observed pixel and 
 | 
one of its neighbors belonging to the component, or a seed pixel being added to the component. 
 | 
@param rect Optional output parameter set by the function to the minimum bounding rectangle of the 
 | 
repainted domain. 
 | 
@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of 
 | 
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A 
 | 
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) 
 | 
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill 
 | 
the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest 
 | 
neighbours and fill the mask with a value of 255. The following additional options occupy higher 
 | 
bits and therefore may be further combined with the connectivity and mask fill values using 
 | 
bit-wise or (|), see #FloodFillFlags. 
 | 
  
 | 
@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the 
 | 
pixel \f$(x+1, y+1)\f$ in the mask . 
 | 
  
 | 
@sa findContours 
 | 
 */ 
 | 
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, 
 | 
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, 
 | 
                            Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), 
 | 
                            int flags = 4 ); 
 | 
  
 | 
//! Performs linear blending of two images: 
 | 
//! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f] 
 | 
//! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer. 
 | 
//! @param src2 It has the same type and size as src1. 
 | 
//! @param weights1 It has a type of CV_32FC1 and the same size with src1. 
 | 
//! @param weights2 It has a type of CV_32FC1 and the same size with src1. 
 | 
//! @param dst It is created if it does not have the same size and type with src1. 
 | 
CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst); 
 | 
  
 | 
//! @} imgproc_misc 
 | 
  
 | 
//! @addtogroup imgproc_color_conversions 
 | 
//! @{ 
 | 
  
 | 
/** @brief Converts an image from one color space to another. 
 | 
  
 | 
The function converts an input image from one color space to another. In case of a transformation 
 | 
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note 
 | 
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the 
 | 
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue 
 | 
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and 
 | 
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. 
 | 
  
 | 
The conventional ranges for R, G, and B channel values are: 
 | 
-   0 to 255 for CV_8U images 
 | 
-   0 to 65535 for CV_16U images 
 | 
-   0 to 1 for CV_32F images 
 | 
  
 | 
In case of linear transformations, the range does not matter. But in case of a non-linear 
 | 
transformation, an input RGB image should be normalized to the proper value range to get the correct 
 | 
results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a 
 | 
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will 
 | 
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor , 
 | 
you need first to scale the image down: 
 | 
@code 
 | 
    img *= 1./255; 
 | 
    cvtColor(img, img, COLOR_BGR2Luv); 
 | 
@endcode 
 | 
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many 
 | 
applications, this will not be noticeable but it is recommended to use 32-bit images in applications 
 | 
that need the full range of colors or that convert an image before an operation and then convert 
 | 
back. 
 | 
  
 | 
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel 
 | 
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. 
 | 
  
 | 
@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision 
 | 
floating-point. 
 | 
@param dst output image of the same size and depth as src. 
 | 
@param code color space conversion code (see #ColorConversionCodes). 
 | 
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the 
 | 
channels is derived automatically from src and code. 
 | 
  
 | 
@see @ref imgproc_color_conversions 
 | 
 */ 
 | 
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 ); 
 | 
  
 | 
/** @brief Converts an image from one color space to another where the source image is 
 | 
stored in two planes. 
 | 
  
 | 
This function only supports YUV420 to RGB conversion as of now. 
 | 
  
 | 
@param src1: 8-bit image (#CV_8U) of the Y plane. 
 | 
@param src2: image containing interleaved U/V plane. 
 | 
@param dst: output image. 
 | 
@param code: Specifies the type of conversion. It can take any of the following values: 
 | 
- #COLOR_YUV2BGR_NV12 
 | 
- #COLOR_YUV2RGB_NV12 
 | 
- #COLOR_YUV2BGRA_NV12 
 | 
- #COLOR_YUV2RGBA_NV12 
 | 
- #COLOR_YUV2BGR_NV21 
 | 
- #COLOR_YUV2RGB_NV21 
 | 
- #COLOR_YUV2BGRA_NV21 
 | 
- #COLOR_YUV2RGBA_NV21 
 | 
*/ 
 | 
CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code ); 
 | 
  
 | 
/** @brief main function for all demosaicing processes 
 | 
  
 | 
@param src input image: 8-bit unsigned or 16-bit unsigned. 
 | 
@param dst output image of the same size and depth as src. 
 | 
@param code Color space conversion code (see the description below). 
 | 
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the 
 | 
channels is derived automatically from src and code. 
 | 
  
 | 
The function can do the following transformations: 
 | 
  
 | 
-   Demosaicing using bilinear interpolation 
 | 
  
 | 
    #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR 
 | 
  
 | 
    #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY 
 | 
  
 | 
-   Demosaicing using Variable Number of Gradients. 
 | 
  
 | 
    #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG 
 | 
  
 | 
-   Edge-Aware Demosaicing. 
 | 
  
 | 
    #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA 
 | 
  
 | 
-   Demosaicing with alpha channel 
 | 
  
 | 
    #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA 
 | 
  
 | 
@sa cvtColor 
 | 
*/ 
 | 
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0); 
 | 
  
 | 
//! @} imgproc_color_conversions 
 | 
  
 | 
//! @addtogroup imgproc_shape 
 | 
//! @{ 
 | 
  
 | 
/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape. 
 | 
  
 | 
The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The 
 | 
results are returned in the structure cv::Moments. 
 | 
  
 | 
@param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( 
 | 
\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ). 
 | 
@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is 
 | 
used for images only. 
 | 
@returns moments. 
 | 
  
 | 
@note Only applicable to contour moments calculations from Python bindings: Note that the numpy 
 | 
type for the input array should be either np.int32 or np.float32. 
 | 
  
 | 
@sa  contourArea, arcLength 
 | 
 */ 
 | 
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); 
 | 
  
 | 
/** @brief Calculates seven Hu invariants. 
 | 
  
 | 
The function calculates seven Hu invariants (introduced in @cite Hu62; see also 
 | 
<http://en.wikipedia.org/wiki/Image_moment>) defined as: 
 | 
  
 | 
\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f] 
 | 
  
 | 
where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ . 
 | 
  
 | 
These values are proved to be invariants to the image scale, rotation, and reflection except the 
 | 
seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of 
 | 
infinite image resolution. In case of raster images, the computed Hu invariants for the original and 
 | 
transformed images are a bit different. 
 | 
  
 | 
@param moments Input moments computed with moments . 
 | 
@param hu Output Hu invariants. 
 | 
  
 | 
@sa matchShapes 
 | 
 */ 
 | 
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); 
 | 
  
 | 
//! @} imgproc_shape 
 | 
  
 | 
//! @addtogroup imgproc_object 
 | 
//! @{ 
 | 
  
 | 
//! type of the template matching operation 
 | 
enum TemplateMatchModes { 
 | 
    TM_SQDIFF        = 0, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f] 
 | 
    TM_SQDIFF_NORMED = 1, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] 
 | 
    TM_CCORR         = 2, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')  \cdot I(x+x',y+y'))\f] 
 | 
    TM_CCORR_NORMED  = 3, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] 
 | 
    TM_CCOEFF        = 4, //!< \f[R(x,y)= \sum _{x',y'} (T'(x',y')  \cdot I'(x+x',y+y'))\f] 
 | 
                          //!< where 
 | 
                          //!< \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w  \cdot h)  \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w  \cdot h)  \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f] 
 | 
    TM_CCOEFF_NORMED = 5  //!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }\f] 
 | 
}; 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp 
 | 
An example using Template Matching algorithm 
 | 
*/ 
 | 
  
 | 
/** @brief Compares a template against overlapped image regions. 
 | 
  
 | 
The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against 
 | 
templ using the specified method and stores the comparison results in result . Here are the formulae 
 | 
for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation 
 | 
is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$ 
 | 
  
 | 
After the function finishes the comparison, the best matches can be found as global minimums (when 
 | 
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the 
 | 
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in 
 | 
the denominator is done over all of the channels and separate mean values are used for each channel. 
 | 
That is, the function can take a color template and a color image. The result will still be a 
 | 
single-channel image, which is easier to analyze. 
 | 
  
 | 
@param image Image where the search is running. It must be 8-bit or 32-bit floating-point. 
 | 
@param templ Searched template. It must be not greater than the source image and have the same 
 | 
data type. 
 | 
@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image 
 | 
is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ . 
 | 
@param method Parameter specifying the comparison method, see #TemplateMatchModes 
 | 
@param mask Mask of searched template. It must have the same datatype and size with templ. It is 
 | 
not set by default. Currently, only the #TM_SQDIFF and #TM_CCORR_NORMED methods are supported. 
 | 
 */ 
 | 
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, 
 | 
                                 OutputArray result, int method, InputArray mask = noArray() ); 
 | 
  
 | 
//! @} 
 | 
  
 | 
//! @addtogroup imgproc_shape 
 | 
//! @{ 
 | 
  
 | 
/** @example samples/cpp/connected_components.cpp 
 | 
This program demonstrates connected components and use of the trackbar 
 | 
*/ 
 | 
  
 | 
/** @brief computes the connected components labeled image of boolean image 
 | 
  
 | 
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 
 | 
represents the background label. ltype specifies the output label image type, an important 
 | 
consideration based on the total number of labels or alternatively the total number of pixels in 
 | 
the source image. ccltype specifies the connected components labeling algorithm to use, currently 
 | 
Grana (BBDT) and Wu's (SAUF) algorithms are supported, see the #ConnectedComponentsAlgorithmsTypes 
 | 
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. 
 | 
This function uses parallel version of both Grana and Wu's algorithms if at least one allowed 
 | 
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. 
 | 
  
 | 
@param image the 8-bit single-channel image to be labeled 
 | 
@param labels destination labeled image 
 | 
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively 
 | 
@param ltype output image label type. Currently CV_32S and CV_16U are supported. 
 | 
@param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes). 
 | 
*/ 
 | 
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels, 
 | 
                                                                        int connectivity, int ltype, int ccltype); 
 | 
  
 | 
  
 | 
/** @overload 
 | 
  
 | 
@param image the 8-bit single-channel image to be labeled 
 | 
@param labels destination labeled image 
 | 
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively 
 | 
@param ltype output image label type. Currently CV_32S and CV_16U are supported. 
 | 
*/ 
 | 
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, 
 | 
                                     int connectivity = 8, int ltype = CV_32S); 
 | 
  
 | 
  
 | 
/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label 
 | 
  
 | 
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 
 | 
represents the background label. ltype specifies the output label image type, an important 
 | 
consideration based on the total number of labels or alternatively the total number of pixels in 
 | 
the source image. ccltype specifies the connected components labeling algorithm to use, currently 
 | 
Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the #ConnectedComponentsAlgorithmsTypes 
 | 
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. 
 | 
This function uses parallel version of both Grana and Wu's algorithms (statistics included) if at least one allowed 
 | 
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. 
 | 
  
 | 
@param image the 8-bit single-channel image to be labeled 
 | 
@param labels destination labeled image 
 | 
@param stats statistics output for each label, including the background label, see below for 
 | 
available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of 
 | 
#ConnectedComponentsTypes. The data type is CV_32S. 
 | 
@param centroids centroid output for each label, including the background label. Centroids are 
 | 
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. 
 | 
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively 
 | 
@param ltype output image label type. Currently CV_32S and CV_16U are supported. 
 | 
@param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes). 
 | 
*/ 
 | 
CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels, 
 | 
                                                                                          OutputArray stats, OutputArray centroids, 
 | 
                                                                                          int connectivity, int ltype, int ccltype); 
 | 
  
 | 
/** @overload 
 | 
@param image the 8-bit single-channel image to be labeled 
 | 
@param labels destination labeled image 
 | 
@param stats statistics output for each label, including the background label, see below for 
 | 
available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of 
 | 
#ConnectedComponentsTypes. The data type is CV_32S. 
 | 
@param centroids centroid output for each label, including the background label. Centroids are 
 | 
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. 
 | 
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively 
 | 
@param ltype output image label type. Currently CV_32S and CV_16U are supported. 
 | 
*/ 
 | 
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, 
 | 
                                              OutputArray stats, OutputArray centroids, 
 | 
                                              int connectivity = 8, int ltype = CV_32S); 
 | 
  
 | 
  
 | 
/** @brief Finds contours in a binary image. 
 | 
  
 | 
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours 
 | 
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the 
 | 
OpenCV sample directory. 
 | 
@note Since opencv 3.2 source image is not modified by this function. 
 | 
  
 | 
@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero 
 | 
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold , 
 | 
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one. 
 | 
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). 
 | 
@param contours Detected contours. Each contour is stored as a vector of points (e.g. 
 | 
std::vector<std::vector<cv::Point> >). 
 | 
@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has 
 | 
as many elements as the number of contours. For each i-th contour contours[i], the elements 
 | 
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices 
 | 
in contours of the next and previous contours at the same hierarchical level, the first child 
 | 
contour and the parent contour, respectively. If for the contour i there are no next, previous, 
 | 
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. 
 | 
@param mode Contour retrieval mode, see #RetrievalModes 
 | 
@param method Contour approximation method, see #ContourApproximationModes 
 | 
@param offset Optional offset by which every contour point is shifted. This is useful if the 
 | 
contours are extracted from the image ROI and then they should be analyzed in the whole image 
 | 
context. 
 | 
 */ 
 | 
CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours, 
 | 
                              OutputArray hierarchy, int mode, 
 | 
                              int method, Point offset = Point()); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours, 
 | 
                              int mode, int method, Point offset = Point()); 
 | 
  
 | 
/** @example samples/cpp/squares.cpp 
 | 
A program using pyramid scaling, Canny, contours and contour simplification to find 
 | 
squares in a list of images (pic1-6.png). Returns sequence of squares detected on the image. 
 | 
*/ 
 | 
  
 | 
/** @example samples/tapi/squares.cpp 
 | 
A program using pyramid scaling, Canny, contours and contour simplification to find 
 | 
squares in the input image. 
 | 
*/ 
 | 
  
 | 
/** @brief Approximates a polygonal curve(s) with the specified precision. 
 | 
  
 | 
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less 
 | 
vertices so that the distance between them is less or equal to the specified precision. It uses the 
 | 
Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm> 
 | 
  
 | 
@param curve Input vector of a 2D point stored in std::vector or Mat 
 | 
@param approxCurve Result of the approximation. The type should match the type of the input curve. 
 | 
@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance 
 | 
between the original curve and its approximation. 
 | 
@param closed If true, the approximated curve is closed (its first and last vertices are 
 | 
connected). Otherwise, it is not closed. 
 | 
 */ 
 | 
CV_EXPORTS_W void approxPolyDP( InputArray curve, 
 | 
                                OutputArray approxCurve, 
 | 
                                double epsilon, bool closed ); 
 | 
  
 | 
/** @brief Calculates a contour perimeter or a curve length. 
 | 
  
 | 
The function computes a curve length or a closed contour perimeter. 
 | 
  
 | 
@param curve Input vector of 2D points, stored in std::vector or Mat. 
 | 
@param closed Flag indicating whether the curve is closed or not. 
 | 
 */ 
 | 
CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); 
 | 
  
 | 
/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image. 
 | 
  
 | 
The function calculates and returns the minimal up-right bounding rectangle for the specified point set or 
 | 
non-zero pixels of gray-scale image. 
 | 
  
 | 
@param array Input gray-scale image or 2D point set, stored in std::vector or Mat. 
 | 
 */ 
 | 
CV_EXPORTS_W Rect boundingRect( InputArray array ); 
 | 
  
 | 
/** @brief Calculates a contour area. 
 | 
  
 | 
The function computes a contour area. Similarly to moments , the area is computed using the Green 
 | 
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using 
 | 
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong 
 | 
results for contours with self-intersections. 
 | 
  
 | 
Example: 
 | 
@code 
 | 
    vector<Point> contour; 
 | 
    contour.push_back(Point2f(0, 0)); 
 | 
    contour.push_back(Point2f(10, 0)); 
 | 
    contour.push_back(Point2f(10, 10)); 
 | 
    contour.push_back(Point2f(5, 4)); 
 | 
  
 | 
    double area0 = contourArea(contour); 
 | 
    vector<Point> approx; 
 | 
    approxPolyDP(contour, approx, 5, true); 
 | 
    double area1 = contourArea(approx); 
 | 
  
 | 
    cout << "area0 =" << area0 << endl << 
 | 
            "area1 =" << area1 << endl << 
 | 
            "approx poly vertices" << approx.size() << endl; 
 | 
@endcode 
 | 
@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. 
 | 
@param oriented Oriented area flag. If it is true, the function returns a signed area value, 
 | 
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can 
 | 
determine orientation of a contour by taking the sign of an area. By default, the parameter is 
 | 
false, which means that the absolute value is returned. 
 | 
 */ 
 | 
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); 
 | 
  
 | 
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set. 
 | 
  
 | 
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a 
 | 
specified point set. Developer should keep in mind that the returned RotatedRect can contain negative 
 | 
indices when data is close to the containing Mat element boundary. 
 | 
  
 | 
@param points Input vector of 2D points, stored in std::vector\<\> or Mat 
 | 
 */ 
 | 
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); 
 | 
  
 | 
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. 
 | 
  
 | 
The function finds the four vertices of a rotated rectangle. This function is useful to draw the 
 | 
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please 
 | 
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information. 
 | 
  
 | 
@param box The input rotated rectangle. It may be the output of 
 | 
@param points The output array of four vertices of rectangles. 
 | 
 */ 
 | 
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); 
 | 
  
 | 
/** @brief Finds a circle of the minimum area enclosing a 2D point set. 
 | 
  
 | 
The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. 
 | 
  
 | 
@param points Input vector of 2D points, stored in std::vector\<\> or Mat 
 | 
@param center Output center of the circle. 
 | 
@param radius Output radius of the circle. 
 | 
 */ 
 | 
CV_EXPORTS_W void minEnclosingCircle( InputArray points, 
 | 
                                      CV_OUT Point2f& center, CV_OUT float& radius ); 
 | 
  
 | 
/** @example samples/cpp/minarea.cpp 
 | 
*/ 
 | 
  
 | 
/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area. 
 | 
  
 | 
The function finds a triangle of minimum area enclosing the given set of 2D points and returns its 
 | 
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in 
 | 
*red* and the enclosing triangle in *yellow*. 
 | 
  
 | 
 
 | 
  
 | 
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's 
 | 
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal 
 | 
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function 
 | 
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the 
 | 
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher 
 | 
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$. 
 | 
  
 | 
@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat 
 | 
@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth 
 | 
of the OutputArray must be CV_32F. 
 | 
 */ 
 | 
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle ); 
 | 
  
 | 
/** @brief Compares two shapes. 
 | 
  
 | 
The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments) 
 | 
  
 | 
@param contour1 First contour or grayscale image. 
 | 
@param contour2 Second contour or grayscale image. 
 | 
@param method Comparison method, see #ShapeMatchModes 
 | 
@param parameter Method-specific parameter (not supported now). 
 | 
 */ 
 | 
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, 
 | 
                                 int method, double parameter ); 
 | 
  
 | 
/** @example samples/cpp/convexhull.cpp 
 | 
An example using the convexHull functionality 
 | 
*/ 
 | 
  
 | 
/** @brief Finds the convex hull of a point set. 
 | 
  
 | 
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82 
 | 
that has *O(N logN)* complexity in the current implementation. 
 | 
  
 | 
@param points Input 2D point set, stored in std::vector or Mat. 
 | 
@param hull Output convex hull. It is either an integer vector of indices or vector of points. In 
 | 
the first case, the hull elements are 0-based indices of the convex hull points in the original 
 | 
array (since the set of convex hull points is a subset of the original point set). In the second 
 | 
case, hull elements are the convex hull points themselves. 
 | 
@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. 
 | 
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing 
 | 
to the right, and its Y axis pointing upwards. 
 | 
@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function 
 | 
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the 
 | 
output array is std::vector, the flag is ignored, and the output depends on the type of the 
 | 
vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies 
 | 
returnPoints=true. 
 | 
  
 | 
@note `points` and `hull` should be different arrays, inplace processing isn't supported. 
 | 
  
 | 
Check @ref tutorial_hull "the corresponding tutorial" for more details. 
 | 
  
 | 
useful links: 
 | 
  
 | 
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/ 
 | 
 */ 
 | 
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, 
 | 
                              bool clockwise = false, bool returnPoints = true ); 
 | 
  
 | 
/** @brief Finds the convexity defects of a contour. 
 | 
  
 | 
The figure below displays convexity defects of a hand contour: 
 | 
  
 | 
 
 | 
  
 | 
@param contour Input contour. 
 | 
@param convexhull Convex hull obtained using convexHull that should contain indices of the contour 
 | 
points that make the hull. 
 | 
@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java 
 | 
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i): 
 | 
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices 
 | 
in the original contour of the convexity defect beginning, end and the farthest point, and 
 | 
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the 
 | 
farthest contour point and the hull. That is, to get the floating-point value of the depth will be 
 | 
fixpt_depth/256.0. 
 | 
 */ 
 | 
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); 
 | 
  
 | 
/** @brief Tests a contour convexity. 
 | 
  
 | 
The function tests whether the input contour is convex or not. The contour must be simple, that is, 
 | 
without self-intersections. Otherwise, the function output is undefined. 
 | 
  
 | 
@param contour Input vector of 2D points, stored in std::vector\<\> or Mat 
 | 
 */ 
 | 
CV_EXPORTS_W bool isContourConvex( InputArray contour ); 
 | 
  
 | 
/** @example samples/cpp/intersectExample.cpp 
 | 
Examples of how intersectConvexConvex works 
 | 
*/ 
 | 
  
 | 
/** @brief Finds intersection of two convex polygons 
 | 
  
 | 
@param _p1 First polygon 
 | 
@param _p2 Second polygon 
 | 
@param _p12 Output polygon describing the intersecting area 
 | 
@param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other. 
 | 
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge 
 | 
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested. 
 | 
  
 | 
@returns Absolute value of area of intersecting polygon 
 | 
  
 | 
@note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't. 
 | 
 */ 
 | 
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, 
 | 
                                          OutputArray _p12, bool handleNested = true ); 
 | 
  
 | 
/** @example samples/cpp/fitellipse.cpp 
 | 
An example using the fitEllipse technique 
 | 
*/ 
 | 
  
 | 
/** @brief Fits an ellipse around a set of 2D points. 
 | 
  
 | 
The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of 
 | 
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95 
 | 
is used. Developer should keep in mind that it is possible that the returned 
 | 
ellipse/rotatedRect data contains negative indices, due to the data points being close to the 
 | 
border of the containing Mat element. 
 | 
  
 | 
@param points Input 2D point set, stored in std::vector\<\> or Mat 
 | 
 */ 
 | 
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); 
 | 
  
 | 
/** @brief Fits an ellipse around a set of 2D points. 
 | 
  
 | 
 The function calculates the ellipse that fits a set of 2D points. 
 | 
 It returns the rotated rectangle in which the ellipse is inscribed. 
 | 
 The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used. 
 | 
  
 | 
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, 
 | 
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. 
 | 
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, 
 | 
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, 
 | 
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. 
 | 
 If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used. 
 | 
 The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves 
 | 
 by imposing the condition that \f$ A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \f$ where 
 | 
 the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with 
 | 
 respect to x and y. The matrices are formed row by row applying the following to 
 | 
 each of the points in the set: 
 | 
 \f{align*}{ 
 | 
 D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} & 
 | 
 D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} & 
 | 
 D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\} 
 | 
 \f} 
 | 
 The AMS method minimizes the cost function 
 | 
 \f{equation*}{ 
 | 
 \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T } 
 | 
 \f} 
 | 
  
 | 
 The minimum cost is found by solving the generalized eigenvalue problem. 
 | 
  
 | 
 \f{equation*}{ 
 | 
 D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A 
 | 
 \f} 
 | 
  
 | 
 @param points Input 2D point set, stored in std::vector\<\> or Mat 
 | 
 */ 
 | 
CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points ); 
 | 
  
 | 
  
 | 
/** @brief Fits an ellipse around a set of 2D points. 
 | 
  
 | 
 The function calculates the ellipse that fits a set of 2D points. 
 | 
 It returns the rotated rectangle in which the ellipse is inscribed. 
 | 
 The Direct least square (Direct) method by @cite Fitzgibbon1999 is used. 
 | 
  
 | 
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, 
 | 
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. 
 | 
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, 
 | 
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, 
 | 
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. 
 | 
 The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$. 
 | 
 The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality 
 | 
 and as the coefficients can be arbitrarily scaled is not overly restrictive. 
 | 
  
 | 
 \f{equation*}{ 
 | 
 \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix} 
 | 
 0 & 0  & 2  & 0  & 0  &  0  \\ 
 | 
 0 & -1  & 0  & 0  & 0  &  0 \\ 
 | 
 2 & 0  & 0  & 0  & 0  &  0 \\ 
 | 
 0 & 0  & 0  & 0  & 0  &  0 \\ 
 | 
 0 & 0  & 0  & 0  & 0  &  0 \\ 
 | 
 0 & 0  & 0  & 0  & 0  &  0 
 | 
 \end{matrix} \right) 
 | 
 \f} 
 | 
  
 | 
 The minimum cost is found by solving the generalized eigenvalue problem. 
 | 
  
 | 
 \f{equation*}{ 
 | 
 D^T D A = \lambda  \left( C\right) A 
 | 
 \f} 
 | 
  
 | 
 The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution 
 | 
 with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients 
 | 
  
 | 
 \f{equation*}{ 
 | 
 A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u} 
 | 
 \f} 
 | 
 The scaling factor guarantees that  \f$A^T C A =1\f$. 
 | 
  
 | 
 @param points Input 2D point set, stored in std::vector\<\> or Mat 
 | 
 */ 
 | 
CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points ); 
 | 
  
 | 
/** @brief Fits a line to a 2D or 3D point set. 
 | 
  
 | 
The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where 
 | 
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one 
 | 
of the following: 
 | 
-  DIST_L2 
 | 
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f] 
 | 
- DIST_L1 
 | 
\f[\rho (r) = r\f] 
 | 
- DIST_L12 
 | 
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f] 
 | 
- DIST_FAIR 
 | 
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f] 
 | 
- DIST_WELSCH 
 | 
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f] 
 | 
- DIST_HUBER 
 | 
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f] 
 | 
  
 | 
The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique 
 | 
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the 
 | 
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ . 
 | 
  
 | 
@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat. 
 | 
@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements 
 | 
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and 
 | 
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like 
 | 
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line 
 | 
and (x0, y0, z0) is a point on the line. 
 | 
@param distType Distance used by the M-estimator, see #DistanceTypes 
 | 
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value 
 | 
is chosen. 
 | 
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). 
 | 
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. 
 | 
 */ 
 | 
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, 
 | 
                           double param, double reps, double aeps ); 
 | 
  
 | 
/** @brief Performs a point-in-contour test. 
 | 
  
 | 
The function determines whether the point is inside a contour, outside, or lies on an edge (or 
 | 
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) 
 | 
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. 
 | 
Otherwise, the return value is a signed distance between the point and the nearest contour edge. 
 | 
  
 | 
See below a sample output of the function where each image pixel is tested against the contour: 
 | 
  
 | 
 
 | 
  
 | 
@param contour Input contour. 
 | 
@param pt Point tested against the contour. 
 | 
@param measureDist If true, the function estimates the signed distance from the point to the 
 | 
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. 
 | 
 */ 
 | 
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); 
 | 
  
 | 
/** @brief Finds out if there is any intersection between two rotated rectangles. 
 | 
  
 | 
If there is then the vertices of the intersecting region are returned as well. 
 | 
  
 | 
Below are some examples of intersection configurations. The hatched pattern indicates the 
 | 
intersecting region and the red vertices are returned by the function. 
 | 
  
 | 
 
 | 
  
 | 
@param rect1 First rectangle 
 | 
@param rect2 Second rectangle 
 | 
@param intersectingRegion The output array of the vertices of the intersecting region. It returns 
 | 
at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2. 
 | 
@returns One of #RectanglesIntersectTypes 
 | 
 */ 
 | 
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion  ); 
 | 
  
 | 
/** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it. 
 | 
*/ 
 | 
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard(); 
 | 
  
 | 
/** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it. 
 | 
*/ 
 | 
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil(); 
 | 
  
 | 
//! @} imgproc_shape 
 | 
  
 | 
//! @addtogroup imgproc_colormap 
 | 
//! @{ 
 | 
  
 | 
//! GNU Octave/MATLAB equivalent colormaps 
 | 
enum ColormapTypes 
 | 
{ 
 | 
    COLORMAP_AUTUMN = 0, //!<  
 | 
    COLORMAP_BONE = 1, //!<  
 | 
    COLORMAP_JET = 2, //!<  
 | 
    COLORMAP_WINTER = 3, //!<  
 | 
    COLORMAP_RAINBOW = 4, //!<  
 | 
    COLORMAP_OCEAN = 5, //!<  
 | 
    COLORMAP_SUMMER = 6, //!<  
 | 
    COLORMAP_SPRING = 7, //!<  
 | 
    COLORMAP_COOL = 8, //!<  
 | 
    COLORMAP_HSV = 9, //!<  
 | 
    COLORMAP_PINK = 10, //!<  
 | 
    COLORMAP_HOT = 11, //!<  
 | 
    COLORMAP_PARULA = 12, //!<  
 | 
    COLORMAP_MAGMA = 13, //!<  
 | 
    COLORMAP_INFERNO = 14, //!<  
 | 
    COLORMAP_PLASMA = 15, //!<  
 | 
    COLORMAP_VIRIDIS = 16, //!<  
 | 
    COLORMAP_CIVIDIS = 17, //!<  
 | 
    COLORMAP_TWILIGHT = 18, //!<  
 | 
    COLORMAP_TWILIGHT_SHIFTED = 19, //!<  
 | 
    COLORMAP_TURBO = 20 //!<  
 | 
}; 
 | 
  
 | 
/** @example samples/cpp/falsecolor.cpp 
 | 
An example using applyColorMap function 
 | 
*/ 
 | 
  
 | 
/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image. 
 | 
  
 | 
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. 
 | 
@param dst The result is the colormapped source image. Note: Mat::create is called on dst. 
 | 
@param colormap The colormap to apply, see #ColormapTypes 
 | 
*/ 
 | 
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); 
 | 
  
 | 
/** @brief Applies a user colormap on a given image. 
 | 
  
 | 
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. 
 | 
@param dst The result is the colormapped source image. Note: Mat::create is called on dst. 
 | 
@param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256 
 | 
*/ 
 | 
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor); 
 | 
  
 | 
//! @} imgproc_colormap 
 | 
  
 | 
//! @addtogroup imgproc_draw 
 | 
//! @{ 
 | 
  
 | 
  
 | 
/** OpenCV color channel order is BGR[A] */ 
 | 
#define CV_RGB(r, g, b)  cv::Scalar((b), (g), (r), 0) 
 | 
  
 | 
/** @brief Draws a line segment connecting two points. 
 | 
  
 | 
The function line draws the line segment between pt1 and pt2 points in the image. The line is 
 | 
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected 
 | 
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased 
 | 
lines are drawn using Gaussian filtering. 
 | 
  
 | 
@param img Image. 
 | 
@param pt1 First point of the line segment. 
 | 
@param pt2 Second point of the line segment. 
 | 
@param color Line color. 
 | 
@param thickness Line thickness. 
 | 
@param lineType Type of the line. See #LineTypes. 
 | 
@param shift Number of fractional bits in the point coordinates. 
 | 
 */ 
 | 
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, 
 | 
                     int thickness = 1, int lineType = LINE_8, int shift = 0); 
 | 
  
 | 
/** @brief Draws a arrow segment pointing from the first point to the second one. 
 | 
  
 | 
The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. 
 | 
  
 | 
@param img Image. 
 | 
@param pt1 The point the arrow starts from. 
 | 
@param pt2 The point the arrow points to. 
 | 
@param color Line color. 
 | 
@param thickness Line thickness. 
 | 
@param line_type Type of the line. See #LineTypes 
 | 
@param shift Number of fractional bits in the point coordinates. 
 | 
@param tipLength The length of the arrow tip in relation to the arrow length 
 | 
 */ 
 | 
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, 
 | 
                     int thickness=1, int line_type=8, int shift=0, double tipLength=0.1); 
 | 
  
 | 
/** @brief Draws a simple, thick, or filled up-right rectangle. 
 | 
  
 | 
The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners 
 | 
are pt1 and pt2. 
 | 
  
 | 
@param img Image. 
 | 
@param pt1 Vertex of the rectangle. 
 | 
@param pt2 Vertex of the rectangle opposite to pt1 . 
 | 
@param color Rectangle color or brightness (grayscale image). 
 | 
@param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, 
 | 
mean that the function has to draw a filled rectangle. 
 | 
@param lineType Type of the line. See #LineTypes 
 | 
@param shift Number of fractional bits in the point coordinates. 
 | 
 */ 
 | 
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2, 
 | 
                          const Scalar& color, int thickness = 1, 
 | 
                          int lineType = LINE_8, int shift = 0); 
 | 
  
 | 
/** @overload 
 | 
  
 | 
use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and 
 | 
r.br()-Point(1,1)` are opposite corners 
 | 
*/ 
 | 
CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec, 
 | 
                          const Scalar& color, int thickness = 1, 
 | 
                          int lineType = LINE_8, int shift = 0); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp 
 | 
An example using drawing functions 
 | 
*/ 
 | 
  
 | 
/** @brief Draws a circle. 
 | 
  
 | 
The function cv::circle draws a simple or filled circle with a given center and radius. 
 | 
@param img Image where the circle is drawn. 
 | 
@param center Center of the circle. 
 | 
@param radius Radius of the circle. 
 | 
@param color Circle color. 
 | 
@param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, 
 | 
mean that a filled circle is to be drawn. 
 | 
@param lineType Type of the circle boundary. See #LineTypes 
 | 
@param shift Number of fractional bits in the coordinates of the center and in the radius value. 
 | 
 */ 
 | 
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius, 
 | 
                       const Scalar& color, int thickness = 1, 
 | 
                       int lineType = LINE_8, int shift = 0); 
 | 
  
 | 
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector. 
 | 
  
 | 
The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic 
 | 
arc, or a filled ellipse sector. The drawing code uses general parametric form. 
 | 
A piecewise-linear curve is used to approximate the elliptic arc 
 | 
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using 
 | 
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first 
 | 
variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and 
 | 
`endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains 
 | 
the meaning of the parameters to draw the blue arc. 
 | 
  
 | 
 
 | 
  
 | 
@param img Image. 
 | 
@param center Center of the ellipse. 
 | 
@param axes Half of the size of the ellipse main axes. 
 | 
@param angle Ellipse rotation angle in degrees. 
 | 
@param startAngle Starting angle of the elliptic arc in degrees. 
 | 
@param endAngle Ending angle of the elliptic arc in degrees. 
 | 
@param color Ellipse color. 
 | 
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that 
 | 
a filled ellipse sector is to be drawn. 
 | 
@param lineType Type of the ellipse boundary. See #LineTypes 
 | 
@param shift Number of fractional bits in the coordinates of the center and values of axes. 
 | 
 */ 
 | 
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes, 
 | 
                        double angle, double startAngle, double endAngle, 
 | 
                        const Scalar& color, int thickness = 1, 
 | 
                        int lineType = LINE_8, int shift = 0); 
 | 
  
 | 
/** @overload 
 | 
@param img Image. 
 | 
@param box Alternative ellipse representation via RotatedRect. This means that the function draws 
 | 
an ellipse inscribed in the rotated rectangle. 
 | 
@param color Ellipse color. 
 | 
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that 
 | 
a filled ellipse sector is to be drawn. 
 | 
@param lineType Type of the ellipse boundary. See #LineTypes 
 | 
*/ 
 | 
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color, 
 | 
                        int thickness = 1, int lineType = LINE_8); 
 | 
  
 | 
/* ----------------------------------------------------------------------------------------- */ 
 | 
/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */ 
 | 
/* ----------------------------------------------------------------------------------------- */ 
 | 
  
 | 
/** @brief Draws a marker on a predefined position in an image. 
 | 
  
 | 
The function cv::drawMarker draws a marker on a given position in the image. For the moment several 
 | 
marker types are supported, see #MarkerTypes for more information. 
 | 
  
 | 
@param img Image. 
 | 
@param position The point where the crosshair is positioned. 
 | 
@param color Line color. 
 | 
@param markerType The specific type of marker you want to use, see #MarkerTypes 
 | 
@param thickness Line thickness. 
 | 
@param line_type Type of the line, See #LineTypes 
 | 
@param markerSize The length of the marker axis [default = 20 pixels] 
 | 
 */ 
 | 
CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color, 
 | 
                             int markerType = MARKER_CROSS, int markerSize=20, int thickness=1, 
 | 
                             int line_type=8); 
 | 
  
 | 
/* ----------------------------------------------------------------------------------------- */ 
 | 
/* END OF MARKER SECTION */ 
 | 
/* ----------------------------------------------------------------------------------------- */ 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts, 
 | 
                               const Scalar& color, int lineType = LINE_8, 
 | 
                               int shift = 0); 
 | 
  
 | 
/** @brief Fills a convex polygon. 
 | 
  
 | 
The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the 
 | 
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without 
 | 
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) 
 | 
twice at the most (though, its top-most and/or the bottom edge could be horizontal). 
 | 
  
 | 
@param img Image. 
 | 
@param points Polygon vertices. 
 | 
@param color Polygon color. 
 | 
@param lineType Type of the polygon boundaries. See #LineTypes 
 | 
@param shift Number of fractional bits in the vertex coordinates. 
 | 
 */ 
 | 
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, 
 | 
                                 const Scalar& color, int lineType = LINE_8, 
 | 
                                 int shift = 0); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts, 
 | 
                         const int* npts, int ncontours, 
 | 
                         const Scalar& color, int lineType = LINE_8, int shift = 0, 
 | 
                         Point offset = Point() ); 
 | 
  
 | 
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp 
 | 
An example using drawing functions 
 | 
Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details 
 | 
*/ 
 | 
  
 | 
/** @brief Fills the area bounded by one or more polygons. 
 | 
  
 | 
The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill 
 | 
complex areas, for example, areas with holes, contours with self-intersections (some of their 
 | 
parts), and so forth. 
 | 
  
 | 
@param img Image. 
 | 
@param pts Array of polygons where each polygon is represented as an array of points. 
 | 
@param color Polygon color. 
 | 
@param lineType Type of the polygon boundaries. See #LineTypes 
 | 
@param shift Number of fractional bits in the vertex coordinates. 
 | 
@param offset Optional offset of all points of the contours. 
 | 
 */ 
 | 
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, 
 | 
                           const Scalar& color, int lineType = LINE_8, int shift = 0, 
 | 
                           Point offset = Point() ); 
 | 
  
 | 
/** @overload */ 
 | 
CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts, 
 | 
                          int ncontours, bool isClosed, const Scalar& color, 
 | 
                          int thickness = 1, int lineType = LINE_8, int shift = 0 ); 
 | 
  
 | 
/** @brief Draws several polygonal curves. 
 | 
  
 | 
@param img Image. 
 | 
@param pts Array of polygonal curves. 
 | 
@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, 
 | 
the function draws a line from the last vertex of each curve to its first vertex. 
 | 
@param color Polyline color. 
 | 
@param thickness Thickness of the polyline edges. 
 | 
@param lineType Type of the line segments. See #LineTypes 
 | 
@param shift Number of fractional bits in the vertex coordinates. 
 | 
  
 | 
The function cv::polylines draws one or more polygonal curves. 
 | 
 */ 
 | 
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, 
 | 
                            bool isClosed, const Scalar& color, 
 | 
                            int thickness = 1, int lineType = LINE_8, int shift = 0 ); 
 | 
  
 | 
/** @example samples/cpp/contours2.cpp 
 | 
An example program illustrates the use of cv::findContours and cv::drawContours 
 | 
\image html WindowsQtContoursOutput.png "Screenshot of the program" 
 | 
*/ 
 | 
  
 | 
/** @example samples/cpp/segment_objects.cpp 
 | 
An example using drawContours to clean up a background segmentation result 
 | 
*/ 
 | 
  
 | 
/** @brief Draws contours outlines or filled contours. 
 | 
  
 | 
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area 
 | 
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve 
 | 
connected components from the binary image and label them: : 
 | 
@include snippets/imgproc_drawContours.cpp 
 | 
  
 | 
@param image Destination image. 
 | 
@param contours All the input contours. Each contour is stored as a point vector. 
 | 
@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. 
 | 
@param color Color of the contours. 
 | 
@param thickness Thickness of lines the contours are drawn with. If it is negative (for example, 
 | 
thickness=#FILLED ), the contour interiors are drawn. 
 | 
@param lineType Line connectivity. See #LineTypes 
 | 
@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only 
 | 
some of the contours (see maxLevel ). 
 | 
@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. 
 | 
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function 
 | 
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This 
 | 
parameter is only taken into account when there is hierarchy available. 
 | 
@param offset Optional contour shift parameter. Shift all the drawn contours by the specified 
 | 
\f$\texttt{offset}=(dx,dy)\f$ . 
 | 
@note When thickness=#FILLED, the function is designed to handle connected components with holes correctly 
 | 
even when no hierarchy date is provided. This is done by analyzing all the outlines together 
 | 
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved 
 | 
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group 
 | 
of contours, or iterate over the collection using contourIdx parameter. 
 | 
 */ 
 | 
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, 
 | 
                              int contourIdx, const Scalar& color, 
 | 
                              int thickness = 1, int lineType = LINE_8, 
 | 
                              InputArray hierarchy = noArray(), 
 | 
                              int maxLevel = INT_MAX, Point offset = Point() ); 
 | 
  
 | 
/** @brief Clips the line against the image rectangle. 
 | 
  
 | 
The function cv::clipLine calculates a part of the line segment that is entirely within the specified 
 | 
rectangle. it returns false if the line segment is completely outside the rectangle. Otherwise, 
 | 
it returns true . 
 | 
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . 
 | 
@param pt1 First line point. 
 | 
@param pt2 Second line point. 
 | 
 */ 
 | 
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); 
 | 
  
 | 
/** @overload 
 | 
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . 
 | 
@param pt1 First line point. 
 | 
@param pt2 Second line point. 
 | 
*/ 
 | 
CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2); 
 | 
  
 | 
/** @overload 
 | 
@param imgRect Image rectangle. 
 | 
@param pt1 First line point. 
 | 
@param pt2 Second line point. 
 | 
*/ 
 | 
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); 
 | 
  
 | 
/** @brief Approximates an elliptic arc with a polyline. 
 | 
  
 | 
The function ellipse2Poly computes the vertices of a polyline that approximates the specified 
 | 
elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped. 
 | 
  
 | 
@param center Center of the arc. 
 | 
@param axes Half of the size of the ellipse main axes. See #ellipse for details. 
 | 
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details. 
 | 
@param arcStart Starting angle of the elliptic arc in degrees. 
 | 
@param arcEnd Ending angle of the elliptic arc in degrees. 
 | 
@param delta Angle between the subsequent polyline vertices. It defines the approximation 
 | 
accuracy. 
 | 
@param pts Output vector of polyline vertices. 
 | 
 */ 
 | 
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, 
 | 
                                int arcStart, int arcEnd, int delta, 
 | 
                                CV_OUT std::vector<Point>& pts ); 
 | 
  
 | 
/** @overload 
 | 
@param center Center of the arc. 
 | 
@param axes Half of the size of the ellipse main axes. See #ellipse for details. 
 | 
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details. 
 | 
@param arcStart Starting angle of the elliptic arc in degrees. 
 | 
@param arcEnd Ending angle of the elliptic arc in degrees. 
 | 
@param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy. 
 | 
@param pts Output vector of polyline vertices. 
 | 
*/ 
 | 
CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle, 
 | 
                             int arcStart, int arcEnd, int delta, 
 | 
                             CV_OUT std::vector<Point2d>& pts); 
 | 
  
 | 
/** @brief Draws a text string. 
 | 
  
 | 
The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered 
 | 
using the specified font are replaced by question marks. See #getTextSize for a text rendering code 
 | 
example. 
 | 
  
 | 
@param img Image. 
 | 
@param text Text string to be drawn. 
 | 
@param org Bottom-left corner of the text string in the image. 
 | 
@param fontFace Font type, see #HersheyFonts. 
 | 
@param fontScale Font scale factor that is multiplied by the font-specific base size. 
 | 
@param color Text color. 
 | 
@param thickness Thickness of the lines used to draw a text. 
 | 
@param lineType Line type. See #LineTypes 
 | 
@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, 
 | 
it is at the top-left corner. 
 | 
 */ 
 | 
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org, 
 | 
                         int fontFace, double fontScale, Scalar color, 
 | 
                         int thickness = 1, int lineType = LINE_8, 
 | 
                         bool bottomLeftOrigin = false ); 
 | 
  
 | 
/** @brief Calculates the width and height of a text string. 
 | 
  
 | 
The function cv::getTextSize calculates and returns the size of a box that contains the specified text. 
 | 
That is, the following code renders some text, the tight box surrounding it, and the baseline: : 
 | 
@code 
 | 
    String text = "Funny text inside the box"; 
 | 
    int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX; 
 | 
    double fontScale = 2; 
 | 
    int thickness = 3; 
 | 
  
 | 
    Mat img(600, 800, CV_8UC3, Scalar::all(0)); 
 | 
  
 | 
    int baseline=0; 
 | 
    Size textSize = getTextSize(text, fontFace, 
 | 
                                fontScale, thickness, &baseline); 
 | 
    baseline += thickness; 
 | 
  
 | 
    // center the text 
 | 
    Point textOrg((img.cols - textSize.width)/2, 
 | 
                  (img.rows + textSize.height)/2); 
 | 
  
 | 
    // draw the box 
 | 
    rectangle(img, textOrg + Point(0, baseline), 
 | 
              textOrg + Point(textSize.width, -textSize.height), 
 | 
              Scalar(0,0,255)); 
 | 
    // ... and the baseline first 
 | 
    line(img, textOrg + Point(0, thickness), 
 | 
         textOrg + Point(textSize.width, thickness), 
 | 
         Scalar(0, 0, 255)); 
 | 
  
 | 
    // then put the text itself 
 | 
    putText(img, text, textOrg, fontFace, fontScale, 
 | 
            Scalar::all(255), thickness, 8); 
 | 
@endcode 
 | 
  
 | 
@param text Input text string. 
 | 
@param fontFace Font to use, see #HersheyFonts. 
 | 
@param fontScale Font scale factor that is multiplied by the font-specific base size. 
 | 
@param thickness Thickness of lines used to render the text. See #putText for details. 
 | 
@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text 
 | 
point. 
 | 
@return The size of a box that contains the specified text. 
 | 
  
 | 
@see putText 
 | 
 */ 
 | 
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, 
 | 
                            double fontScale, int thickness, 
 | 
                            CV_OUT int* baseLine); 
 | 
  
 | 
  
 | 
/** @brief Calculates the font-specific size to use to achieve a given height in pixels. 
 | 
  
 | 
@param fontFace Font to use, see cv::HersheyFonts. 
 | 
@param pixelHeight Pixel height to compute the fontScale for 
 | 
@param thickness Thickness of lines used to render the text.See putText for details. 
 | 
@return The fontSize to use for cv::putText 
 | 
  
 | 
@see cv::putText 
 | 
*/ 
 | 
CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace, 
 | 
                                           const int pixelHeight, 
 | 
                                           const int thickness = 1); 
 | 
  
 | 
/** @brief Line iterator 
 | 
  
 | 
The class is used to iterate over all the pixels on the raster line 
 | 
segment connecting two specified points. 
 | 
  
 | 
The class LineIterator is used to get each pixel of a raster line. It 
 | 
can be treated as versatile implementation of the Bresenham algorithm 
 | 
where you can stop at each pixel and do some extra processing, for 
 | 
example, grab pixel values along the line or draw a line with an effect 
 | 
(for example, with XOR operation). 
 | 
  
 | 
The number of pixels along the line is stored in LineIterator::count. 
 | 
The method LineIterator::pos returns the current position in the image: 
 | 
  
 | 
@code{.cpp} 
 | 
// grabs pixels along the line (pt1, pt2) 
 | 
// from 8-bit 3-channel image to the buffer 
 | 
LineIterator it(img, pt1, pt2, 8); 
 | 
LineIterator it2 = it; 
 | 
vector<Vec3b> buf(it.count); 
 | 
  
 | 
for(int i = 0; i < it.count; i++, ++it) 
 | 
    buf[i] = *(const Vec3b*)*it; 
 | 
  
 | 
// alternative way of iterating through the line 
 | 
for(int i = 0; i < it2.count; i++, ++it2) 
 | 
{ 
 | 
    Vec3b val = img.at<Vec3b>(it2.pos()); 
 | 
    CV_Assert(buf[i] == val); 
 | 
} 
 | 
@endcode 
 | 
*/ 
 | 
class CV_EXPORTS LineIterator 
 | 
{ 
 | 
public: 
 | 
    /** @brief initializes the iterator 
 | 
  
 | 
    creates iterators for the line connecting pt1 and pt2 
 | 
    the line will be clipped on the image boundaries 
 | 
    the line is 8-connected or 4-connected 
 | 
    If leftToRight=true, then the iteration is always done 
 | 
    from the left-most point to the right most, 
 | 
    not to depend on the ordering of pt1 and pt2 parameters 
 | 
    */ 
 | 
    LineIterator( const Mat& img, Point pt1, Point pt2, 
 | 
                  int connectivity = 8, bool leftToRight = false ); 
 | 
    /** @brief returns pointer to the current pixel 
 | 
    */ 
 | 
    uchar* operator *(); 
 | 
    /** @brief prefix increment operator (++it). shifts iterator to the next pixel 
 | 
    */ 
 | 
    LineIterator& operator ++(); 
 | 
    /** @brief postfix increment operator (it++). shifts iterator to the next pixel 
 | 
    */ 
 | 
    LineIterator operator ++(int); 
 | 
    /** @brief returns coordinates of the current pixel 
 | 
    */ 
 | 
    Point pos() const; 
 | 
  
 | 
    uchar* ptr; 
 | 
    const uchar* ptr0; 
 | 
    int step, elemSize; 
 | 
    int err, count; 
 | 
    int minusDelta, plusDelta; 
 | 
    int minusStep, plusStep; 
 | 
}; 
 | 
  
 | 
//! @cond IGNORED 
 | 
  
 | 
// === LineIterator implementation === 
 | 
  
 | 
inline 
 | 
uchar* LineIterator::operator *() 
 | 
{ 
 | 
    return ptr; 
 | 
} 
 | 
  
 | 
inline 
 | 
LineIterator& LineIterator::operator ++() 
 | 
{ 
 | 
    int mask = err < 0 ? -1 : 0; 
 | 
    err += minusDelta + (plusDelta & mask); 
 | 
    ptr += minusStep + (plusStep & mask); 
 | 
    return *this; 
 | 
} 
 | 
  
 | 
inline 
 | 
LineIterator LineIterator::operator ++(int) 
 | 
{ 
 | 
    LineIterator it = *this; 
 | 
    ++(*this); 
 | 
    return it; 
 | 
} 
 | 
  
 | 
inline 
 | 
Point LineIterator::pos() const 
 | 
{ 
 | 
    Point p; 
 | 
    p.y = (int)((ptr - ptr0)/step); 
 | 
    p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize); 
 | 
    return p; 
 | 
} 
 | 
  
 | 
//! @endcond 
 | 
  
 | 
//! @} imgproc_draw 
 | 
  
 | 
//! @} imgproc 
 | 
  
 | 
} // cv 
 | 
  
 | 
#endif 
 |