hc
2024-01-05 071106ecf68c401173c58808b1cf5f68cc50d390
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN
import urllib.request
 
ONNX_MODEL = 'resnet50v2.onnx'
RKNN_MODEL = 'resnet50v2.rknn'
 
 
def show_outputs(outputs):
    output = outputs
    output_sorted = sorted(output, reverse=True)
    top5_str = 'resnet50v2\n-----TOP 5-----\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                topi = '{}: {}\n'.format(index[j], value)
            else:
                topi = '-1: 0.0\n'
            top5_str += topi
    print(top5_str)
 
 
def readable_speed(speed):
    speed_bytes = float(speed)
    speed_kbytes = speed_bytes / 1024
    if speed_kbytes > 1024:
        speed_mbytes = speed_kbytes / 1024
        if speed_mbytes > 1024:
            speed_gbytes = speed_mbytes / 1024
            return "{:.2f} GB/s".format(speed_gbytes)
        else:
            return "{:.2f} MB/s".format(speed_mbytes)
    else:
        return "{:.2f} KB/s".format(speed_kbytes)
 
 
def show_progress(blocknum, blocksize, totalsize):
    speed = (blocknum * blocksize) / (time.time() - start_time)
    speed_str = " Speed: {}".format(readable_speed(speed))
    recv_size = blocknum * blocksize
 
    f = sys.stdout
    progress = (recv_size / totalsize)
    progress_str = "{:.2f}%".format(progress * 100)
    n = round(progress * 50)
    s = ('#' * n).ljust(50, '-')
    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
    f.flush()
    f.write('\r\n')
 
 
if __name__ == '__main__':
 
    # Create RKNN object
    rknn = RKNN(verbose=True)
 
    # If resnet50v2 does not exist, download it.
    # Download address:
    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
    if not os.path.exists(ONNX_MODEL):
        print('--> Download {}'.format(ONNX_MODEL))
        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
        download_file = ONNX_MODEL
        try:
            start_time = time.time()
            urllib.request.urlretrieve(url, download_file, show_progress)
        except:
            print('Download {} failed.'.format(download_file))
            print(traceback.format_exc())
            exit(-1)
        print('done')
 
    # Pre-process config
    print('--> Config model')
    rknn.config(mean_values=[123.68, 116.28, 103.53], std_values=[57.38, 57.38, 57.38])
    print('done')
 
    # Load model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')
 
    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')
 
    # Accuracy analysis
    print('--> Accuracy analysis')
    ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot')
    if ret != 0:
        print('Accuracy analysis failed!')
        exit(ret)
    print('done')
 
    print('float32:')
    output = np.genfromtxt('./snapshot/golden/resnetv24_dense0_fwd.txt')
    show_outputs(output)
 
    print('quantized:')
    output = np.genfromtxt('./snapshot/simulator/resnetv24_dense0_fwd.txt')
    show_outputs(output)
 
    rknn.release()