hc
2023-11-06 15ade055295d13f95d49e3d99b09f3bbfb4a43e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2012 Regents of the University of California
 * Copyright (C) 2017 SiFive
 */
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/sbi.h>
 
/*
 * All RISC-V systems have a timer attached to every hart.  These timers can be
 * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
 * events.  In order to abstract the architecture-specific timer reading and
 * setting functions away from the clock event insertion code, we provide
 * function pointers to the clockevent subsystem that perform two basic
 * operations: rdtime() reads the timer on the current CPU, and
 * next_event(delta) sets the next timer event to 'delta' cycles in the future.
 * As the timers are inherently a per-cpu resource, these callbacks perform
 * operations on the current hart.  There is guaranteed to be exactly one timer
 * per hart on all RISC-V systems.
 */
 
static int riscv_clock_next_event(unsigned long delta,
       struct clock_event_device *ce)
{
   csr_set(sie, SIE_STIE);
   sbi_set_timer(get_cycles64() + delta);
   return 0;
}
 
static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
   .name            = "riscv_timer_clockevent",
   .features        = CLOCK_EVT_FEAT_ONESHOT,
   .rating            = 100,
   .set_next_event        = riscv_clock_next_event,
};
 
/*
 * It is guaranteed that all the timers across all the harts are synchronized
 * within one tick of each other, so while this could technically go
 * backwards when hopping between CPUs, practically it won't happen.
 */
static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
{
   return get_cycles64();
}
 
static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
   .name        = "riscv_clocksource",
   .rating        = 300,
   .mask        = CLOCKSOURCE_MASK(BITS_PER_LONG),
   .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
   .read        = riscv_clocksource_rdtime,
};
 
static int riscv_timer_starting_cpu(unsigned int cpu)
{
   struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
 
   ce->cpumask = cpumask_of(cpu);
   clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
 
   csr_set(sie, SIE_STIE);
   return 0;
}
 
static int riscv_timer_dying_cpu(unsigned int cpu)
{
   csr_clear(sie, SIE_STIE);
   return 0;
}
 
/* called directly from the low-level interrupt handler */
void riscv_timer_interrupt(void)
{
   struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
 
   csr_clear(sie, SIE_STIE);
   evdev->event_handler(evdev);
}
 
static int __init riscv_timer_init_dt(struct device_node *n)
{
   int cpu_id = riscv_of_processor_hart(n), error;
   struct clocksource *cs;
 
   if (cpu_id != smp_processor_id())
       return 0;
 
   cs = per_cpu_ptr(&riscv_clocksource, cpu_id);
   clocksource_register_hz(cs, riscv_timebase);
 
   error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
            "clockevents/riscv/timer:starting",
            riscv_timer_starting_cpu, riscv_timer_dying_cpu);
   if (error)
       pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
              error, cpu_id);
   return error;
}
 
TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);