// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
|
/*-------------------------------------------
|
Includes
|
-------------------------------------------*/
|
#include "rknn_api.h"
|
|
#include <float.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <sys/time.h>
|
|
#include <string>
|
#include <vector>
|
|
/*-------------------------------------------
|
Functions
|
-------------------------------------------*/
|
|
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
|
{
|
uint32_t i, j;
|
uint32_t top_count = outputCount > topNum ? topNum : outputCount;
|
|
for (i = 0; i < topNum; ++i) {
|
pfMaxProb[i] = -FLT_MAX;
|
pMaxClass[i] = -1;
|
}
|
|
for (j = 0; j < top_count; j++) {
|
for (i = 0; i < outputCount; i++) {
|
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
|
(i == *(pMaxClass + 4))) {
|
continue;
|
}
|
|
if (pfProb[i] > *(pfMaxProb + j)) {
|
*(pfMaxProb + j) = pfProb[i];
|
*(pMaxClass + j) = i;
|
}
|
}
|
}
|
|
return 1;
|
}
|
|
static void dump_tensor_attr(rknn_tensor_attr* attr)
|
{
|
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
|
"zp=%d, scale=%f\n",
|
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
|
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
|
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
|
}
|
|
static std::vector<std::string> split(const std::string& str, const std::string& pattern)
|
{
|
std::vector<std::string> res;
|
if (str == "")
|
return res;
|
std::string strs = str + pattern;
|
size_t pos = strs.find(pattern);
|
while (pos != strs.npos) {
|
std::string temp = strs.substr(0, pos);
|
res.push_back(temp);
|
strs = strs.substr(pos + 1, strs.size());
|
pos = strs.find(pattern);
|
}
|
return res;
|
}
|
|
/*-------------------------------------------
|
Main Functions
|
-------------------------------------------*/
|
int main(int argc, char* argv[])
|
{
|
char* model_path = argv[1];
|
char* input_paths = argv[2];
|
std::vector<std::string> input_paths_split = split(input_paths, "#");
|
|
rknn_context ctx = 0;
|
|
// Load RKNN Model
|
int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
|
if (ret < 0) {
|
printf("rknn_init fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Get sdk and driver version
|
rknn_sdk_version sdk_ver;
|
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
|
|
// Get Model Input Output Info
|
rknn_input_output_num io_num;
|
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
|
|
printf("input tensors:\n");
|
rknn_tensor_attr input_attrs[io_num.n_input];
|
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
|
for (uint32_t i = 0; i < io_num.n_input; i++) {
|
input_attrs[i].index = i;
|
// query info
|
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
|
if (ret < 0) {
|
printf("rknn_init error! ret=%d\n", ret);
|
return -1;
|
}
|
dump_tensor_attr(&input_attrs[i]);
|
}
|
|
printf("output tensors:\n");
|
rknn_tensor_attr output_attrs[io_num.n_output];
|
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
|
for (uint32_t i = 0; i < io_num.n_output; i++) {
|
output_attrs[i].index = i;
|
// query info
|
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
dump_tensor_attr(&output_attrs[i]);
|
}
|
|
// Get custom string
|
rknn_custom_string custom_string;
|
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
|
if (ret != RKNN_SUCC) {
|
printf("rknn_query fail! ret=%d\n", ret);
|
return -1;
|
}
|
printf("custom string: %s\n", custom_string.string);
|
|
unsigned char* input_data[io_num.n_input];
|
int input_type[io_num.n_input];
|
int input_layout[io_num.n_input];
|
int input_size[io_num.n_input];
|
for (int i = 0; i < io_num.n_input; i++) {
|
input_data[i] = NULL;
|
input_type[i] = RKNN_TENSOR_UINT8;
|
input_layout[i] = RKNN_TENSOR_NHWC;
|
input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t);
|
}
|
|
// Load input
|
if (io_num.n_input != input_paths_split.size()) {
|
return -1;
|
}
|
for (int i = 0; i < io_num.n_input; i++) {
|
input_data[i] = new unsigned char[input_attrs[i].size];
|
|
printf("%s\n", input_paths_split[i].c_str());
|
|
FILE* fp = fopen(input_paths_split[i].c_str(), "rb");
|
if (fp == NULL) {
|
perror("open failed!");
|
return -1;
|
}
|
|
fread(input_data[i], input_attrs[i].size, 1, fp);
|
fclose(fp);
|
if (!input_data[i]) {
|
return -1;
|
}
|
}
|
|
rknn_input inputs[io_num.n_input];
|
memset(inputs, 0, io_num.n_input * sizeof(rknn_input));
|
for (int i = 0; i < io_num.n_input; i++) {
|
inputs[i].index = i;
|
inputs[i].pass_through = 0;
|
inputs[i].type = (rknn_tensor_type)input_type[i];
|
inputs[i].fmt = (rknn_tensor_format)input_layout[i];
|
inputs[i].buf = input_data[i];
|
inputs[i].size = input_size[i];
|
}
|
|
// Set input
|
ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
|
if (ret < 0) {
|
printf("rknn_input_set fail! ret=%d\n", ret);
|
return -1;
|
}
|
|
// Get output
|
rknn_output outputs[io_num.n_output];
|
memset(outputs, 0, io_num.n_output * sizeof(rknn_output));
|
for (uint32_t i = 0; i < io_num.n_output; ++i) {
|
outputs[i].want_float = 1;
|
outputs[i].index = i;
|
outputs[i].is_prealloc = 0;
|
}
|
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
|
if (ret < 0) {
|
printf("rknn_outputs_get fail! ret=%d\n", ret);
|
return ret;
|
}
|
|
// Get top 5
|
uint32_t topNum = 5;
|
for (uint32_t i = 0; i < io_num.n_output; i++) {
|
uint32_t MaxClass[topNum];
|
float fMaxProb[topNum];
|
float* buffer = (float*)outputs[i].buf;
|
uint32_t sz = outputs[i].size / sizeof(float);
|
int top_count = sz > topNum ? topNum : sz;
|
|
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
|
|
printf("---- Top%d ----\n", top_count);
|
for (int j = 0; j < top_count; j++) {
|
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
|
}
|
}
|
|
// release outputs
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
|
|
// destroy
|
rknn_destroy(ctx);
|
|
for (int i = 0; i < io_num.n_input; i++) {
|
free(input_data[i]);
|
}
|
|
return 0;
|
}
|