commit | author | age
|
a07526
|
1 |
// SPDX-License-Identifier: GPL-2.0-only |
H |
2 |
/******************************************************************************* |
|
3 |
This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. |
|
4 |
ST Ethernet IPs are built around a Synopsys IP Core. |
|
5 |
|
|
6 |
Copyright(C) 2007-2011 STMicroelectronics Ltd |
|
7 |
|
|
8 |
|
|
9 |
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> |
|
10 |
|
|
11 |
Documentation available at: |
|
12 |
http://www.stlinux.com |
|
13 |
Support available at: |
|
14 |
https://bugzilla.stlinux.com/ |
|
15 |
*******************************************************************************/ |
|
16 |
|
|
17 |
#include <linux/clk.h> |
|
18 |
#include <linux/kernel.h> |
|
19 |
#include <linux/interrupt.h> |
|
20 |
#include <linux/ip.h> |
|
21 |
#include <linux/tcp.h> |
|
22 |
#include <linux/skbuff.h> |
|
23 |
#include <linux/ethtool.h> |
|
24 |
#include <linux/if_ether.h> |
|
25 |
#include <linux/crc32.h> |
|
26 |
#include <linux/mii.h> |
|
27 |
#include <linux/if.h> |
|
28 |
#include <linux/if_vlan.h> |
|
29 |
#include <linux/dma-mapping.h> |
|
30 |
#include <linux/slab.h> |
|
31 |
#include <linux/pm_runtime.h> |
|
32 |
#include <linux/prefetch.h> |
|
33 |
#include <linux/pinctrl/consumer.h> |
|
34 |
#ifdef CONFIG_DEBUG_FS |
|
35 |
#include <linux/debugfs.h> |
|
36 |
#include <linux/seq_file.h> |
|
37 |
#endif /* CONFIG_DEBUG_FS */ |
|
38 |
#include <linux/net_tstamp.h> |
|
39 |
#include <linux/phylink.h> |
|
40 |
#include <linux/udp.h> |
|
41 |
#include <net/pkt_cls.h> |
|
42 |
#include "stmmac_ptp.h" |
|
43 |
#include "stmmac.h" |
|
44 |
#include <linux/reset.h> |
|
45 |
#include <linux/of_mdio.h> |
|
46 |
#include "dwmac1000.h" |
|
47 |
#include "dwxgmac2.h" |
|
48 |
#include "hwif.h" |
|
49 |
|
|
50 |
/* As long as the interface is active, we keep the timestamping counter enabled |
|
51 |
* with fine resolution and binary rollover. This avoid non-monotonic behavior |
|
52 |
* (clock jumps) when changing timestamping settings at runtime. |
|
53 |
*/ |
|
54 |
#define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ |
|
55 |
PTP_TCR_TSCTRLSSR) |
|
56 |
|
|
57 |
#define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) |
|
58 |
#define TSO_MAX_BUFF_SIZE (SZ_16K - 1) |
|
59 |
|
|
60 |
/* Module parameters */ |
|
61 |
#define TX_TIMEO 5000 |
|
62 |
static int watchdog = TX_TIMEO; |
|
63 |
module_param(watchdog, int, 0644); |
|
64 |
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); |
|
65 |
|
|
66 |
static int debug = -1; |
|
67 |
module_param(debug, int, 0644); |
|
68 |
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); |
|
69 |
|
|
70 |
static int phyaddr = -1; |
|
71 |
module_param(phyaddr, int, 0444); |
|
72 |
MODULE_PARM_DESC(phyaddr, "Physical device address"); |
|
73 |
|
|
74 |
#define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) |
|
75 |
#define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) |
|
76 |
|
|
77 |
static int flow_ctrl = FLOW_AUTO; |
|
78 |
module_param(flow_ctrl, int, 0644); |
|
79 |
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); |
|
80 |
|
|
81 |
static int pause = PAUSE_TIME; |
|
82 |
module_param(pause, int, 0644); |
|
83 |
MODULE_PARM_DESC(pause, "Flow Control Pause Time"); |
|
84 |
|
|
85 |
#define TC_DEFAULT 64 |
|
86 |
static int tc = TC_DEFAULT; |
|
87 |
module_param(tc, int, 0644); |
|
88 |
MODULE_PARM_DESC(tc, "DMA threshold control value"); |
|
89 |
|
|
90 |
#define DEFAULT_BUFSIZE 1536 |
|
91 |
static int buf_sz = DEFAULT_BUFSIZE; |
|
92 |
module_param(buf_sz, int, 0644); |
|
93 |
MODULE_PARM_DESC(buf_sz, "DMA buffer size"); |
|
94 |
|
|
95 |
#define STMMAC_RX_COPYBREAK 256 |
|
96 |
|
|
97 |
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
|
98 |
NETIF_MSG_LINK | NETIF_MSG_IFUP | |
|
99 |
NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); |
|
100 |
|
|
101 |
#define STMMAC_DEFAULT_LPI_TIMER 1000 |
|
102 |
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; |
|
103 |
module_param(eee_timer, int, 0644); |
|
104 |
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); |
|
105 |
#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) |
|
106 |
|
|
107 |
/* By default the driver will use the ring mode to manage tx and rx descriptors, |
|
108 |
* but allow user to force to use the chain instead of the ring |
|
109 |
*/ |
|
110 |
static unsigned int chain_mode; |
|
111 |
module_param(chain_mode, int, 0444); |
|
112 |
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); |
|
113 |
|
|
114 |
static irqreturn_t stmmac_interrupt(int irq, void *dev_id); |
|
115 |
|
|
116 |
#ifdef CONFIG_DEBUG_FS |
|
117 |
static const struct net_device_ops stmmac_netdev_ops; |
|
118 |
static void stmmac_init_fs(struct net_device *dev); |
|
119 |
static void stmmac_exit_fs(struct net_device *dev); |
|
120 |
#endif |
|
121 |
|
|
122 |
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) |
|
123 |
|
|
124 |
#define LED_FIX 1 |
|
125 |
#ifdef LED_FIX |
|
126 |
#define RTL_8201F_PHY_ID 0x001cc816 |
|
127 |
#define RTL_8211E_PHY_ID 0x001cc915 |
|
128 |
#define RTL_8211F_PHY_ID 0x001cc916 |
|
129 |
#define DP_83848_PHY_ID 0x20005c90 |
|
130 |
#endif |
|
131 |
|
|
132 |
int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) |
|
133 |
{ |
|
134 |
int ret = 0; |
|
135 |
|
|
136 |
if (enabled) { |
|
137 |
ret = clk_prepare_enable(priv->plat->stmmac_clk); |
|
138 |
if (ret) |
|
139 |
return ret; |
|
140 |
ret = clk_prepare_enable(priv->plat->pclk); |
|
141 |
if (ret) { |
|
142 |
clk_disable_unprepare(priv->plat->stmmac_clk); |
|
143 |
return ret; |
|
144 |
} |
|
145 |
} else { |
|
146 |
clk_disable_unprepare(priv->plat->stmmac_clk); |
|
147 |
clk_disable_unprepare(priv->plat->pclk); |
|
148 |
} |
|
149 |
|
|
150 |
return ret; |
|
151 |
} |
|
152 |
EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); |
|
153 |
|
|
154 |
/** |
|
155 |
* stmmac_verify_args - verify the driver parameters. |
|
156 |
* Description: it checks the driver parameters and set a default in case of |
|
157 |
* errors. |
|
158 |
*/ |
|
159 |
static void stmmac_verify_args(void) |
|
160 |
{ |
|
161 |
if (unlikely(watchdog < 0)) |
|
162 |
watchdog = TX_TIMEO; |
|
163 |
if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) |
|
164 |
buf_sz = DEFAULT_BUFSIZE; |
|
165 |
if (unlikely(flow_ctrl > 1)) |
|
166 |
flow_ctrl = FLOW_AUTO; |
|
167 |
else if (likely(flow_ctrl < 0)) |
|
168 |
flow_ctrl = FLOW_OFF; |
|
169 |
if (unlikely((pause < 0) || (pause > 0xffff))) |
|
170 |
pause = PAUSE_TIME; |
|
171 |
if (eee_timer < 0) |
|
172 |
eee_timer = STMMAC_DEFAULT_LPI_TIMER; |
|
173 |
} |
|
174 |
|
|
175 |
/** |
|
176 |
* stmmac_disable_all_queues - Disable all queues |
|
177 |
* @priv: driver private structure |
|
178 |
*/ |
|
179 |
static void stmmac_disable_all_queues(struct stmmac_priv *priv) |
|
180 |
{ |
|
181 |
u32 rx_queues_cnt = priv->plat->rx_queues_to_use; |
|
182 |
u32 tx_queues_cnt = priv->plat->tx_queues_to_use; |
|
183 |
u32 maxq = max(rx_queues_cnt, tx_queues_cnt); |
|
184 |
u32 queue; |
|
185 |
|
|
186 |
for (queue = 0; queue < maxq; queue++) { |
|
187 |
struct stmmac_channel *ch = &priv->channel[queue]; |
|
188 |
|
|
189 |
if (queue < rx_queues_cnt) |
|
190 |
napi_disable(&ch->rx_napi); |
|
191 |
if (queue < tx_queues_cnt) |
|
192 |
napi_disable(&ch->tx_napi); |
|
193 |
} |
|
194 |
} |
|
195 |
|
|
196 |
/** |
|
197 |
* stmmac_enable_all_queues - Enable all queues |
|
198 |
* @priv: driver private structure |
|
199 |
*/ |
|
200 |
static void stmmac_enable_all_queues(struct stmmac_priv *priv) |
|
201 |
{ |
|
202 |
u32 rx_queues_cnt = priv->plat->rx_queues_to_use; |
|
203 |
u32 tx_queues_cnt = priv->plat->tx_queues_to_use; |
|
204 |
u32 maxq = max(rx_queues_cnt, tx_queues_cnt); |
|
205 |
u32 queue; |
|
206 |
|
|
207 |
for (queue = 0; queue < maxq; queue++) { |
|
208 |
struct stmmac_channel *ch = &priv->channel[queue]; |
|
209 |
|
|
210 |
if (queue < rx_queues_cnt) |
|
211 |
napi_enable(&ch->rx_napi); |
|
212 |
if (queue < tx_queues_cnt) |
|
213 |
napi_enable(&ch->tx_napi); |
|
214 |
} |
|
215 |
} |
|
216 |
|
|
217 |
static void stmmac_service_event_schedule(struct stmmac_priv *priv) |
|
218 |
{ |
|
219 |
if (!test_bit(STMMAC_DOWN, &priv->state) && |
|
220 |
!test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) |
|
221 |
queue_work(priv->wq, &priv->service_task); |
|
222 |
} |
|
223 |
|
|
224 |
static void stmmac_global_err(struct stmmac_priv *priv) |
|
225 |
{ |
|
226 |
netif_carrier_off(priv->dev); |
|
227 |
set_bit(STMMAC_RESET_REQUESTED, &priv->state); |
|
228 |
stmmac_service_event_schedule(priv); |
|
229 |
} |
|
230 |
|
|
231 |
/** |
|
232 |
* stmmac_clk_csr_set - dynamically set the MDC clock |
|
233 |
* @priv: driver private structure |
|
234 |
* Description: this is to dynamically set the MDC clock according to the csr |
|
235 |
* clock input. |
|
236 |
* Note: |
|
237 |
* If a specific clk_csr value is passed from the platform |
|
238 |
* this means that the CSR Clock Range selection cannot be |
|
239 |
* changed at run-time and it is fixed (as reported in the driver |
|
240 |
* documentation). Viceversa the driver will try to set the MDC |
|
241 |
* clock dynamically according to the actual clock input. |
|
242 |
*/ |
|
243 |
static void stmmac_clk_csr_set(struct stmmac_priv *priv) |
|
244 |
{ |
|
245 |
u32 clk_rate; |
|
246 |
|
|
247 |
clk_rate = clk_get_rate(priv->plat->pclk); |
|
248 |
|
|
249 |
/* Platform provided default clk_csr would be assumed valid |
|
250 |
* for all other cases except for the below mentioned ones. |
|
251 |
* For values higher than the IEEE 802.3 specified frequency |
|
252 |
* we can not estimate the proper divider as it is not known |
|
253 |
* the frequency of clk_csr_i. So we do not change the default |
|
254 |
* divider. |
|
255 |
*/ |
|
256 |
if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { |
|
257 |
if (clk_rate < CSR_F_35M) |
|
258 |
priv->clk_csr = STMMAC_CSR_20_35M; |
|
259 |
else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) |
|
260 |
priv->clk_csr = STMMAC_CSR_35_60M; |
|
261 |
else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) |
|
262 |
priv->clk_csr = STMMAC_CSR_60_100M; |
|
263 |
else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) |
|
264 |
priv->clk_csr = STMMAC_CSR_100_150M; |
|
265 |
else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) |
|
266 |
priv->clk_csr = STMMAC_CSR_150_250M; |
|
267 |
else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) |
|
268 |
priv->clk_csr = STMMAC_CSR_250_300M; |
|
269 |
} |
|
270 |
|
|
271 |
if (priv->plat->has_sun8i) { |
|
272 |
if (clk_rate > 160000000) |
|
273 |
priv->clk_csr = 0x03; |
|
274 |
else if (clk_rate > 80000000) |
|
275 |
priv->clk_csr = 0x02; |
|
276 |
else if (clk_rate > 40000000) |
|
277 |
priv->clk_csr = 0x01; |
|
278 |
else |
|
279 |
priv->clk_csr = 0; |
|
280 |
} |
|
281 |
|
|
282 |
if (priv->plat->has_xgmac) { |
|
283 |
if (clk_rate > 400000000) |
|
284 |
priv->clk_csr = 0x5; |
|
285 |
else if (clk_rate > 350000000) |
|
286 |
priv->clk_csr = 0x4; |
|
287 |
else if (clk_rate > 300000000) |
|
288 |
priv->clk_csr = 0x3; |
|
289 |
else if (clk_rate > 250000000) |
|
290 |
priv->clk_csr = 0x2; |
|
291 |
else if (clk_rate > 150000000) |
|
292 |
priv->clk_csr = 0x1; |
|
293 |
else |
|
294 |
priv->clk_csr = 0x0; |
|
295 |
} |
|
296 |
} |
|
297 |
|
|
298 |
static void print_pkt(unsigned char *buf, int len) |
|
299 |
{ |
|
300 |
pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); |
|
301 |
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); |
|
302 |
} |
|
303 |
|
|
304 |
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) |
|
305 |
{ |
|
306 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
307 |
u32 avail; |
|
308 |
|
|
309 |
if (tx_q->dirty_tx > tx_q->cur_tx) |
|
310 |
avail = tx_q->dirty_tx - tx_q->cur_tx - 1; |
|
311 |
else |
|
312 |
avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; |
|
313 |
|
|
314 |
return avail; |
|
315 |
} |
|
316 |
|
|
317 |
/** |
|
318 |
* stmmac_rx_dirty - Get RX queue dirty |
|
319 |
* @priv: driver private structure |
|
320 |
* @queue: RX queue index |
|
321 |
*/ |
|
322 |
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) |
|
323 |
{ |
|
324 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
325 |
u32 dirty; |
|
326 |
|
|
327 |
if (rx_q->dirty_rx <= rx_q->cur_rx) |
|
328 |
dirty = rx_q->cur_rx - rx_q->dirty_rx; |
|
329 |
else |
|
330 |
dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; |
|
331 |
|
|
332 |
return dirty; |
|
333 |
} |
|
334 |
|
|
335 |
/** |
|
336 |
* stmmac_enable_eee_mode - check and enter in LPI mode |
|
337 |
* @priv: driver private structure |
|
338 |
* Description: this function is to verify and enter in LPI mode in case of |
|
339 |
* EEE. |
|
340 |
*/ |
|
341 |
static void stmmac_enable_eee_mode(struct stmmac_priv *priv) |
|
342 |
{ |
|
343 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
344 |
u32 queue; |
|
345 |
|
|
346 |
/* check if all TX queues have the work finished */ |
|
347 |
for (queue = 0; queue < tx_cnt; queue++) { |
|
348 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
349 |
|
|
350 |
if (tx_q->dirty_tx != tx_q->cur_tx) |
|
351 |
return; /* still unfinished work */ |
|
352 |
} |
|
353 |
|
|
354 |
/* Check and enter in LPI mode */ |
|
355 |
if (!priv->tx_path_in_lpi_mode) |
|
356 |
stmmac_set_eee_mode(priv, priv->hw, |
|
357 |
priv->plat->en_tx_lpi_clockgating); |
|
358 |
} |
|
359 |
|
|
360 |
/** |
|
361 |
* stmmac_disable_eee_mode - disable and exit from LPI mode |
|
362 |
* @priv: driver private structure |
|
363 |
* Description: this function is to exit and disable EEE in case of |
|
364 |
* LPI state is true. This is called by the xmit. |
|
365 |
*/ |
|
366 |
void stmmac_disable_eee_mode(struct stmmac_priv *priv) |
|
367 |
{ |
|
368 |
stmmac_reset_eee_mode(priv, priv->hw); |
|
369 |
del_timer_sync(&priv->eee_ctrl_timer); |
|
370 |
priv->tx_path_in_lpi_mode = false; |
|
371 |
} |
|
372 |
|
|
373 |
/** |
|
374 |
* stmmac_eee_ctrl_timer - EEE TX SW timer. |
|
375 |
* @t: timer_list struct containing private info |
|
376 |
* Description: |
|
377 |
* if there is no data transfer and if we are not in LPI state, |
|
378 |
* then MAC Transmitter can be moved to LPI state. |
|
379 |
*/ |
|
380 |
static void stmmac_eee_ctrl_timer(struct timer_list *t) |
|
381 |
{ |
|
382 |
struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); |
|
383 |
|
|
384 |
stmmac_enable_eee_mode(priv); |
|
385 |
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); |
|
386 |
} |
|
387 |
|
|
388 |
/** |
|
389 |
* stmmac_eee_init - init EEE |
|
390 |
* @priv: driver private structure |
|
391 |
* Description: |
|
392 |
* if the GMAC supports the EEE (from the HW cap reg) and the phy device |
|
393 |
* can also manage EEE, this function enable the LPI state and start related |
|
394 |
* timer. |
|
395 |
*/ |
|
396 |
bool stmmac_eee_init(struct stmmac_priv *priv) |
|
397 |
{ |
|
398 |
int eee_tw_timer = priv->eee_tw_timer; |
|
399 |
|
|
400 |
/* Using PCS we cannot dial with the phy registers at this stage |
|
401 |
* so we do not support extra feature like EEE. |
|
402 |
*/ |
|
403 |
if (priv->hw->pcs == STMMAC_PCS_TBI || |
|
404 |
priv->hw->pcs == STMMAC_PCS_RTBI) |
|
405 |
return false; |
|
406 |
|
|
407 |
/* Check if MAC core supports the EEE feature. */ |
|
408 |
if (!priv->dma_cap.eee) |
|
409 |
return false; |
|
410 |
|
|
411 |
mutex_lock(&priv->lock); |
|
412 |
|
|
413 |
/* Check if it needs to be deactivated */ |
|
414 |
if (!priv->eee_active) { |
|
415 |
if (priv->eee_enabled) { |
|
416 |
netdev_dbg(priv->dev, "disable EEE\n"); |
|
417 |
del_timer_sync(&priv->eee_ctrl_timer); |
|
418 |
stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); |
|
419 |
} |
|
420 |
mutex_unlock(&priv->lock); |
|
421 |
return false; |
|
422 |
} |
|
423 |
|
|
424 |
if (priv->eee_active && !priv->eee_enabled) { |
|
425 |
timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); |
|
426 |
stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, |
|
427 |
eee_tw_timer); |
|
428 |
} |
|
429 |
|
|
430 |
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); |
|
431 |
|
|
432 |
mutex_unlock(&priv->lock); |
|
433 |
netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); |
|
434 |
return true; |
|
435 |
} |
|
436 |
|
|
437 |
/* stmmac_get_tx_hwtstamp - get HW TX timestamps |
|
438 |
* @priv: driver private structure |
|
439 |
* @p : descriptor pointer |
|
440 |
* @skb : the socket buffer |
|
441 |
* Description : |
|
442 |
* This function will read timestamp from the descriptor & pass it to stack. |
|
443 |
* and also perform some sanity checks. |
|
444 |
*/ |
|
445 |
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, |
|
446 |
struct dma_desc *p, struct sk_buff *skb) |
|
447 |
{ |
|
448 |
struct skb_shared_hwtstamps shhwtstamp; |
|
449 |
bool found = false; |
|
450 |
u64 ns = 0; |
|
451 |
|
|
452 |
if (!priv->hwts_tx_en) |
|
453 |
return; |
|
454 |
|
|
455 |
/* exit if skb doesn't support hw tstamp */ |
|
456 |
if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) |
|
457 |
return; |
|
458 |
|
|
459 |
/* check tx tstamp status */ |
|
460 |
if (stmmac_get_tx_timestamp_status(priv, p)) { |
|
461 |
stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); |
|
462 |
found = true; |
|
463 |
} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { |
|
464 |
found = true; |
|
465 |
} |
|
466 |
|
|
467 |
if (found) { |
|
468 |
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); |
|
469 |
shhwtstamp.hwtstamp = ns_to_ktime(ns); |
|
470 |
|
|
471 |
netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); |
|
472 |
/* pass tstamp to stack */ |
|
473 |
skb_tstamp_tx(skb, &shhwtstamp); |
|
474 |
} |
|
475 |
} |
|
476 |
|
|
477 |
/* stmmac_get_rx_hwtstamp - get HW RX timestamps |
|
478 |
* @priv: driver private structure |
|
479 |
* @p : descriptor pointer |
|
480 |
* @np : next descriptor pointer |
|
481 |
* @skb : the socket buffer |
|
482 |
* Description : |
|
483 |
* This function will read received packet's timestamp from the descriptor |
|
484 |
* and pass it to stack. It also perform some sanity checks. |
|
485 |
*/ |
|
486 |
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, |
|
487 |
struct dma_desc *np, struct sk_buff *skb) |
|
488 |
{ |
|
489 |
struct skb_shared_hwtstamps *shhwtstamp = NULL; |
|
490 |
struct dma_desc *desc = p; |
|
491 |
u64 ns = 0; |
|
492 |
|
|
493 |
if (!priv->hwts_rx_en) |
|
494 |
return; |
|
495 |
/* For GMAC4, the valid timestamp is from CTX next desc. */ |
|
496 |
if (priv->plat->has_gmac4 || priv->plat->has_xgmac) |
|
497 |
desc = np; |
|
498 |
|
|
499 |
/* Check if timestamp is available */ |
|
500 |
if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { |
|
501 |
stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); |
|
502 |
netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); |
|
503 |
shhwtstamp = skb_hwtstamps(skb); |
|
504 |
memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); |
|
505 |
shhwtstamp->hwtstamp = ns_to_ktime(ns); |
|
506 |
} else { |
|
507 |
netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); |
|
508 |
} |
|
509 |
} |
|
510 |
|
|
511 |
/** |
|
512 |
* stmmac_hwtstamp_set - control hardware timestamping. |
|
513 |
* @dev: device pointer. |
|
514 |
* @ifr: An IOCTL specific structure, that can contain a pointer to |
|
515 |
* a proprietary structure used to pass information to the driver. |
|
516 |
* Description: |
|
517 |
* This function configures the MAC to enable/disable both outgoing(TX) |
|
518 |
* and incoming(RX) packets time stamping based on user input. |
|
519 |
* Return Value: |
|
520 |
* 0 on success and an appropriate -ve integer on failure. |
|
521 |
*/ |
|
522 |
static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) |
|
523 |
{ |
|
524 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
525 |
struct hwtstamp_config config; |
|
526 |
u32 ptp_v2 = 0; |
|
527 |
u32 tstamp_all = 0; |
|
528 |
u32 ptp_over_ipv4_udp = 0; |
|
529 |
u32 ptp_over_ipv6_udp = 0; |
|
530 |
u32 ptp_over_ethernet = 0; |
|
531 |
u32 snap_type_sel = 0; |
|
532 |
u32 ts_master_en = 0; |
|
533 |
u32 ts_event_en = 0; |
|
534 |
|
|
535 |
if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { |
|
536 |
netdev_alert(priv->dev, "No support for HW time stamping\n"); |
|
537 |
priv->hwts_tx_en = 0; |
|
538 |
priv->hwts_rx_en = 0; |
|
539 |
|
|
540 |
return -EOPNOTSUPP; |
|
541 |
} |
|
542 |
|
|
543 |
if (copy_from_user(&config, ifr->ifr_data, |
|
544 |
sizeof(config))) |
|
545 |
return -EFAULT; |
|
546 |
|
|
547 |
netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", |
|
548 |
__func__, config.flags, config.tx_type, config.rx_filter); |
|
549 |
|
|
550 |
/* reserved for future extensions */ |
|
551 |
if (config.flags) |
|
552 |
return -EINVAL; |
|
553 |
|
|
554 |
if (config.tx_type != HWTSTAMP_TX_OFF && |
|
555 |
config.tx_type != HWTSTAMP_TX_ON) |
|
556 |
return -ERANGE; |
|
557 |
|
|
558 |
if (priv->adv_ts) { |
|
559 |
switch (config.rx_filter) { |
|
560 |
case HWTSTAMP_FILTER_NONE: |
|
561 |
/* time stamp no incoming packet at all */ |
|
562 |
config.rx_filter = HWTSTAMP_FILTER_NONE; |
|
563 |
break; |
|
564 |
|
|
565 |
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
|
566 |
/* PTP v1, UDP, any kind of event packet */ |
|
567 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
|
568 |
/* 'xmac' hardware can support Sync, Pdelay_Req and |
|
569 |
* Pdelay_resp by setting bit14 and bits17/16 to 01 |
|
570 |
* This leaves Delay_Req timestamps out. |
|
571 |
* Enable all events *and* general purpose message |
|
572 |
* timestamping |
|
573 |
*/ |
|
574 |
snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
|
575 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
576 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
577 |
break; |
|
578 |
|
|
579 |
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
|
580 |
/* PTP v1, UDP, Sync packet */ |
|
581 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; |
|
582 |
/* take time stamp for SYNC messages only */ |
|
583 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
584 |
|
|
585 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
586 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
587 |
break; |
|
588 |
|
|
589 |
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
|
590 |
/* PTP v1, UDP, Delay_req packet */ |
|
591 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; |
|
592 |
/* take time stamp for Delay_Req messages only */ |
|
593 |
ts_master_en = PTP_TCR_TSMSTRENA; |
|
594 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
595 |
|
|
596 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
597 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
598 |
break; |
|
599 |
|
|
600 |
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
|
601 |
/* PTP v2, UDP, any kind of event packet */ |
|
602 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; |
|
603 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
604 |
/* take time stamp for all event messages */ |
|
605 |
snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
|
606 |
|
|
607 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
608 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
609 |
break; |
|
610 |
|
|
611 |
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
|
612 |
/* PTP v2, UDP, Sync packet */ |
|
613 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; |
|
614 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
615 |
/* take time stamp for SYNC messages only */ |
|
616 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
617 |
|
|
618 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
619 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
620 |
break; |
|
621 |
|
|
622 |
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
|
623 |
/* PTP v2, UDP, Delay_req packet */ |
|
624 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; |
|
625 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
626 |
/* take time stamp for Delay_Req messages only */ |
|
627 |
ts_master_en = PTP_TCR_TSMSTRENA; |
|
628 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
629 |
|
|
630 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
631 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
632 |
break; |
|
633 |
|
|
634 |
case HWTSTAMP_FILTER_PTP_V2_EVENT: |
|
635 |
/* PTP v2/802.AS1 any layer, any kind of event packet */ |
|
636 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
|
637 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
638 |
snap_type_sel = PTP_TCR_SNAPTYPSEL_1; |
|
639 |
if (priv->synopsys_id < DWMAC_CORE_4_10) |
|
640 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
641 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
642 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
643 |
ptp_over_ethernet = PTP_TCR_TSIPENA; |
|
644 |
break; |
|
645 |
|
|
646 |
case HWTSTAMP_FILTER_PTP_V2_SYNC: |
|
647 |
/* PTP v2/802.AS1, any layer, Sync packet */ |
|
648 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; |
|
649 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
650 |
/* take time stamp for SYNC messages only */ |
|
651 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
652 |
|
|
653 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
654 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
655 |
ptp_over_ethernet = PTP_TCR_TSIPENA; |
|
656 |
break; |
|
657 |
|
|
658 |
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
|
659 |
/* PTP v2/802.AS1, any layer, Delay_req packet */ |
|
660 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; |
|
661 |
ptp_v2 = PTP_TCR_TSVER2ENA; |
|
662 |
/* take time stamp for Delay_Req messages only */ |
|
663 |
ts_master_en = PTP_TCR_TSMSTRENA; |
|
664 |
ts_event_en = PTP_TCR_TSEVNTENA; |
|
665 |
|
|
666 |
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; |
|
667 |
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; |
|
668 |
ptp_over_ethernet = PTP_TCR_TSIPENA; |
|
669 |
break; |
|
670 |
|
|
671 |
case HWTSTAMP_FILTER_NTP_ALL: |
|
672 |
case HWTSTAMP_FILTER_ALL: |
|
673 |
/* time stamp any incoming packet */ |
|
674 |
config.rx_filter = HWTSTAMP_FILTER_ALL; |
|
675 |
tstamp_all = PTP_TCR_TSENALL; |
|
676 |
break; |
|
677 |
|
|
678 |
default: |
|
679 |
return -ERANGE; |
|
680 |
} |
|
681 |
} else { |
|
682 |
switch (config.rx_filter) { |
|
683 |
case HWTSTAMP_FILTER_NONE: |
|
684 |
config.rx_filter = HWTSTAMP_FILTER_NONE; |
|
685 |
break; |
|
686 |
default: |
|
687 |
/* PTP v1, UDP, any kind of event packet */ |
|
688 |
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; |
|
689 |
break; |
|
690 |
} |
|
691 |
} |
|
692 |
priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); |
|
693 |
priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; |
|
694 |
|
|
695 |
priv->systime_flags = STMMAC_HWTS_ACTIVE; |
|
696 |
|
|
697 |
if (priv->hwts_tx_en || priv->hwts_rx_en) { |
|
698 |
priv->systime_flags |= tstamp_all | ptp_v2 | |
|
699 |
ptp_over_ethernet | ptp_over_ipv6_udp | |
|
700 |
ptp_over_ipv4_udp | ts_event_en | |
|
701 |
ts_master_en | snap_type_sel; |
|
702 |
} |
|
703 |
|
|
704 |
stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); |
|
705 |
|
|
706 |
memcpy(&priv->tstamp_config, &config, sizeof(config)); |
|
707 |
|
|
708 |
return copy_to_user(ifr->ifr_data, &config, |
|
709 |
sizeof(config)) ? -EFAULT : 0; |
|
710 |
} |
|
711 |
|
|
712 |
/** |
|
713 |
* stmmac_hwtstamp_get - read hardware timestamping. |
|
714 |
* @dev: device pointer. |
|
715 |
* @ifr: An IOCTL specific structure, that can contain a pointer to |
|
716 |
* a proprietary structure used to pass information to the driver. |
|
717 |
* Description: |
|
718 |
* This function obtain the current hardware timestamping settings |
|
719 |
* as requested. |
|
720 |
*/ |
|
721 |
static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) |
|
722 |
{ |
|
723 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
724 |
struct hwtstamp_config *config = &priv->tstamp_config; |
|
725 |
|
|
726 |
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) |
|
727 |
return -EOPNOTSUPP; |
|
728 |
|
|
729 |
return copy_to_user(ifr->ifr_data, config, |
|
730 |
sizeof(*config)) ? -EFAULT : 0; |
|
731 |
} |
|
732 |
|
|
733 |
/** |
|
734 |
* stmmac_init_tstamp_counter - init hardware timestamping counter |
|
735 |
* @priv: driver private structure |
|
736 |
* @systime_flags: timestamping flags |
|
737 |
* Description: |
|
738 |
* Initialize hardware counter for packet timestamping. |
|
739 |
* This is valid as long as the interface is open and not suspended. |
|
740 |
* Will be rerun after resuming from suspend, case in which the timestamping |
|
741 |
* flags updated by stmmac_hwtstamp_set() also need to be restored. |
|
742 |
*/ |
|
743 |
int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) |
|
744 |
{ |
|
745 |
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
|
746 |
struct timespec64 now; |
|
747 |
u32 sec_inc = 0; |
|
748 |
u64 temp = 0; |
|
749 |
|
|
750 |
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) |
|
751 |
return -EOPNOTSUPP; |
|
752 |
|
|
753 |
stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); |
|
754 |
priv->systime_flags = systime_flags; |
|
755 |
|
|
756 |
/* program Sub Second Increment reg */ |
|
757 |
stmmac_config_sub_second_increment(priv, priv->ptpaddr, |
|
758 |
priv->plat->clk_ptp_rate, |
|
759 |
xmac, &sec_inc); |
|
760 |
temp = div_u64(1000000000ULL, sec_inc); |
|
761 |
|
|
762 |
/* Store sub second increment for later use */ |
|
763 |
priv->sub_second_inc = sec_inc; |
|
764 |
|
|
765 |
/* calculate default added value: |
|
766 |
* formula is : |
|
767 |
* addend = (2^32)/freq_div_ratio; |
|
768 |
* where, freq_div_ratio = 1e9ns/sec_inc |
|
769 |
*/ |
|
770 |
temp = (u64)(temp << 32); |
|
771 |
priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); |
|
772 |
stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); |
|
773 |
|
|
774 |
/* initialize system time */ |
|
775 |
ktime_get_real_ts64(&now); |
|
776 |
|
|
777 |
/* lower 32 bits of tv_sec are safe until y2106 */ |
|
778 |
stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); |
|
779 |
|
|
780 |
return 0; |
|
781 |
} |
|
782 |
EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); |
|
783 |
|
|
784 |
/** |
|
785 |
* stmmac_init_ptp - init PTP |
|
786 |
* @priv: driver private structure |
|
787 |
* Description: this is to verify if the HW supports the PTPv1 or PTPv2. |
|
788 |
* This is done by looking at the HW cap. register. |
|
789 |
* This function also registers the ptp driver. |
|
790 |
*/ |
|
791 |
static int stmmac_init_ptp(struct stmmac_priv *priv) |
|
792 |
{ |
|
793 |
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
|
794 |
int ret; |
|
795 |
|
|
796 |
ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); |
|
797 |
if (ret) |
|
798 |
return ret; |
|
799 |
|
|
800 |
priv->adv_ts = 0; |
|
801 |
/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ |
|
802 |
if (xmac && priv->dma_cap.atime_stamp) |
|
803 |
priv->adv_ts = 1; |
|
804 |
/* Dwmac 3.x core with extend_desc can support adv_ts */ |
|
805 |
else if (priv->extend_desc && priv->dma_cap.atime_stamp) |
|
806 |
priv->adv_ts = 1; |
|
807 |
|
|
808 |
if (priv->dma_cap.time_stamp) |
|
809 |
netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); |
|
810 |
|
|
811 |
if (priv->adv_ts) |
|
812 |
netdev_info(priv->dev, |
|
813 |
"IEEE 1588-2008 Advanced Timestamp supported\n"); |
|
814 |
|
|
815 |
priv->hwts_tx_en = 0; |
|
816 |
priv->hwts_rx_en = 0; |
|
817 |
|
|
818 |
return 0; |
|
819 |
} |
|
820 |
|
|
821 |
static void stmmac_release_ptp(struct stmmac_priv *priv) |
|
822 |
{ |
|
823 |
clk_disable_unprepare(priv->plat->clk_ptp_ref); |
|
824 |
stmmac_ptp_unregister(priv); |
|
825 |
} |
|
826 |
|
|
827 |
/** |
|
828 |
* stmmac_mac_flow_ctrl - Configure flow control in all queues |
|
829 |
* @priv: driver private structure |
|
830 |
* @duplex: duplex passed to the next function |
|
831 |
* Description: It is used for configuring the flow control in all queues |
|
832 |
*/ |
|
833 |
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) |
|
834 |
{ |
|
835 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
836 |
|
|
837 |
stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl & priv->plat->flow_ctrl, |
|
838 |
priv->pause, tx_cnt); |
|
839 |
} |
|
840 |
|
|
841 |
static void stmmac_validate(struct phylink_config *config, |
|
842 |
unsigned long *supported, |
|
843 |
struct phylink_link_state *state) |
|
844 |
{ |
|
845 |
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
|
846 |
__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; |
|
847 |
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; |
|
848 |
int tx_cnt = priv->plat->tx_queues_to_use; |
|
849 |
int max_speed = priv->plat->max_speed; |
|
850 |
|
|
851 |
phylink_set(mac_supported, 10baseT_Half); |
|
852 |
phylink_set(mac_supported, 10baseT_Full); |
|
853 |
phylink_set(mac_supported, 100baseT_Half); |
|
854 |
phylink_set(mac_supported, 100baseT_Full); |
|
855 |
phylink_set(mac_supported, 1000baseT_Half); |
|
856 |
phylink_set(mac_supported, 1000baseT_Full); |
|
857 |
phylink_set(mac_supported, 1000baseKX_Full); |
|
858 |
phylink_set(mac_supported, 100baseT1_Full); |
|
859 |
phylink_set(mac_supported, 1000baseT1_Full); |
|
860 |
|
|
861 |
phylink_set(mac_supported, Autoneg); |
|
862 |
phylink_set(mac_supported, Pause); |
|
863 |
phylink_set(mac_supported, Asym_Pause); |
|
864 |
phylink_set_port_modes(mac_supported); |
|
865 |
|
|
866 |
/* Cut down 1G if asked to */ |
|
867 |
if ((max_speed > 0) && (max_speed < 1000)) { |
|
868 |
phylink_set(mask, 1000baseT_Full); |
|
869 |
phylink_set(mask, 1000baseX_Full); |
|
870 |
} else if (priv->plat->has_xgmac) { |
|
871 |
if (!max_speed || (max_speed >= 2500)) { |
|
872 |
phylink_set(mac_supported, 2500baseT_Full); |
|
873 |
phylink_set(mac_supported, 2500baseX_Full); |
|
874 |
} |
|
875 |
if (!max_speed || (max_speed >= 5000)) { |
|
876 |
phylink_set(mac_supported, 5000baseT_Full); |
|
877 |
} |
|
878 |
if (!max_speed || (max_speed >= 10000)) { |
|
879 |
phylink_set(mac_supported, 10000baseSR_Full); |
|
880 |
phylink_set(mac_supported, 10000baseLR_Full); |
|
881 |
phylink_set(mac_supported, 10000baseER_Full); |
|
882 |
phylink_set(mac_supported, 10000baseLRM_Full); |
|
883 |
phylink_set(mac_supported, 10000baseT_Full); |
|
884 |
phylink_set(mac_supported, 10000baseKX4_Full); |
|
885 |
phylink_set(mac_supported, 10000baseKR_Full); |
|
886 |
} |
|
887 |
if (!max_speed || (max_speed >= 25000)) { |
|
888 |
phylink_set(mac_supported, 25000baseCR_Full); |
|
889 |
phylink_set(mac_supported, 25000baseKR_Full); |
|
890 |
phylink_set(mac_supported, 25000baseSR_Full); |
|
891 |
} |
|
892 |
if (!max_speed || (max_speed >= 40000)) { |
|
893 |
phylink_set(mac_supported, 40000baseKR4_Full); |
|
894 |
phylink_set(mac_supported, 40000baseCR4_Full); |
|
895 |
phylink_set(mac_supported, 40000baseSR4_Full); |
|
896 |
phylink_set(mac_supported, 40000baseLR4_Full); |
|
897 |
} |
|
898 |
if (!max_speed || (max_speed >= 50000)) { |
|
899 |
phylink_set(mac_supported, 50000baseCR2_Full); |
|
900 |
phylink_set(mac_supported, 50000baseKR2_Full); |
|
901 |
phylink_set(mac_supported, 50000baseSR2_Full); |
|
902 |
phylink_set(mac_supported, 50000baseKR_Full); |
|
903 |
phylink_set(mac_supported, 50000baseSR_Full); |
|
904 |
phylink_set(mac_supported, 50000baseCR_Full); |
|
905 |
phylink_set(mac_supported, 50000baseLR_ER_FR_Full); |
|
906 |
phylink_set(mac_supported, 50000baseDR_Full); |
|
907 |
} |
|
908 |
if (!max_speed || (max_speed >= 100000)) { |
|
909 |
phylink_set(mac_supported, 100000baseKR4_Full); |
|
910 |
phylink_set(mac_supported, 100000baseSR4_Full); |
|
911 |
phylink_set(mac_supported, 100000baseCR4_Full); |
|
912 |
phylink_set(mac_supported, 100000baseLR4_ER4_Full); |
|
913 |
phylink_set(mac_supported, 100000baseKR2_Full); |
|
914 |
phylink_set(mac_supported, 100000baseSR2_Full); |
|
915 |
phylink_set(mac_supported, 100000baseCR2_Full); |
|
916 |
phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); |
|
917 |
phylink_set(mac_supported, 100000baseDR2_Full); |
|
918 |
} |
|
919 |
} |
|
920 |
|
|
921 |
/* Half-Duplex can only work with single queue */ |
|
922 |
if (tx_cnt > 1) { |
|
923 |
phylink_set(mask, 10baseT_Half); |
|
924 |
phylink_set(mask, 100baseT_Half); |
|
925 |
phylink_set(mask, 1000baseT_Half); |
|
926 |
} |
|
927 |
|
|
928 |
linkmode_and(supported, supported, mac_supported); |
|
929 |
linkmode_andnot(supported, supported, mask); |
|
930 |
|
|
931 |
linkmode_and(state->advertising, state->advertising, mac_supported); |
|
932 |
linkmode_andnot(state->advertising, state->advertising, mask); |
|
933 |
|
|
934 |
/* If PCS is supported, check which modes it supports. */ |
|
935 |
stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state); |
|
936 |
} |
|
937 |
|
|
938 |
static void stmmac_mac_pcs_get_state(struct phylink_config *config, |
|
939 |
struct phylink_link_state *state) |
|
940 |
{ |
|
941 |
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
|
942 |
|
|
943 |
state->link = 0; |
|
944 |
stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state); |
|
945 |
} |
|
946 |
|
|
947 |
static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, |
|
948 |
const struct phylink_link_state *state) |
|
949 |
{ |
|
950 |
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
|
951 |
|
|
952 |
stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state); |
|
953 |
} |
|
954 |
|
|
955 |
static void stmmac_mac_an_restart(struct phylink_config *config) |
|
956 |
{ |
|
957 |
/* Not Supported */ |
|
958 |
} |
|
959 |
|
|
960 |
static void stmmac_mac_link_down(struct phylink_config *config, |
|
961 |
unsigned int mode, phy_interface_t interface) |
|
962 |
{ |
|
963 |
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
|
964 |
|
|
965 |
stmmac_mac_set(priv, priv->ioaddr, false); |
|
966 |
priv->eee_active = false; |
|
967 |
priv->tx_lpi_enabled = false; |
|
968 |
stmmac_eee_init(priv); |
|
969 |
stmmac_set_eee_pls(priv, priv->hw, false); |
|
970 |
} |
|
971 |
|
|
972 |
static void stmmac_mac_link_up(struct phylink_config *config, |
|
973 |
struct phy_device *phy, |
|
974 |
unsigned int mode, phy_interface_t interface, |
|
975 |
int speed, int duplex, |
|
976 |
bool tx_pause, bool rx_pause) |
|
977 |
{ |
|
978 |
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); |
|
979 |
u32 ctrl; |
|
980 |
|
|
981 |
stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface); |
|
982 |
|
|
983 |
ctrl = readl(priv->ioaddr + MAC_CTRL_REG); |
|
984 |
ctrl &= ~priv->hw->link.speed_mask; |
|
985 |
|
|
986 |
if (interface == PHY_INTERFACE_MODE_USXGMII) { |
|
987 |
switch (speed) { |
|
988 |
case SPEED_10000: |
|
989 |
ctrl |= priv->hw->link.xgmii.speed10000; |
|
990 |
break; |
|
991 |
case SPEED_5000: |
|
992 |
ctrl |= priv->hw->link.xgmii.speed5000; |
|
993 |
break; |
|
994 |
case SPEED_2500: |
|
995 |
ctrl |= priv->hw->link.xgmii.speed2500; |
|
996 |
break; |
|
997 |
default: |
|
998 |
return; |
|
999 |
} |
|
1000 |
} else if (interface == PHY_INTERFACE_MODE_XLGMII) { |
|
1001 |
switch (speed) { |
|
1002 |
case SPEED_100000: |
|
1003 |
ctrl |= priv->hw->link.xlgmii.speed100000; |
|
1004 |
break; |
|
1005 |
case SPEED_50000: |
|
1006 |
ctrl |= priv->hw->link.xlgmii.speed50000; |
|
1007 |
break; |
|
1008 |
case SPEED_40000: |
|
1009 |
ctrl |= priv->hw->link.xlgmii.speed40000; |
|
1010 |
break; |
|
1011 |
case SPEED_25000: |
|
1012 |
ctrl |= priv->hw->link.xlgmii.speed25000; |
|
1013 |
break; |
|
1014 |
case SPEED_10000: |
|
1015 |
ctrl |= priv->hw->link.xgmii.speed10000; |
|
1016 |
break; |
|
1017 |
case SPEED_2500: |
|
1018 |
ctrl |= priv->hw->link.speed2500; |
|
1019 |
break; |
|
1020 |
case SPEED_1000: |
|
1021 |
ctrl |= priv->hw->link.speed1000; |
|
1022 |
break; |
|
1023 |
default: |
|
1024 |
return; |
|
1025 |
} |
|
1026 |
} else { |
|
1027 |
switch (speed) { |
|
1028 |
case SPEED_2500: |
|
1029 |
ctrl |= priv->hw->link.speed2500; |
|
1030 |
break; |
|
1031 |
case SPEED_1000: |
|
1032 |
ctrl |= priv->hw->link.speed1000; |
|
1033 |
break; |
|
1034 |
case SPEED_100: |
|
1035 |
ctrl |= priv->hw->link.speed100; |
|
1036 |
break; |
|
1037 |
case SPEED_10: |
|
1038 |
ctrl |= priv->hw->link.speed10; |
|
1039 |
break; |
|
1040 |
default: |
|
1041 |
return; |
|
1042 |
} |
|
1043 |
} |
|
1044 |
|
|
1045 |
priv->speed = speed; |
|
1046 |
|
|
1047 |
if (priv->plat->fix_mac_speed) |
|
1048 |
priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); |
|
1049 |
|
|
1050 |
if (!duplex) |
|
1051 |
ctrl &= ~priv->hw->link.duplex; |
|
1052 |
else |
|
1053 |
ctrl |= priv->hw->link.duplex; |
|
1054 |
|
|
1055 |
/* Flow Control operation */ |
|
1056 |
if (rx_pause && tx_pause) |
|
1057 |
priv->flow_ctrl = FLOW_AUTO; |
|
1058 |
else if (rx_pause && !tx_pause) |
|
1059 |
priv->flow_ctrl = FLOW_RX; |
|
1060 |
else if (!rx_pause && tx_pause) |
|
1061 |
priv->flow_ctrl = FLOW_TX; |
|
1062 |
else |
|
1063 |
priv->flow_ctrl = FLOW_OFF; |
|
1064 |
|
|
1065 |
stmmac_mac_flow_ctrl(priv, duplex); |
|
1066 |
|
|
1067 |
writel(ctrl, priv->ioaddr + MAC_CTRL_REG); |
|
1068 |
|
|
1069 |
stmmac_mac_set(priv, priv->ioaddr, true); |
|
1070 |
if (phy && priv->dma_cap.eee) { |
|
1071 |
priv->eee_active = phy_init_eee(phy, 1) >= 0; |
|
1072 |
priv->eee_enabled = stmmac_eee_init(priv); |
|
1073 |
priv->tx_lpi_enabled = priv->eee_enabled; |
|
1074 |
stmmac_set_eee_pls(priv, priv->hw, true); |
|
1075 |
} |
|
1076 |
} |
|
1077 |
|
|
1078 |
static const struct phylink_mac_ops stmmac_phylink_mac_ops = { |
|
1079 |
.validate = stmmac_validate, |
|
1080 |
.mac_pcs_get_state = stmmac_mac_pcs_get_state, |
|
1081 |
.mac_config = stmmac_mac_config, |
|
1082 |
.mac_an_restart = stmmac_mac_an_restart, |
|
1083 |
.mac_link_down = stmmac_mac_link_down, |
|
1084 |
.mac_link_up = stmmac_mac_link_up, |
|
1085 |
}; |
|
1086 |
|
|
1087 |
/** |
|
1088 |
* stmmac_check_pcs_mode - verify if RGMII/SGMII is supported |
|
1089 |
* @priv: driver private structure |
|
1090 |
* Description: this is to verify if the HW supports the PCS. |
|
1091 |
* Physical Coding Sublayer (PCS) interface that can be used when the MAC is |
|
1092 |
* configured for the TBI, RTBI, or SGMII PHY interface. |
|
1093 |
*/ |
|
1094 |
static void stmmac_check_pcs_mode(struct stmmac_priv *priv) |
|
1095 |
{ |
|
1096 |
int interface = priv->plat->interface; |
|
1097 |
|
|
1098 |
if (priv->dma_cap.pcs) { |
|
1099 |
if ((interface == PHY_INTERFACE_MODE_RGMII) || |
|
1100 |
(interface == PHY_INTERFACE_MODE_RGMII_ID) || |
|
1101 |
(interface == PHY_INTERFACE_MODE_RGMII_RXID) || |
|
1102 |
(interface == PHY_INTERFACE_MODE_RGMII_TXID)) { |
|
1103 |
netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); |
|
1104 |
priv->hw->pcs = STMMAC_PCS_RGMII; |
|
1105 |
} else if (interface == PHY_INTERFACE_MODE_SGMII) { |
|
1106 |
netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); |
|
1107 |
priv->hw->pcs = STMMAC_PCS_SGMII; |
|
1108 |
} |
|
1109 |
} |
|
1110 |
} |
|
1111 |
|
|
1112 |
/** |
|
1113 |
* stmmac_init_phy - PHY initialization |
|
1114 |
* @dev: net device structure |
|
1115 |
* Description: it initializes the driver's PHY state, and attaches the PHY |
|
1116 |
* to the mac driver. |
|
1117 |
* Return value: |
|
1118 |
* 0 on success |
|
1119 |
*/ |
|
1120 |
static int stmmac_init_phy(struct net_device *dev) |
|
1121 |
{ |
|
1122 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
1123 |
struct device_node *node; |
|
1124 |
int ret; |
|
1125 |
|
|
1126 |
if (priv->plat->integrated_phy_power) |
|
1127 |
ret = priv->plat->integrated_phy_power(priv->plat->bsp_priv, true); |
|
1128 |
|
|
1129 |
node = priv->plat->phylink_node; |
|
1130 |
|
|
1131 |
if (node) |
|
1132 |
ret = phylink_of_phy_connect(priv->phylink, node, 0); |
|
1133 |
|
|
1134 |
/* Some DT bindings do not set-up the PHY handle. Let's try to |
|
1135 |
* manually parse it |
|
1136 |
*/ |
|
1137 |
if (!node || ret) { |
|
1138 |
int addr = priv->plat->phy_addr; |
|
1139 |
struct phy_device *phydev; |
|
1140 |
|
|
1141 |
phydev = mdiobus_get_phy(priv->mii, addr); |
|
1142 |
if (!phydev) { |
|
1143 |
netdev_err(priv->dev, "no phy at addr %d\n", addr); |
|
1144 |
return -ENODEV; |
|
1145 |
} |
|
1146 |
|
|
1147 |
ret = phylink_connect_phy(priv->phylink, phydev); |
|
1148 |
} |
|
1149 |
|
|
1150 |
if (!priv->plat->pmt) { |
|
1151 |
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; |
|
1152 |
|
|
1153 |
phylink_ethtool_get_wol(priv->phylink, &wol); |
|
1154 |
device_set_wakeup_capable(priv->device, !!wol.supported); |
|
1155 |
} |
|
1156 |
|
|
1157 |
return ret; |
|
1158 |
} |
|
1159 |
|
|
1160 |
static int stmmac_phy_setup(struct stmmac_priv *priv) |
|
1161 |
{ |
|
1162 |
struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); |
|
1163 |
int mode = priv->plat->phy_interface; |
|
1164 |
struct phylink *phylink; |
|
1165 |
|
|
1166 |
priv->phylink_config.dev = &priv->dev->dev; |
|
1167 |
priv->phylink_config.type = PHYLINK_NETDEV; |
|
1168 |
priv->phylink_config.pcs_poll = true; |
|
1169 |
|
|
1170 |
if (!fwnode) |
|
1171 |
fwnode = dev_fwnode(priv->device); |
|
1172 |
|
|
1173 |
phylink = phylink_create(&priv->phylink_config, fwnode, |
|
1174 |
mode, &stmmac_phylink_mac_ops); |
|
1175 |
if (IS_ERR(phylink)) |
|
1176 |
return PTR_ERR(phylink); |
|
1177 |
|
|
1178 |
priv->phylink = phylink; |
|
1179 |
return 0; |
|
1180 |
} |
|
1181 |
|
|
1182 |
static void stmmac_display_rx_rings(struct stmmac_priv *priv) |
|
1183 |
{ |
|
1184 |
u32 rx_cnt = priv->plat->rx_queues_to_use; |
|
1185 |
unsigned int desc_size; |
|
1186 |
void *head_rx; |
|
1187 |
u32 queue; |
|
1188 |
|
|
1189 |
/* Display RX rings */ |
|
1190 |
for (queue = 0; queue < rx_cnt; queue++) { |
|
1191 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1192 |
|
|
1193 |
pr_info("\tRX Queue %u rings\n", queue); |
|
1194 |
|
|
1195 |
if (priv->extend_desc) { |
|
1196 |
head_rx = (void *)rx_q->dma_erx; |
|
1197 |
desc_size = sizeof(struct dma_extended_desc); |
|
1198 |
} else { |
|
1199 |
head_rx = (void *)rx_q->dma_rx; |
|
1200 |
desc_size = sizeof(struct dma_desc); |
|
1201 |
} |
|
1202 |
|
|
1203 |
/* Display RX ring */ |
|
1204 |
stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, |
|
1205 |
rx_q->dma_rx_phy, desc_size); |
|
1206 |
} |
|
1207 |
} |
|
1208 |
|
|
1209 |
static void stmmac_display_tx_rings(struct stmmac_priv *priv) |
|
1210 |
{ |
|
1211 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
1212 |
unsigned int desc_size; |
|
1213 |
void *head_tx; |
|
1214 |
u32 queue; |
|
1215 |
|
|
1216 |
/* Display TX rings */ |
|
1217 |
for (queue = 0; queue < tx_cnt; queue++) { |
|
1218 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1219 |
|
|
1220 |
pr_info("\tTX Queue %d rings\n", queue); |
|
1221 |
|
|
1222 |
if (priv->extend_desc) { |
|
1223 |
head_tx = (void *)tx_q->dma_etx; |
|
1224 |
desc_size = sizeof(struct dma_extended_desc); |
|
1225 |
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) { |
|
1226 |
head_tx = (void *)tx_q->dma_entx; |
|
1227 |
desc_size = sizeof(struct dma_edesc); |
|
1228 |
} else { |
|
1229 |
head_tx = (void *)tx_q->dma_tx; |
|
1230 |
desc_size = sizeof(struct dma_desc); |
|
1231 |
} |
|
1232 |
|
|
1233 |
stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, |
|
1234 |
tx_q->dma_tx_phy, desc_size); |
|
1235 |
} |
|
1236 |
} |
|
1237 |
|
|
1238 |
static void stmmac_display_rings(struct stmmac_priv *priv) |
|
1239 |
{ |
|
1240 |
/* Display RX ring */ |
|
1241 |
stmmac_display_rx_rings(priv); |
|
1242 |
|
|
1243 |
/* Display TX ring */ |
|
1244 |
stmmac_display_tx_rings(priv); |
|
1245 |
} |
|
1246 |
|
|
1247 |
static int stmmac_set_bfsize(int mtu, int bufsize) |
|
1248 |
{ |
|
1249 |
int ret = bufsize; |
|
1250 |
|
|
1251 |
if (mtu >= BUF_SIZE_8KiB) |
|
1252 |
ret = BUF_SIZE_16KiB; |
|
1253 |
else if (mtu >= BUF_SIZE_4KiB) |
|
1254 |
ret = BUF_SIZE_8KiB; |
|
1255 |
else if (mtu >= BUF_SIZE_2KiB) |
|
1256 |
ret = BUF_SIZE_4KiB; |
|
1257 |
else if (mtu > DEFAULT_BUFSIZE) |
|
1258 |
ret = BUF_SIZE_2KiB; |
|
1259 |
else |
|
1260 |
ret = DEFAULT_BUFSIZE; |
|
1261 |
|
|
1262 |
return ret; |
|
1263 |
} |
|
1264 |
|
|
1265 |
/** |
|
1266 |
* stmmac_clear_rx_descriptors - clear RX descriptors |
|
1267 |
* @priv: driver private structure |
|
1268 |
* @queue: RX queue index |
|
1269 |
* Description: this function is called to clear the RX descriptors |
|
1270 |
* in case of both basic and extended descriptors are used. |
|
1271 |
*/ |
|
1272 |
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) |
|
1273 |
{ |
|
1274 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1275 |
int i; |
|
1276 |
|
|
1277 |
/* Clear the RX descriptors */ |
|
1278 |
for (i = 0; i < priv->dma_rx_size; i++) |
|
1279 |
if (priv->extend_desc) |
|
1280 |
stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, |
|
1281 |
priv->use_riwt, priv->mode, |
|
1282 |
(i == priv->dma_rx_size - 1), |
|
1283 |
priv->dma_buf_sz); |
|
1284 |
else |
|
1285 |
stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], |
|
1286 |
priv->use_riwt, priv->mode, |
|
1287 |
(i == priv->dma_rx_size - 1), |
|
1288 |
priv->dma_buf_sz); |
|
1289 |
} |
|
1290 |
|
|
1291 |
/** |
|
1292 |
* stmmac_clear_tx_descriptors - clear tx descriptors |
|
1293 |
* @priv: driver private structure |
|
1294 |
* @queue: TX queue index. |
|
1295 |
* Description: this function is called to clear the TX descriptors |
|
1296 |
* in case of both basic and extended descriptors are used. |
|
1297 |
*/ |
|
1298 |
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) |
|
1299 |
{ |
|
1300 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1301 |
int i; |
|
1302 |
|
|
1303 |
/* Clear the TX descriptors */ |
|
1304 |
for (i = 0; i < priv->dma_tx_size; i++) { |
|
1305 |
int last = (i == (priv->dma_tx_size - 1)); |
|
1306 |
struct dma_desc *p; |
|
1307 |
|
|
1308 |
if (priv->extend_desc) |
|
1309 |
p = &tx_q->dma_etx[i].basic; |
|
1310 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
1311 |
p = &tx_q->dma_entx[i].basic; |
|
1312 |
else |
|
1313 |
p = &tx_q->dma_tx[i]; |
|
1314 |
|
|
1315 |
stmmac_init_tx_desc(priv, p, priv->mode, last); |
|
1316 |
} |
|
1317 |
} |
|
1318 |
|
|
1319 |
/** |
|
1320 |
* stmmac_clear_descriptors - clear descriptors |
|
1321 |
* @priv: driver private structure |
|
1322 |
* Description: this function is called to clear the TX and RX descriptors |
|
1323 |
* in case of both basic and extended descriptors are used. |
|
1324 |
*/ |
|
1325 |
static void stmmac_clear_descriptors(struct stmmac_priv *priv) |
|
1326 |
{ |
|
1327 |
u32 rx_queue_cnt = priv->plat->rx_queues_to_use; |
|
1328 |
u32 tx_queue_cnt = priv->plat->tx_queues_to_use; |
|
1329 |
u32 queue; |
|
1330 |
|
|
1331 |
/* Clear the RX descriptors */ |
|
1332 |
for (queue = 0; queue < rx_queue_cnt; queue++) |
|
1333 |
stmmac_clear_rx_descriptors(priv, queue); |
|
1334 |
|
|
1335 |
/* Clear the TX descriptors */ |
|
1336 |
for (queue = 0; queue < tx_queue_cnt; queue++) |
|
1337 |
stmmac_clear_tx_descriptors(priv, queue); |
|
1338 |
} |
|
1339 |
|
|
1340 |
/** |
|
1341 |
* stmmac_init_rx_buffers - init the RX descriptor buffer. |
|
1342 |
* @priv: driver private structure |
|
1343 |
* @p: descriptor pointer |
|
1344 |
* @i: descriptor index |
|
1345 |
* @flags: gfp flag |
|
1346 |
* @queue: RX queue index |
|
1347 |
* Description: this function is called to allocate a receive buffer, perform |
|
1348 |
* the DMA mapping and init the descriptor. |
|
1349 |
*/ |
|
1350 |
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, |
|
1351 |
int i, gfp_t flags, u32 queue) |
|
1352 |
{ |
|
1353 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1354 |
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; |
|
1355 |
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); |
|
1356 |
|
|
1357 |
if (priv->dma_cap.addr64 <= 32) |
|
1358 |
gfp |= GFP_DMA32; |
|
1359 |
|
|
1360 |
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
|
1361 |
if (!buf->page) |
|
1362 |
return -ENOMEM; |
|
1363 |
|
|
1364 |
if (priv->sph) { |
|
1365 |
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
|
1366 |
if (!buf->sec_page) |
|
1367 |
return -ENOMEM; |
|
1368 |
|
|
1369 |
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); |
|
1370 |
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); |
|
1371 |
} else { |
|
1372 |
buf->sec_page = NULL; |
|
1373 |
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); |
|
1374 |
} |
|
1375 |
|
|
1376 |
buf->addr = page_pool_get_dma_addr(buf->page); |
|
1377 |
stmmac_set_desc_addr(priv, p, buf->addr); |
|
1378 |
if (priv->dma_buf_sz == BUF_SIZE_16KiB) |
|
1379 |
stmmac_init_desc3(priv, p); |
|
1380 |
|
|
1381 |
return 0; |
|
1382 |
} |
|
1383 |
|
|
1384 |
/** |
|
1385 |
* stmmac_free_rx_buffer - free RX dma buffers |
|
1386 |
* @priv: private structure |
|
1387 |
* @queue: RX queue index |
|
1388 |
* @i: buffer index. |
|
1389 |
*/ |
|
1390 |
static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) |
|
1391 |
{ |
|
1392 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1393 |
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; |
|
1394 |
|
|
1395 |
if (buf->page) |
|
1396 |
page_pool_put_full_page(rx_q->page_pool, buf->page, false); |
|
1397 |
buf->page = NULL; |
|
1398 |
|
|
1399 |
if (buf->sec_page) |
|
1400 |
page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); |
|
1401 |
buf->sec_page = NULL; |
|
1402 |
} |
|
1403 |
|
|
1404 |
/** |
|
1405 |
* stmmac_free_tx_buffer - free RX dma buffers |
|
1406 |
* @priv: private structure |
|
1407 |
* @queue: RX queue index |
|
1408 |
* @i: buffer index. |
|
1409 |
*/ |
|
1410 |
static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) |
|
1411 |
{ |
|
1412 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1413 |
|
|
1414 |
if (tx_q->tx_skbuff_dma[i].buf) { |
|
1415 |
if (tx_q->tx_skbuff_dma[i].map_as_page) |
|
1416 |
dma_unmap_page(priv->device, |
|
1417 |
tx_q->tx_skbuff_dma[i].buf, |
|
1418 |
tx_q->tx_skbuff_dma[i].len, |
|
1419 |
DMA_TO_DEVICE); |
|
1420 |
else |
|
1421 |
dma_unmap_single(priv->device, |
|
1422 |
tx_q->tx_skbuff_dma[i].buf, |
|
1423 |
tx_q->tx_skbuff_dma[i].len, |
|
1424 |
DMA_TO_DEVICE); |
|
1425 |
} |
|
1426 |
|
|
1427 |
if (tx_q->tx_skbuff[i]) { |
|
1428 |
dev_kfree_skb_any(tx_q->tx_skbuff[i]); |
|
1429 |
tx_q->tx_skbuff[i] = NULL; |
|
1430 |
tx_q->tx_skbuff_dma[i].buf = 0; |
|
1431 |
tx_q->tx_skbuff_dma[i].map_as_page = false; |
|
1432 |
} |
|
1433 |
} |
|
1434 |
|
|
1435 |
/** |
|
1436 |
* init_dma_rx_desc_rings - init the RX descriptor rings |
|
1437 |
* @dev: net device structure |
|
1438 |
* @flags: gfp flag. |
|
1439 |
* Description: this function initializes the DMA RX descriptors |
|
1440 |
* and allocates the socket buffers. It supports the chained and ring |
|
1441 |
* modes. |
|
1442 |
*/ |
|
1443 |
static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) |
|
1444 |
{ |
|
1445 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
1446 |
u32 rx_count = priv->plat->rx_queues_to_use; |
|
1447 |
int ret = -ENOMEM; |
|
1448 |
int queue; |
|
1449 |
int i; |
|
1450 |
|
|
1451 |
/* RX INITIALIZATION */ |
|
1452 |
netif_dbg(priv, probe, priv->dev, |
|
1453 |
"SKB addresses:\nskb\t\tskb data\tdma data\n"); |
|
1454 |
|
|
1455 |
for (queue = 0; queue < rx_count; queue++) { |
|
1456 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1457 |
|
|
1458 |
netif_dbg(priv, probe, priv->dev, |
|
1459 |
"(%s) dma_rx_phy=0x%08x\n", __func__, |
|
1460 |
(u32)rx_q->dma_rx_phy); |
|
1461 |
|
|
1462 |
stmmac_clear_rx_descriptors(priv, queue); |
|
1463 |
|
|
1464 |
for (i = 0; i < priv->dma_rx_size; i++) { |
|
1465 |
struct dma_desc *p; |
|
1466 |
|
|
1467 |
if (priv->extend_desc) |
|
1468 |
p = &((rx_q->dma_erx + i)->basic); |
|
1469 |
else |
|
1470 |
p = rx_q->dma_rx + i; |
|
1471 |
|
|
1472 |
ret = stmmac_init_rx_buffers(priv, p, i, flags, |
|
1473 |
queue); |
|
1474 |
if (ret) |
|
1475 |
goto err_init_rx_buffers; |
|
1476 |
} |
|
1477 |
|
|
1478 |
rx_q->cur_rx = 0; |
|
1479 |
rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size); |
|
1480 |
|
|
1481 |
/* Setup the chained descriptor addresses */ |
|
1482 |
if (priv->mode == STMMAC_CHAIN_MODE) { |
|
1483 |
if (priv->extend_desc) |
|
1484 |
stmmac_mode_init(priv, rx_q->dma_erx, |
|
1485 |
rx_q->dma_rx_phy, |
|
1486 |
priv->dma_rx_size, 1); |
|
1487 |
else |
|
1488 |
stmmac_mode_init(priv, rx_q->dma_rx, |
|
1489 |
rx_q->dma_rx_phy, |
|
1490 |
priv->dma_rx_size, 0); |
|
1491 |
} |
|
1492 |
} |
|
1493 |
|
|
1494 |
return 0; |
|
1495 |
|
|
1496 |
err_init_rx_buffers: |
|
1497 |
while (queue >= 0) { |
|
1498 |
while (--i >= 0) |
|
1499 |
stmmac_free_rx_buffer(priv, queue, i); |
|
1500 |
|
|
1501 |
if (queue == 0) |
|
1502 |
break; |
|
1503 |
|
|
1504 |
i = priv->dma_rx_size; |
|
1505 |
queue--; |
|
1506 |
} |
|
1507 |
|
|
1508 |
return ret; |
|
1509 |
} |
|
1510 |
|
|
1511 |
/** |
|
1512 |
* init_dma_tx_desc_rings - init the TX descriptor rings |
|
1513 |
* @dev: net device structure. |
|
1514 |
* Description: this function initializes the DMA TX descriptors |
|
1515 |
* and allocates the socket buffers. It supports the chained and ring |
|
1516 |
* modes. |
|
1517 |
*/ |
|
1518 |
static int init_dma_tx_desc_rings(struct net_device *dev) |
|
1519 |
{ |
|
1520 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
1521 |
u32 tx_queue_cnt = priv->plat->tx_queues_to_use; |
|
1522 |
u32 queue; |
|
1523 |
int i; |
|
1524 |
|
|
1525 |
for (queue = 0; queue < tx_queue_cnt; queue++) { |
|
1526 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1527 |
|
|
1528 |
netif_dbg(priv, probe, priv->dev, |
|
1529 |
"(%s) dma_tx_phy=0x%08x\n", __func__, |
|
1530 |
(u32)tx_q->dma_tx_phy); |
|
1531 |
|
|
1532 |
/* Setup the chained descriptor addresses */ |
|
1533 |
if (priv->mode == STMMAC_CHAIN_MODE) { |
|
1534 |
if (priv->extend_desc) |
|
1535 |
stmmac_mode_init(priv, tx_q->dma_etx, |
|
1536 |
tx_q->dma_tx_phy, |
|
1537 |
priv->dma_tx_size, 1); |
|
1538 |
else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) |
|
1539 |
stmmac_mode_init(priv, tx_q->dma_tx, |
|
1540 |
tx_q->dma_tx_phy, |
|
1541 |
priv->dma_tx_size, 0); |
|
1542 |
} |
|
1543 |
|
|
1544 |
for (i = 0; i < priv->dma_tx_size; i++) { |
|
1545 |
struct dma_desc *p; |
|
1546 |
if (priv->extend_desc) |
|
1547 |
p = &((tx_q->dma_etx + i)->basic); |
|
1548 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
1549 |
p = &((tx_q->dma_entx + i)->basic); |
|
1550 |
else |
|
1551 |
p = tx_q->dma_tx + i; |
|
1552 |
|
|
1553 |
stmmac_clear_desc(priv, p); |
|
1554 |
|
|
1555 |
tx_q->tx_skbuff_dma[i].buf = 0; |
|
1556 |
tx_q->tx_skbuff_dma[i].map_as_page = false; |
|
1557 |
tx_q->tx_skbuff_dma[i].len = 0; |
|
1558 |
tx_q->tx_skbuff_dma[i].last_segment = false; |
|
1559 |
tx_q->tx_skbuff[i] = NULL; |
|
1560 |
} |
|
1561 |
|
|
1562 |
tx_q->dirty_tx = 0; |
|
1563 |
tx_q->cur_tx = 0; |
|
1564 |
tx_q->mss = 0; |
|
1565 |
|
|
1566 |
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); |
|
1567 |
} |
|
1568 |
|
|
1569 |
return 0; |
|
1570 |
} |
|
1571 |
|
|
1572 |
/** |
|
1573 |
* init_dma_desc_rings - init the RX/TX descriptor rings |
|
1574 |
* @dev: net device structure |
|
1575 |
* @flags: gfp flag. |
|
1576 |
* Description: this function initializes the DMA RX/TX descriptors |
|
1577 |
* and allocates the socket buffers. It supports the chained and ring |
|
1578 |
* modes. |
|
1579 |
*/ |
|
1580 |
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) |
|
1581 |
{ |
|
1582 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
1583 |
int ret; |
|
1584 |
|
|
1585 |
ret = init_dma_rx_desc_rings(dev, flags); |
|
1586 |
if (ret) |
|
1587 |
return ret; |
|
1588 |
|
|
1589 |
ret = init_dma_tx_desc_rings(dev); |
|
1590 |
|
|
1591 |
stmmac_clear_descriptors(priv); |
|
1592 |
|
|
1593 |
if (netif_msg_hw(priv)) |
|
1594 |
stmmac_display_rings(priv); |
|
1595 |
|
|
1596 |
return ret; |
|
1597 |
} |
|
1598 |
|
|
1599 |
/** |
|
1600 |
* dma_free_rx_skbufs - free RX dma buffers |
|
1601 |
* @priv: private structure |
|
1602 |
* @queue: RX queue index |
|
1603 |
*/ |
|
1604 |
static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) |
|
1605 |
{ |
|
1606 |
int i; |
|
1607 |
|
|
1608 |
for (i = 0; i < priv->dma_rx_size; i++) |
|
1609 |
stmmac_free_rx_buffer(priv, queue, i); |
|
1610 |
} |
|
1611 |
|
|
1612 |
/** |
|
1613 |
* dma_free_tx_skbufs - free TX dma buffers |
|
1614 |
* @priv: private structure |
|
1615 |
* @queue: TX queue index |
|
1616 |
*/ |
|
1617 |
static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) |
|
1618 |
{ |
|
1619 |
int i; |
|
1620 |
|
|
1621 |
for (i = 0; i < priv->dma_tx_size; i++) |
|
1622 |
stmmac_free_tx_buffer(priv, queue, i); |
|
1623 |
} |
|
1624 |
|
|
1625 |
/** |
|
1626 |
* stmmac_free_tx_skbufs - free TX skb buffers |
|
1627 |
* @priv: private structure |
|
1628 |
*/ |
|
1629 |
static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) |
|
1630 |
{ |
|
1631 |
u32 tx_queue_cnt = priv->plat->tx_queues_to_use; |
|
1632 |
u32 queue; |
|
1633 |
|
|
1634 |
for (queue = 0; queue < tx_queue_cnt; queue++) |
|
1635 |
dma_free_tx_skbufs(priv, queue); |
|
1636 |
} |
|
1637 |
|
|
1638 |
/** |
|
1639 |
* free_dma_rx_desc_resources - free RX dma desc resources |
|
1640 |
* @priv: private structure |
|
1641 |
*/ |
|
1642 |
static void free_dma_rx_desc_resources(struct stmmac_priv *priv) |
|
1643 |
{ |
|
1644 |
u32 rx_count = priv->plat->rx_queues_to_use; |
|
1645 |
u32 queue; |
|
1646 |
|
|
1647 |
/* Free RX queue resources */ |
|
1648 |
for (queue = 0; queue < rx_count; queue++) { |
|
1649 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1650 |
|
|
1651 |
/* Release the DMA RX socket buffers */ |
|
1652 |
dma_free_rx_skbufs(priv, queue); |
|
1653 |
|
|
1654 |
/* Free DMA regions of consistent memory previously allocated */ |
|
1655 |
if (!priv->extend_desc) |
|
1656 |
dma_free_coherent(priv->device, priv->dma_rx_size * |
|
1657 |
sizeof(struct dma_desc), |
|
1658 |
rx_q->dma_rx, rx_q->dma_rx_phy); |
|
1659 |
else |
|
1660 |
dma_free_coherent(priv->device, priv->dma_rx_size * |
|
1661 |
sizeof(struct dma_extended_desc), |
|
1662 |
rx_q->dma_erx, rx_q->dma_rx_phy); |
|
1663 |
|
|
1664 |
kfree(rx_q->buf_pool); |
|
1665 |
if (rx_q->page_pool) |
|
1666 |
page_pool_destroy(rx_q->page_pool); |
|
1667 |
} |
|
1668 |
} |
|
1669 |
|
|
1670 |
/** |
|
1671 |
* free_dma_tx_desc_resources - free TX dma desc resources |
|
1672 |
* @priv: private structure |
|
1673 |
*/ |
|
1674 |
static void free_dma_tx_desc_resources(struct stmmac_priv *priv) |
|
1675 |
{ |
|
1676 |
u32 tx_count = priv->plat->tx_queues_to_use; |
|
1677 |
u32 queue; |
|
1678 |
|
|
1679 |
/* Free TX queue resources */ |
|
1680 |
for (queue = 0; queue < tx_count; queue++) { |
|
1681 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1682 |
size_t size; |
|
1683 |
void *addr; |
|
1684 |
|
|
1685 |
/* Release the DMA TX socket buffers */ |
|
1686 |
dma_free_tx_skbufs(priv, queue); |
|
1687 |
|
|
1688 |
if (priv->extend_desc) { |
|
1689 |
size = sizeof(struct dma_extended_desc); |
|
1690 |
addr = tx_q->dma_etx; |
|
1691 |
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) { |
|
1692 |
size = sizeof(struct dma_edesc); |
|
1693 |
addr = tx_q->dma_entx; |
|
1694 |
} else { |
|
1695 |
size = sizeof(struct dma_desc); |
|
1696 |
addr = tx_q->dma_tx; |
|
1697 |
} |
|
1698 |
|
|
1699 |
size *= priv->dma_tx_size; |
|
1700 |
|
|
1701 |
dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); |
|
1702 |
|
|
1703 |
kfree(tx_q->tx_skbuff_dma); |
|
1704 |
kfree(tx_q->tx_skbuff); |
|
1705 |
} |
|
1706 |
} |
|
1707 |
|
|
1708 |
/** |
|
1709 |
* alloc_dma_rx_desc_resources - alloc RX resources. |
|
1710 |
* @priv: private structure |
|
1711 |
* Description: according to which descriptor can be used (extend or basic) |
|
1712 |
* this function allocates the resources for TX and RX paths. In case of |
|
1713 |
* reception, for example, it pre-allocated the RX socket buffer in order to |
|
1714 |
* allow zero-copy mechanism. |
|
1715 |
*/ |
|
1716 |
static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) |
|
1717 |
{ |
|
1718 |
u32 rx_count = priv->plat->rx_queues_to_use; |
|
1719 |
int ret = -ENOMEM; |
|
1720 |
u32 queue; |
|
1721 |
|
|
1722 |
/* RX queues buffers and DMA */ |
|
1723 |
for (queue = 0; queue < rx_count; queue++) { |
|
1724 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
1725 |
struct page_pool_params pp_params = { 0 }; |
|
1726 |
unsigned int num_pages; |
|
1727 |
|
|
1728 |
rx_q->queue_index = queue; |
|
1729 |
rx_q->priv_data = priv; |
|
1730 |
|
|
1731 |
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; |
|
1732 |
pp_params.pool_size = priv->dma_rx_size; |
|
1733 |
num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); |
|
1734 |
pp_params.order = ilog2(num_pages); |
|
1735 |
pp_params.nid = dev_to_node(priv->device); |
|
1736 |
pp_params.dev = priv->device; |
|
1737 |
pp_params.dma_dir = DMA_FROM_DEVICE; |
|
1738 |
pp_params.max_len = num_pages * PAGE_SIZE; |
|
1739 |
|
|
1740 |
rx_q->page_pool = page_pool_create(&pp_params); |
|
1741 |
if (IS_ERR(rx_q->page_pool)) { |
|
1742 |
ret = PTR_ERR(rx_q->page_pool); |
|
1743 |
rx_q->page_pool = NULL; |
|
1744 |
goto err_dma; |
|
1745 |
} |
|
1746 |
|
|
1747 |
rx_q->buf_pool = kcalloc(priv->dma_rx_size, |
|
1748 |
sizeof(*rx_q->buf_pool), |
|
1749 |
GFP_KERNEL); |
|
1750 |
if (!rx_q->buf_pool) |
|
1751 |
goto err_dma; |
|
1752 |
|
|
1753 |
if (priv->extend_desc) { |
|
1754 |
rx_q->dma_erx = dma_alloc_coherent(priv->device, |
|
1755 |
priv->dma_rx_size * |
|
1756 |
sizeof(struct dma_extended_desc), |
|
1757 |
&rx_q->dma_rx_phy, |
|
1758 |
GFP_KERNEL); |
|
1759 |
if (!rx_q->dma_erx) |
|
1760 |
goto err_dma; |
|
1761 |
|
|
1762 |
} else { |
|
1763 |
rx_q->dma_rx = dma_alloc_coherent(priv->device, |
|
1764 |
priv->dma_rx_size * |
|
1765 |
sizeof(struct dma_desc), |
|
1766 |
&rx_q->dma_rx_phy, |
|
1767 |
GFP_KERNEL); |
|
1768 |
if (!rx_q->dma_rx) |
|
1769 |
goto err_dma; |
|
1770 |
} |
|
1771 |
} |
|
1772 |
|
|
1773 |
return 0; |
|
1774 |
|
|
1775 |
err_dma: |
|
1776 |
free_dma_rx_desc_resources(priv); |
|
1777 |
|
|
1778 |
return ret; |
|
1779 |
} |
|
1780 |
|
|
1781 |
/** |
|
1782 |
* alloc_dma_tx_desc_resources - alloc TX resources. |
|
1783 |
* @priv: private structure |
|
1784 |
* Description: according to which descriptor can be used (extend or basic) |
|
1785 |
* this function allocates the resources for TX and RX paths. In case of |
|
1786 |
* reception, for example, it pre-allocated the RX socket buffer in order to |
|
1787 |
* allow zero-copy mechanism. |
|
1788 |
*/ |
|
1789 |
static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) |
|
1790 |
{ |
|
1791 |
u32 tx_count = priv->plat->tx_queues_to_use; |
|
1792 |
int ret = -ENOMEM; |
|
1793 |
u32 queue; |
|
1794 |
|
|
1795 |
/* TX queues buffers and DMA */ |
|
1796 |
for (queue = 0; queue < tx_count; queue++) { |
|
1797 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
1798 |
size_t size; |
|
1799 |
void *addr; |
|
1800 |
|
|
1801 |
tx_q->queue_index = queue; |
|
1802 |
tx_q->priv_data = priv; |
|
1803 |
|
|
1804 |
tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, |
|
1805 |
sizeof(*tx_q->tx_skbuff_dma), |
|
1806 |
GFP_KERNEL); |
|
1807 |
if (!tx_q->tx_skbuff_dma) |
|
1808 |
goto err_dma; |
|
1809 |
|
|
1810 |
tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, |
|
1811 |
sizeof(struct sk_buff *), |
|
1812 |
GFP_KERNEL); |
|
1813 |
if (!tx_q->tx_skbuff) |
|
1814 |
goto err_dma; |
|
1815 |
|
|
1816 |
if (priv->extend_desc) |
|
1817 |
size = sizeof(struct dma_extended_desc); |
|
1818 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
1819 |
size = sizeof(struct dma_edesc); |
|
1820 |
else |
|
1821 |
size = sizeof(struct dma_desc); |
|
1822 |
|
|
1823 |
size *= priv->dma_tx_size; |
|
1824 |
|
|
1825 |
addr = dma_alloc_coherent(priv->device, size, |
|
1826 |
&tx_q->dma_tx_phy, GFP_KERNEL); |
|
1827 |
if (!addr) |
|
1828 |
goto err_dma; |
|
1829 |
|
|
1830 |
if (priv->extend_desc) |
|
1831 |
tx_q->dma_etx = addr; |
|
1832 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
1833 |
tx_q->dma_entx = addr; |
|
1834 |
else |
|
1835 |
tx_q->dma_tx = addr; |
|
1836 |
} |
|
1837 |
|
|
1838 |
return 0; |
|
1839 |
|
|
1840 |
err_dma: |
|
1841 |
free_dma_tx_desc_resources(priv); |
|
1842 |
return ret; |
|
1843 |
} |
|
1844 |
|
|
1845 |
/** |
|
1846 |
* alloc_dma_desc_resources - alloc TX/RX resources. |
|
1847 |
* @priv: private structure |
|
1848 |
* Description: according to which descriptor can be used (extend or basic) |
|
1849 |
* this function allocates the resources for TX and RX paths. In case of |
|
1850 |
* reception, for example, it pre-allocated the RX socket buffer in order to |
|
1851 |
* allow zero-copy mechanism. |
|
1852 |
*/ |
|
1853 |
static int alloc_dma_desc_resources(struct stmmac_priv *priv) |
|
1854 |
{ |
|
1855 |
/* RX Allocation */ |
|
1856 |
int ret = alloc_dma_rx_desc_resources(priv); |
|
1857 |
|
|
1858 |
if (ret) |
|
1859 |
return ret; |
|
1860 |
|
|
1861 |
ret = alloc_dma_tx_desc_resources(priv); |
|
1862 |
|
|
1863 |
return ret; |
|
1864 |
} |
|
1865 |
|
|
1866 |
/** |
|
1867 |
* free_dma_desc_resources - free dma desc resources |
|
1868 |
* @priv: private structure |
|
1869 |
*/ |
|
1870 |
static void free_dma_desc_resources(struct stmmac_priv *priv) |
|
1871 |
{ |
|
1872 |
/* Release the DMA RX socket buffers */ |
|
1873 |
free_dma_rx_desc_resources(priv); |
|
1874 |
|
|
1875 |
/* Release the DMA TX socket buffers */ |
|
1876 |
free_dma_tx_desc_resources(priv); |
|
1877 |
} |
|
1878 |
|
|
1879 |
/** |
|
1880 |
* stmmac_mac_enable_rx_queues - Enable MAC rx queues |
|
1881 |
* @priv: driver private structure |
|
1882 |
* Description: It is used for enabling the rx queues in the MAC |
|
1883 |
*/ |
|
1884 |
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) |
|
1885 |
{ |
|
1886 |
u32 rx_queues_count = priv->plat->rx_queues_to_use; |
|
1887 |
int queue; |
|
1888 |
u8 mode; |
|
1889 |
|
|
1890 |
for (queue = 0; queue < rx_queues_count; queue++) { |
|
1891 |
mode = priv->plat->rx_queues_cfg[queue].mode_to_use; |
|
1892 |
stmmac_rx_queue_enable(priv, priv->hw, mode, queue); |
|
1893 |
} |
|
1894 |
} |
|
1895 |
|
|
1896 |
/** |
|
1897 |
* stmmac_start_rx_dma - start RX DMA channel |
|
1898 |
* @priv: driver private structure |
|
1899 |
* @chan: RX channel index |
|
1900 |
* Description: |
|
1901 |
* This starts a RX DMA channel |
|
1902 |
*/ |
|
1903 |
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) |
|
1904 |
{ |
|
1905 |
netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); |
|
1906 |
stmmac_start_rx(priv, priv->ioaddr, chan); |
|
1907 |
} |
|
1908 |
|
|
1909 |
/** |
|
1910 |
* stmmac_start_tx_dma - start TX DMA channel |
|
1911 |
* @priv: driver private structure |
|
1912 |
* @chan: TX channel index |
|
1913 |
* Description: |
|
1914 |
* This starts a TX DMA channel |
|
1915 |
*/ |
|
1916 |
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) |
|
1917 |
{ |
|
1918 |
netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); |
|
1919 |
stmmac_start_tx(priv, priv->ioaddr, chan); |
|
1920 |
} |
|
1921 |
|
|
1922 |
/** |
|
1923 |
* stmmac_stop_rx_dma - stop RX DMA channel |
|
1924 |
* @priv: driver private structure |
|
1925 |
* @chan: RX channel index |
|
1926 |
* Description: |
|
1927 |
* This stops a RX DMA channel |
|
1928 |
*/ |
|
1929 |
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) |
|
1930 |
{ |
|
1931 |
netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); |
|
1932 |
stmmac_stop_rx(priv, priv->ioaddr, chan); |
|
1933 |
} |
|
1934 |
|
|
1935 |
/** |
|
1936 |
* stmmac_stop_tx_dma - stop TX DMA channel |
|
1937 |
* @priv: driver private structure |
|
1938 |
* @chan: TX channel index |
|
1939 |
* Description: |
|
1940 |
* This stops a TX DMA channel |
|
1941 |
*/ |
|
1942 |
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) |
|
1943 |
{ |
|
1944 |
netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); |
|
1945 |
stmmac_stop_tx(priv, priv->ioaddr, chan); |
|
1946 |
} |
|
1947 |
|
|
1948 |
/** |
|
1949 |
* stmmac_start_all_dma - start all RX and TX DMA channels |
|
1950 |
* @priv: driver private structure |
|
1951 |
* Description: |
|
1952 |
* This starts all the RX and TX DMA channels |
|
1953 |
*/ |
|
1954 |
static void stmmac_start_all_dma(struct stmmac_priv *priv) |
|
1955 |
{ |
|
1956 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
1957 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
1958 |
u32 chan = 0; |
|
1959 |
|
|
1960 |
for (chan = 0; chan < rx_channels_count; chan++) |
|
1961 |
stmmac_start_rx_dma(priv, chan); |
|
1962 |
|
|
1963 |
for (chan = 0; chan < tx_channels_count; chan++) |
|
1964 |
stmmac_start_tx_dma(priv, chan); |
|
1965 |
} |
|
1966 |
|
|
1967 |
/** |
|
1968 |
* stmmac_stop_all_dma - stop all RX and TX DMA channels |
|
1969 |
* @priv: driver private structure |
|
1970 |
* Description: |
|
1971 |
* This stops the RX and TX DMA channels |
|
1972 |
*/ |
|
1973 |
static void stmmac_stop_all_dma(struct stmmac_priv *priv) |
|
1974 |
{ |
|
1975 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
1976 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
1977 |
u32 chan = 0; |
|
1978 |
|
|
1979 |
for (chan = 0; chan < rx_channels_count; chan++) |
|
1980 |
stmmac_stop_rx_dma(priv, chan); |
|
1981 |
|
|
1982 |
for (chan = 0; chan < tx_channels_count; chan++) |
|
1983 |
stmmac_stop_tx_dma(priv, chan); |
|
1984 |
} |
|
1985 |
|
|
1986 |
/** |
|
1987 |
* stmmac_dma_operation_mode - HW DMA operation mode |
|
1988 |
* @priv: driver private structure |
|
1989 |
* Description: it is used for configuring the DMA operation mode register in |
|
1990 |
* order to program the tx/rx DMA thresholds or Store-And-Forward mode. |
|
1991 |
*/ |
|
1992 |
static void stmmac_dma_operation_mode(struct stmmac_priv *priv) |
|
1993 |
{ |
|
1994 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
1995 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
1996 |
int rxfifosz = priv->plat->rx_fifo_size; |
|
1997 |
int txfifosz = priv->plat->tx_fifo_size; |
|
1998 |
u32 txmode = 0; |
|
1999 |
u32 rxmode = 0; |
|
2000 |
u32 chan = 0; |
|
2001 |
u8 qmode = 0; |
|
2002 |
|
|
2003 |
if (rxfifosz == 0) |
|
2004 |
rxfifosz = priv->dma_cap.rx_fifo_size; |
|
2005 |
if (txfifosz == 0) |
|
2006 |
txfifosz = priv->dma_cap.tx_fifo_size; |
|
2007 |
|
|
2008 |
/* Adjust for real per queue fifo size */ |
|
2009 |
rxfifosz /= rx_channels_count; |
|
2010 |
txfifosz /= tx_channels_count; |
|
2011 |
|
|
2012 |
if (priv->plat->force_thresh_dma_mode) { |
|
2013 |
txmode = tc; |
|
2014 |
rxmode = tc; |
|
2015 |
} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { |
|
2016 |
/* |
|
2017 |
* In case of GMAC, SF mode can be enabled |
|
2018 |
* to perform the TX COE in HW. This depends on: |
|
2019 |
* 1) TX COE if actually supported |
|
2020 |
* 2) There is no bugged Jumbo frame support |
|
2021 |
* that needs to not insert csum in the TDES. |
|
2022 |
*/ |
|
2023 |
txmode = SF_DMA_MODE; |
|
2024 |
rxmode = SF_DMA_MODE; |
|
2025 |
priv->xstats.threshold = SF_DMA_MODE; |
|
2026 |
} else { |
|
2027 |
txmode = tc; |
|
2028 |
rxmode = SF_DMA_MODE; |
|
2029 |
} |
|
2030 |
|
|
2031 |
/* configure all channels */ |
|
2032 |
for (chan = 0; chan < rx_channels_count; chan++) { |
|
2033 |
qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; |
|
2034 |
|
|
2035 |
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, |
|
2036 |
rxfifosz, qmode); |
|
2037 |
stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, |
|
2038 |
chan); |
|
2039 |
} |
|
2040 |
|
|
2041 |
for (chan = 0; chan < tx_channels_count; chan++) { |
|
2042 |
qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; |
|
2043 |
|
|
2044 |
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, |
|
2045 |
txfifosz, qmode); |
|
2046 |
} |
|
2047 |
} |
|
2048 |
|
|
2049 |
/** |
|
2050 |
* stmmac_tx_clean - to manage the transmission completion |
|
2051 |
* @priv: driver private structure |
|
2052 |
* @budget: napi budget limiting this functions packet handling |
|
2053 |
* @queue: TX queue index |
|
2054 |
* Description: it reclaims the transmit resources after transmission completes. |
|
2055 |
*/ |
|
2056 |
static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) |
|
2057 |
{ |
|
2058 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
2059 |
unsigned int bytes_compl = 0, pkts_compl = 0; |
|
2060 |
unsigned int entry, count = 0; |
|
2061 |
|
|
2062 |
__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); |
|
2063 |
|
|
2064 |
priv->xstats.tx_clean++; |
|
2065 |
|
|
2066 |
entry = tx_q->dirty_tx; |
|
2067 |
while ((entry != tx_q->cur_tx) && (count < budget)) { |
|
2068 |
struct sk_buff *skb = tx_q->tx_skbuff[entry]; |
|
2069 |
struct dma_desc *p; |
|
2070 |
int status; |
|
2071 |
|
|
2072 |
if (priv->extend_desc) |
|
2073 |
p = (struct dma_desc *)(tx_q->dma_etx + entry); |
|
2074 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
2075 |
p = &tx_q->dma_entx[entry].basic; |
|
2076 |
else |
|
2077 |
p = tx_q->dma_tx + entry; |
|
2078 |
|
|
2079 |
status = stmmac_tx_status(priv, &priv->dev->stats, |
|
2080 |
&priv->xstats, p, priv->ioaddr); |
|
2081 |
/* Check if the descriptor is owned by the DMA */ |
|
2082 |
if (unlikely(status & tx_dma_own)) |
|
2083 |
break; |
|
2084 |
|
|
2085 |
count++; |
|
2086 |
|
|
2087 |
/* Make sure descriptor fields are read after reading |
|
2088 |
* the own bit. |
|
2089 |
*/ |
|
2090 |
dma_rmb(); |
|
2091 |
|
|
2092 |
/* Just consider the last segment and ...*/ |
|
2093 |
if (likely(!(status & tx_not_ls))) { |
|
2094 |
/* ... verify the status error condition */ |
|
2095 |
if (unlikely(status & tx_err)) { |
|
2096 |
priv->dev->stats.tx_errors++; |
|
2097 |
} else { |
|
2098 |
priv->dev->stats.tx_packets++; |
|
2099 |
priv->xstats.tx_pkt_n++; |
|
2100 |
} |
|
2101 |
stmmac_get_tx_hwtstamp(priv, p, skb); |
|
2102 |
} |
|
2103 |
|
|
2104 |
if (likely(tx_q->tx_skbuff_dma[entry].buf)) { |
|
2105 |
if (tx_q->tx_skbuff_dma[entry].map_as_page) |
|
2106 |
dma_unmap_page(priv->device, |
|
2107 |
tx_q->tx_skbuff_dma[entry].buf, |
|
2108 |
tx_q->tx_skbuff_dma[entry].len, |
|
2109 |
DMA_TO_DEVICE); |
|
2110 |
else |
|
2111 |
dma_unmap_single(priv->device, |
|
2112 |
tx_q->tx_skbuff_dma[entry].buf, |
|
2113 |
tx_q->tx_skbuff_dma[entry].len, |
|
2114 |
DMA_TO_DEVICE); |
|
2115 |
tx_q->tx_skbuff_dma[entry].buf = 0; |
|
2116 |
tx_q->tx_skbuff_dma[entry].len = 0; |
|
2117 |
tx_q->tx_skbuff_dma[entry].map_as_page = false; |
|
2118 |
} |
|
2119 |
|
|
2120 |
stmmac_clean_desc3(priv, tx_q, p); |
|
2121 |
|
|
2122 |
tx_q->tx_skbuff_dma[entry].last_segment = false; |
|
2123 |
tx_q->tx_skbuff_dma[entry].is_jumbo = false; |
|
2124 |
|
|
2125 |
if (likely(skb != NULL)) { |
|
2126 |
pkts_compl++; |
|
2127 |
bytes_compl += skb->len; |
|
2128 |
dev_consume_skb_any(skb); |
|
2129 |
tx_q->tx_skbuff[entry] = NULL; |
|
2130 |
} |
|
2131 |
|
|
2132 |
stmmac_release_tx_desc(priv, p, priv->mode); |
|
2133 |
|
|
2134 |
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); |
|
2135 |
} |
|
2136 |
tx_q->dirty_tx = entry; |
|
2137 |
|
|
2138 |
netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), |
|
2139 |
pkts_compl, bytes_compl); |
|
2140 |
|
|
2141 |
if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, |
|
2142 |
queue))) && |
|
2143 |
stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { |
|
2144 |
|
|
2145 |
netif_dbg(priv, tx_done, priv->dev, |
|
2146 |
"%s: restart transmit\n", __func__); |
|
2147 |
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); |
|
2148 |
} |
|
2149 |
|
|
2150 |
if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { |
|
2151 |
stmmac_enable_eee_mode(priv); |
|
2152 |
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); |
|
2153 |
} |
|
2154 |
|
|
2155 |
/* We still have pending packets, let's call for a new scheduling */ |
|
2156 |
if (tx_q->dirty_tx != tx_q->cur_tx) |
|
2157 |
mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); |
|
2158 |
|
|
2159 |
__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); |
|
2160 |
|
|
2161 |
return count; |
|
2162 |
} |
|
2163 |
|
|
2164 |
/** |
|
2165 |
* stmmac_tx_err - to manage the tx error |
|
2166 |
* @priv: driver private structure |
|
2167 |
* @chan: channel index |
|
2168 |
* Description: it cleans the descriptors and restarts the transmission |
|
2169 |
* in case of transmission errors. |
|
2170 |
*/ |
|
2171 |
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) |
|
2172 |
{ |
|
2173 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; |
|
2174 |
|
|
2175 |
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); |
|
2176 |
|
|
2177 |
stmmac_stop_tx_dma(priv, chan); |
|
2178 |
dma_free_tx_skbufs(priv, chan); |
|
2179 |
stmmac_clear_tx_descriptors(priv, chan); |
|
2180 |
tx_q->dirty_tx = 0; |
|
2181 |
tx_q->cur_tx = 0; |
|
2182 |
tx_q->mss = 0; |
|
2183 |
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); |
|
2184 |
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
|
2185 |
tx_q->dma_tx_phy, chan); |
|
2186 |
stmmac_start_tx_dma(priv, chan); |
|
2187 |
|
|
2188 |
priv->dev->stats.tx_errors++; |
|
2189 |
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); |
|
2190 |
} |
|
2191 |
|
|
2192 |
/** |
|
2193 |
* stmmac_set_dma_operation_mode - Set DMA operation mode by channel |
|
2194 |
* @priv: driver private structure |
|
2195 |
* @txmode: TX operating mode |
|
2196 |
* @rxmode: RX operating mode |
|
2197 |
* @chan: channel index |
|
2198 |
* Description: it is used for configuring of the DMA operation mode in |
|
2199 |
* runtime in order to program the tx/rx DMA thresholds or Store-And-Forward |
|
2200 |
* mode. |
|
2201 |
*/ |
|
2202 |
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, |
|
2203 |
u32 rxmode, u32 chan) |
|
2204 |
{ |
|
2205 |
u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; |
|
2206 |
u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; |
|
2207 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
2208 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
2209 |
int rxfifosz = priv->plat->rx_fifo_size; |
|
2210 |
int txfifosz = priv->plat->tx_fifo_size; |
|
2211 |
|
|
2212 |
if (rxfifosz == 0) |
|
2213 |
rxfifosz = priv->dma_cap.rx_fifo_size; |
|
2214 |
if (txfifosz == 0) |
|
2215 |
txfifosz = priv->dma_cap.tx_fifo_size; |
|
2216 |
|
|
2217 |
/* Adjust for real per queue fifo size */ |
|
2218 |
rxfifosz /= rx_channels_count; |
|
2219 |
txfifosz /= tx_channels_count; |
|
2220 |
|
|
2221 |
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); |
|
2222 |
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); |
|
2223 |
} |
|
2224 |
|
|
2225 |
static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) |
|
2226 |
{ |
|
2227 |
int ret; |
|
2228 |
|
|
2229 |
ret = stmmac_safety_feat_irq_status(priv, priv->dev, |
|
2230 |
priv->ioaddr, priv->dma_cap.asp, &priv->sstats); |
|
2231 |
if (ret && (ret != -EINVAL)) { |
|
2232 |
stmmac_global_err(priv); |
|
2233 |
return true; |
|
2234 |
} |
|
2235 |
|
|
2236 |
return false; |
|
2237 |
} |
|
2238 |
|
|
2239 |
static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) |
|
2240 |
{ |
|
2241 |
int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, |
|
2242 |
&priv->xstats, chan); |
|
2243 |
struct stmmac_channel *ch = &priv->channel[chan]; |
|
2244 |
unsigned long flags; |
|
2245 |
|
|
2246 |
if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { |
|
2247 |
if (napi_schedule_prep(&ch->rx_napi)) { |
|
2248 |
spin_lock_irqsave(&ch->lock, flags); |
|
2249 |
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); |
|
2250 |
spin_unlock_irqrestore(&ch->lock, flags); |
|
2251 |
__napi_schedule(&ch->rx_napi); |
|
2252 |
} |
|
2253 |
} |
|
2254 |
|
|
2255 |
if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { |
|
2256 |
if (napi_schedule_prep(&ch->tx_napi)) { |
|
2257 |
spin_lock_irqsave(&ch->lock, flags); |
|
2258 |
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); |
|
2259 |
spin_unlock_irqrestore(&ch->lock, flags); |
|
2260 |
__napi_schedule(&ch->tx_napi); |
|
2261 |
} |
|
2262 |
} |
|
2263 |
|
|
2264 |
return status; |
|
2265 |
} |
|
2266 |
|
|
2267 |
/** |
|
2268 |
* stmmac_dma_interrupt - DMA ISR |
|
2269 |
* @priv: driver private structure |
|
2270 |
* Description: this is the DMA ISR. It is called by the main ISR. |
|
2271 |
* It calls the dwmac dma routine and schedule poll method in case of some |
|
2272 |
* work can be done. |
|
2273 |
*/ |
|
2274 |
static void stmmac_dma_interrupt(struct stmmac_priv *priv) |
|
2275 |
{ |
|
2276 |
u32 tx_channel_count = priv->plat->tx_queues_to_use; |
|
2277 |
u32 rx_channel_count = priv->plat->rx_queues_to_use; |
|
2278 |
u32 channels_to_check = tx_channel_count > rx_channel_count ? |
|
2279 |
tx_channel_count : rx_channel_count; |
|
2280 |
u32 chan; |
|
2281 |
int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; |
|
2282 |
|
|
2283 |
/* Make sure we never check beyond our status buffer. */ |
|
2284 |
if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) |
|
2285 |
channels_to_check = ARRAY_SIZE(status); |
|
2286 |
|
|
2287 |
for (chan = 0; chan < channels_to_check; chan++) |
|
2288 |
status[chan] = stmmac_napi_check(priv, chan); |
|
2289 |
|
|
2290 |
for (chan = 0; chan < tx_channel_count; chan++) { |
|
2291 |
if (unlikely(status[chan] & tx_hard_error_bump_tc)) { |
|
2292 |
/* Try to bump up the dma threshold on this failure */ |
|
2293 |
if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && |
|
2294 |
(tc <= 256)) { |
|
2295 |
tc += 64; |
|
2296 |
if (priv->plat->force_thresh_dma_mode) |
|
2297 |
stmmac_set_dma_operation_mode(priv, |
|
2298 |
tc, |
|
2299 |
tc, |
|
2300 |
chan); |
|
2301 |
else |
|
2302 |
stmmac_set_dma_operation_mode(priv, |
|
2303 |
tc, |
|
2304 |
SF_DMA_MODE, |
|
2305 |
chan); |
|
2306 |
priv->xstats.threshold = tc; |
|
2307 |
} |
|
2308 |
} else if (unlikely(status[chan] == tx_hard_error)) { |
|
2309 |
stmmac_tx_err(priv, chan); |
|
2310 |
} |
|
2311 |
} |
|
2312 |
} |
|
2313 |
|
|
2314 |
/** |
|
2315 |
* stmmac_mmc_setup: setup the Mac Management Counters (MMC) |
|
2316 |
* @priv: driver private structure |
|
2317 |
* Description: this masks the MMC irq, in fact, the counters are managed in SW. |
|
2318 |
*/ |
|
2319 |
static void stmmac_mmc_setup(struct stmmac_priv *priv) |
|
2320 |
{ |
|
2321 |
unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | |
|
2322 |
MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; |
|
2323 |
|
|
2324 |
stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); |
|
2325 |
|
|
2326 |
if (priv->dma_cap.rmon) { |
|
2327 |
stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); |
|
2328 |
memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); |
|
2329 |
} else |
|
2330 |
netdev_info(priv->dev, "No MAC Management Counters available\n"); |
|
2331 |
} |
|
2332 |
|
|
2333 |
/** |
|
2334 |
* stmmac_get_hw_features - get MAC capabilities from the HW cap. register. |
|
2335 |
* @priv: driver private structure |
|
2336 |
* Description: |
|
2337 |
* new GMAC chip generations have a new register to indicate the |
|
2338 |
* presence of the optional feature/functions. |
|
2339 |
* This can be also used to override the value passed through the |
|
2340 |
* platform and necessary for old MAC10/100 and GMAC chips. |
|
2341 |
*/ |
|
2342 |
static int stmmac_get_hw_features(struct stmmac_priv *priv) |
|
2343 |
{ |
|
2344 |
return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; |
|
2345 |
} |
|
2346 |
|
|
2347 |
/** |
|
2348 |
* stmmac_check_ether_addr - check if the MAC addr is valid |
|
2349 |
* @priv: driver private structure |
|
2350 |
* Description: |
|
2351 |
* it is to verify if the MAC address is valid, in case of failures it |
|
2352 |
* generates a random MAC address |
|
2353 |
*/ |
|
2354 |
static void stmmac_check_ether_addr(struct stmmac_priv *priv) |
|
2355 |
{ |
7e970c
|
2356 |
// if (!is_valid_ether_addr(priv->dev->dev_addr)) { |
H |
2357 |
if(1) { |
a07526
|
2358 |
stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); |
H |
2359 |
if (likely(priv->plat->get_eth_addr)) |
|
2360 |
priv->plat->get_eth_addr(priv->plat->bsp_priv, |
|
2361 |
priv->dev->dev_addr); |
|
2362 |
if (!is_valid_ether_addr(priv->dev->dev_addr)) |
|
2363 |
eth_hw_addr_random(priv->dev); |
|
2364 |
dev_info(priv->device, "device MAC address %pM\n", |
|
2365 |
priv->dev->dev_addr); |
|
2366 |
} |
|
2367 |
} |
|
2368 |
|
|
2369 |
/** |
|
2370 |
* stmmac_init_dma_engine - DMA init. |
|
2371 |
* @priv: driver private structure |
|
2372 |
* Description: |
|
2373 |
* It inits the DMA invoking the specific MAC/GMAC callback. |
|
2374 |
* Some DMA parameters can be passed from the platform; |
|
2375 |
* in case of these are not passed a default is kept for the MAC or GMAC. |
|
2376 |
*/ |
|
2377 |
static int stmmac_init_dma_engine(struct stmmac_priv *priv) |
|
2378 |
{ |
|
2379 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
2380 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
2381 |
u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); |
|
2382 |
struct stmmac_rx_queue *rx_q; |
|
2383 |
struct stmmac_tx_queue *tx_q; |
|
2384 |
u32 chan = 0; |
|
2385 |
int atds = 0; |
|
2386 |
int ret = 0; |
|
2387 |
|
|
2388 |
if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { |
|
2389 |
dev_err(priv->device, "Invalid DMA configuration\n"); |
|
2390 |
return -EINVAL; |
|
2391 |
} |
|
2392 |
|
|
2393 |
if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) |
|
2394 |
atds = 1; |
|
2395 |
|
|
2396 |
ret = stmmac_reset(priv, priv->ioaddr); |
|
2397 |
if (ret) { |
|
2398 |
dev_err(priv->device, "Failed to reset the dma\n"); |
|
2399 |
return ret; |
|
2400 |
} |
|
2401 |
|
|
2402 |
/* DMA Configuration */ |
|
2403 |
stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); |
|
2404 |
|
|
2405 |
if (priv->plat->axi) |
|
2406 |
stmmac_axi(priv, priv->ioaddr, priv->plat->axi); |
|
2407 |
|
|
2408 |
/* DMA CSR Channel configuration */ |
|
2409 |
for (chan = 0; chan < dma_csr_ch; chan++) |
|
2410 |
stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); |
|
2411 |
|
|
2412 |
/* DMA RX Channel Configuration */ |
|
2413 |
for (chan = 0; chan < rx_channels_count; chan++) { |
|
2414 |
rx_q = &priv->rx_queue[chan]; |
|
2415 |
|
|
2416 |
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
|
2417 |
rx_q->dma_rx_phy, chan); |
|
2418 |
|
|
2419 |
rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
|
2420 |
(priv->dma_rx_size * |
|
2421 |
sizeof(struct dma_desc)); |
|
2422 |
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, |
|
2423 |
rx_q->rx_tail_addr, chan); |
|
2424 |
} |
|
2425 |
|
|
2426 |
/* DMA TX Channel Configuration */ |
|
2427 |
for (chan = 0; chan < tx_channels_count; chan++) { |
|
2428 |
tx_q = &priv->tx_queue[chan]; |
|
2429 |
|
|
2430 |
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, |
|
2431 |
tx_q->dma_tx_phy, chan); |
|
2432 |
|
|
2433 |
tx_q->tx_tail_addr = tx_q->dma_tx_phy; |
|
2434 |
stmmac_set_tx_tail_ptr(priv, priv->ioaddr, |
|
2435 |
tx_q->tx_tail_addr, chan); |
|
2436 |
} |
|
2437 |
|
|
2438 |
return ret; |
|
2439 |
} |
|
2440 |
|
|
2441 |
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) |
|
2442 |
{ |
|
2443 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
2444 |
|
|
2445 |
mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); |
|
2446 |
} |
|
2447 |
|
|
2448 |
/** |
|
2449 |
* stmmac_tx_timer - mitigation sw timer for tx. |
|
2450 |
* @t: data pointer |
|
2451 |
* Description: |
|
2452 |
* This is the timer handler to directly invoke the stmmac_tx_clean. |
|
2453 |
*/ |
|
2454 |
static void stmmac_tx_timer(struct timer_list *t) |
|
2455 |
{ |
|
2456 |
struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); |
|
2457 |
struct stmmac_priv *priv = tx_q->priv_data; |
|
2458 |
struct stmmac_channel *ch; |
|
2459 |
|
|
2460 |
ch = &priv->channel[tx_q->queue_index]; |
|
2461 |
|
|
2462 |
if (likely(napi_schedule_prep(&ch->tx_napi))) { |
|
2463 |
unsigned long flags; |
|
2464 |
|
|
2465 |
spin_lock_irqsave(&ch->lock, flags); |
|
2466 |
stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); |
|
2467 |
spin_unlock_irqrestore(&ch->lock, flags); |
|
2468 |
__napi_schedule(&ch->tx_napi); |
|
2469 |
} |
|
2470 |
} |
|
2471 |
|
|
2472 |
/** |
|
2473 |
* stmmac_init_coalesce - init mitigation options. |
|
2474 |
* @priv: driver private structure |
|
2475 |
* Description: |
|
2476 |
* This inits the coalesce parameters: i.e. timer rate, |
|
2477 |
* timer handler and default threshold used for enabling the |
|
2478 |
* interrupt on completion bit. |
|
2479 |
*/ |
|
2480 |
static void stmmac_init_coalesce(struct stmmac_priv *priv) |
|
2481 |
{ |
|
2482 |
u32 tx_channel_count = priv->plat->tx_queues_to_use; |
|
2483 |
u32 chan; |
|
2484 |
|
|
2485 |
priv->tx_coal_frames = STMMAC_TX_FRAMES; |
|
2486 |
priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; |
|
2487 |
priv->rx_coal_frames = STMMAC_RX_FRAMES; |
|
2488 |
|
|
2489 |
for (chan = 0; chan < tx_channel_count; chan++) { |
|
2490 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; |
|
2491 |
|
|
2492 |
timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); |
|
2493 |
} |
|
2494 |
} |
|
2495 |
|
|
2496 |
static void stmmac_set_rings_length(struct stmmac_priv *priv) |
|
2497 |
{ |
|
2498 |
u32 rx_channels_count = priv->plat->rx_queues_to_use; |
|
2499 |
u32 tx_channels_count = priv->plat->tx_queues_to_use; |
|
2500 |
u32 chan; |
|
2501 |
|
|
2502 |
/* set TX ring length */ |
|
2503 |
for (chan = 0; chan < tx_channels_count; chan++) |
|
2504 |
stmmac_set_tx_ring_len(priv, priv->ioaddr, |
|
2505 |
(priv->dma_tx_size - 1), chan); |
|
2506 |
|
|
2507 |
/* set RX ring length */ |
|
2508 |
for (chan = 0; chan < rx_channels_count; chan++) |
|
2509 |
stmmac_set_rx_ring_len(priv, priv->ioaddr, |
|
2510 |
(priv->dma_rx_size - 1), chan); |
|
2511 |
} |
|
2512 |
|
|
2513 |
/** |
|
2514 |
* stmmac_set_tx_queue_weight - Set TX queue weight |
|
2515 |
* @priv: driver private structure |
|
2516 |
* Description: It is used for setting TX queues weight |
|
2517 |
*/ |
|
2518 |
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) |
|
2519 |
{ |
|
2520 |
u32 tx_queues_count = priv->plat->tx_queues_to_use; |
|
2521 |
u32 weight; |
|
2522 |
u32 queue; |
|
2523 |
|
|
2524 |
for (queue = 0; queue < tx_queues_count; queue++) { |
|
2525 |
weight = priv->plat->tx_queues_cfg[queue].weight; |
|
2526 |
stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); |
|
2527 |
} |
|
2528 |
} |
|
2529 |
|
|
2530 |
/** |
|
2531 |
* stmmac_configure_cbs - Configure CBS in TX queue |
|
2532 |
* @priv: driver private structure |
|
2533 |
* Description: It is used for configuring CBS in AVB TX queues |
|
2534 |
*/ |
|
2535 |
static void stmmac_configure_cbs(struct stmmac_priv *priv) |
|
2536 |
{ |
|
2537 |
u32 tx_queues_count = priv->plat->tx_queues_to_use; |
|
2538 |
u32 mode_to_use; |
|
2539 |
u32 queue; |
|
2540 |
|
|
2541 |
/* queue 0 is reserved for legacy traffic */ |
|
2542 |
for (queue = 1; queue < tx_queues_count; queue++) { |
|
2543 |
mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; |
|
2544 |
if (mode_to_use == MTL_QUEUE_DCB) |
|
2545 |
continue; |
|
2546 |
|
|
2547 |
stmmac_config_cbs(priv, priv->hw, |
|
2548 |
priv->plat->tx_queues_cfg[queue].send_slope, |
|
2549 |
priv->plat->tx_queues_cfg[queue].idle_slope, |
|
2550 |
priv->plat->tx_queues_cfg[queue].high_credit, |
|
2551 |
priv->plat->tx_queues_cfg[queue].low_credit, |
|
2552 |
queue); |
|
2553 |
} |
|
2554 |
} |
|
2555 |
|
|
2556 |
/** |
|
2557 |
* stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel |
|
2558 |
* @priv: driver private structure |
|
2559 |
* Description: It is used for mapping RX queues to RX dma channels |
|
2560 |
*/ |
|
2561 |
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) |
|
2562 |
{ |
|
2563 |
u32 rx_queues_count = priv->plat->rx_queues_to_use; |
|
2564 |
u32 queue; |
|
2565 |
u32 chan; |
|
2566 |
|
|
2567 |
for (queue = 0; queue < rx_queues_count; queue++) { |
|
2568 |
chan = priv->plat->rx_queues_cfg[queue].chan; |
|
2569 |
stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); |
|
2570 |
} |
|
2571 |
} |
|
2572 |
|
|
2573 |
/** |
|
2574 |
* stmmac_mac_config_rx_queues_prio - Configure RX Queue priority |
|
2575 |
* @priv: driver private structure |
|
2576 |
* Description: It is used for configuring the RX Queue Priority |
|
2577 |
*/ |
|
2578 |
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) |
|
2579 |
{ |
|
2580 |
u32 rx_queues_count = priv->plat->rx_queues_to_use; |
|
2581 |
u32 queue; |
|
2582 |
u32 prio; |
|
2583 |
|
|
2584 |
for (queue = 0; queue < rx_queues_count; queue++) { |
|
2585 |
if (!priv->plat->rx_queues_cfg[queue].use_prio) |
|
2586 |
continue; |
|
2587 |
|
|
2588 |
prio = priv->plat->rx_queues_cfg[queue].prio; |
|
2589 |
stmmac_rx_queue_prio(priv, priv->hw, prio, queue); |
|
2590 |
} |
|
2591 |
} |
|
2592 |
|
|
2593 |
/** |
|
2594 |
* stmmac_mac_config_tx_queues_prio - Configure TX Queue priority |
|
2595 |
* @priv: driver private structure |
|
2596 |
* Description: It is used for configuring the TX Queue Priority |
|
2597 |
*/ |
|
2598 |
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) |
|
2599 |
{ |
|
2600 |
u32 tx_queues_count = priv->plat->tx_queues_to_use; |
|
2601 |
u32 queue; |
|
2602 |
u32 prio; |
|
2603 |
|
|
2604 |
for (queue = 0; queue < tx_queues_count; queue++) { |
|
2605 |
if (!priv->plat->tx_queues_cfg[queue].use_prio) |
|
2606 |
continue; |
|
2607 |
|
|
2608 |
prio = priv->plat->tx_queues_cfg[queue].prio; |
|
2609 |
stmmac_tx_queue_prio(priv, priv->hw, prio, queue); |
|
2610 |
} |
|
2611 |
} |
|
2612 |
|
|
2613 |
/** |
|
2614 |
* stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing |
|
2615 |
* @priv: driver private structure |
|
2616 |
* Description: It is used for configuring the RX queue routing |
|
2617 |
*/ |
|
2618 |
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) |
|
2619 |
{ |
|
2620 |
u32 rx_queues_count = priv->plat->rx_queues_to_use; |
|
2621 |
u32 queue; |
|
2622 |
u8 packet; |
|
2623 |
|
|
2624 |
for (queue = 0; queue < rx_queues_count; queue++) { |
|
2625 |
/* no specific packet type routing specified for the queue */ |
|
2626 |
if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) |
|
2627 |
continue; |
|
2628 |
|
|
2629 |
packet = priv->plat->rx_queues_cfg[queue].pkt_route; |
|
2630 |
stmmac_rx_queue_routing(priv, priv->hw, packet, queue); |
|
2631 |
} |
|
2632 |
} |
|
2633 |
|
|
2634 |
static void stmmac_mac_config_rss(struct stmmac_priv *priv) |
|
2635 |
{ |
|
2636 |
if (!priv->dma_cap.rssen || !priv->plat->rss_en) { |
|
2637 |
priv->rss.enable = false; |
|
2638 |
return; |
|
2639 |
} |
|
2640 |
|
|
2641 |
if (priv->dev->features & NETIF_F_RXHASH) |
|
2642 |
priv->rss.enable = true; |
|
2643 |
else |
|
2644 |
priv->rss.enable = false; |
|
2645 |
|
|
2646 |
stmmac_rss_configure(priv, priv->hw, &priv->rss, |
|
2647 |
priv->plat->rx_queues_to_use); |
|
2648 |
} |
|
2649 |
|
|
2650 |
/** |
|
2651 |
* stmmac_mtl_configuration - Configure MTL |
|
2652 |
* @priv: driver private structure |
|
2653 |
* Description: It is used for configurring MTL |
|
2654 |
*/ |
|
2655 |
static void stmmac_mtl_configuration(struct stmmac_priv *priv) |
|
2656 |
{ |
|
2657 |
u32 rx_queues_count = priv->plat->rx_queues_to_use; |
|
2658 |
u32 tx_queues_count = priv->plat->tx_queues_to_use; |
|
2659 |
|
|
2660 |
if (tx_queues_count > 1) |
|
2661 |
stmmac_set_tx_queue_weight(priv); |
|
2662 |
|
|
2663 |
/* Configure MTL RX algorithms */ |
|
2664 |
if (rx_queues_count > 1) |
|
2665 |
stmmac_prog_mtl_rx_algorithms(priv, priv->hw, |
|
2666 |
priv->plat->rx_sched_algorithm); |
|
2667 |
|
|
2668 |
/* Configure MTL TX algorithms */ |
|
2669 |
if (tx_queues_count > 1) |
|
2670 |
stmmac_prog_mtl_tx_algorithms(priv, priv->hw, |
|
2671 |
priv->plat->tx_sched_algorithm); |
|
2672 |
|
|
2673 |
/* Configure CBS in AVB TX queues */ |
|
2674 |
if (tx_queues_count > 1) |
|
2675 |
stmmac_configure_cbs(priv); |
|
2676 |
|
|
2677 |
/* Map RX MTL to DMA channels */ |
|
2678 |
stmmac_rx_queue_dma_chan_map(priv); |
|
2679 |
|
|
2680 |
/* Enable MAC RX Queues */ |
|
2681 |
stmmac_mac_enable_rx_queues(priv); |
|
2682 |
|
|
2683 |
/* Set RX priorities */ |
|
2684 |
if (rx_queues_count > 1) |
|
2685 |
stmmac_mac_config_rx_queues_prio(priv); |
|
2686 |
|
|
2687 |
/* Set TX priorities */ |
|
2688 |
if (tx_queues_count > 1) |
|
2689 |
stmmac_mac_config_tx_queues_prio(priv); |
|
2690 |
|
|
2691 |
/* Set RX routing */ |
|
2692 |
if (rx_queues_count > 1) |
|
2693 |
stmmac_mac_config_rx_queues_routing(priv); |
|
2694 |
|
|
2695 |
/* Receive Side Scaling */ |
|
2696 |
if (rx_queues_count > 1) |
|
2697 |
stmmac_mac_config_rss(priv); |
|
2698 |
} |
|
2699 |
|
|
2700 |
static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) |
|
2701 |
{ |
|
2702 |
if (priv->dma_cap.asp) { |
|
2703 |
netdev_info(priv->dev, "Enabling Safety Features\n"); |
|
2704 |
stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); |
|
2705 |
} else { |
|
2706 |
netdev_info(priv->dev, "No Safety Features support found\n"); |
|
2707 |
} |
|
2708 |
} |
|
2709 |
|
|
2710 |
/** |
|
2711 |
* stmmac_hw_setup - setup mac in a usable state. |
|
2712 |
* @dev : pointer to the device structure. |
|
2713 |
* @ptp_register: register PTP if set |
|
2714 |
* Description: |
|
2715 |
* this is the main function to setup the HW in a usable state because the |
|
2716 |
* dma engine is reset, the core registers are configured (e.g. AXI, |
|
2717 |
* Checksum features, timers). The DMA is ready to start receiving and |
|
2718 |
* transmitting. |
|
2719 |
* Return value: |
|
2720 |
* 0 on success and an appropriate (-)ve integer as defined in errno.h |
|
2721 |
* file on failure. |
|
2722 |
*/ |
|
2723 |
static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) |
|
2724 |
{ |
|
2725 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
2726 |
u32 rx_cnt = priv->plat->rx_queues_to_use; |
|
2727 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
2728 |
u32 chan; |
|
2729 |
int ret; |
|
2730 |
|
|
2731 |
/* DMA initialization and SW reset */ |
|
2732 |
ret = stmmac_init_dma_engine(priv); |
|
2733 |
if (ret < 0) { |
|
2734 |
netdev_err(priv->dev, "%s: DMA engine initialization failed\n", |
|
2735 |
__func__); |
|
2736 |
return ret; |
|
2737 |
} |
|
2738 |
|
|
2739 |
/* Copy the MAC addr into the HW */ |
|
2740 |
stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); |
|
2741 |
|
|
2742 |
/* PS and related bits will be programmed according to the speed */ |
|
2743 |
if (priv->hw->pcs) { |
|
2744 |
int speed = priv->plat->mac_port_sel_speed; |
|
2745 |
|
|
2746 |
if ((speed == SPEED_10) || (speed == SPEED_100) || |
|
2747 |
(speed == SPEED_1000)) { |
|
2748 |
priv->hw->ps = speed; |
|
2749 |
} else { |
|
2750 |
dev_warn(priv->device, "invalid port speed\n"); |
|
2751 |
priv->hw->ps = 0; |
|
2752 |
} |
|
2753 |
} |
|
2754 |
|
|
2755 |
/* Initialize the MAC Core */ |
|
2756 |
stmmac_core_init(priv, priv->hw, dev); |
|
2757 |
|
|
2758 |
/* Initialize MTL*/ |
|
2759 |
stmmac_mtl_configuration(priv); |
|
2760 |
|
|
2761 |
/* Initialize Safety Features */ |
|
2762 |
stmmac_safety_feat_configuration(priv); |
|
2763 |
|
|
2764 |
ret = stmmac_rx_ipc(priv, priv->hw); |
|
2765 |
if (!ret) { |
|
2766 |
netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); |
|
2767 |
priv->plat->rx_coe = STMMAC_RX_COE_NONE; |
|
2768 |
priv->hw->rx_csum = 0; |
|
2769 |
} |
|
2770 |
|
|
2771 |
/* Enable the MAC Rx/Tx */ |
|
2772 |
stmmac_mac_set(priv, priv->ioaddr, true); |
|
2773 |
|
|
2774 |
/* Set the HW DMA mode and the COE */ |
|
2775 |
stmmac_dma_operation_mode(priv); |
|
2776 |
|
|
2777 |
stmmac_mmc_setup(priv); |
|
2778 |
|
|
2779 |
if (ptp_register) { |
|
2780 |
ret = clk_prepare_enable(priv->plat->clk_ptp_ref); |
|
2781 |
if (ret < 0) |
|
2782 |
netdev_warn(priv->dev, |
|
2783 |
"failed to enable PTP reference clock: %pe\n", |
|
2784 |
ERR_PTR(ret)); |
|
2785 |
} |
|
2786 |
|
|
2787 |
ret = stmmac_init_ptp(priv); |
|
2788 |
if (ret == -EOPNOTSUPP) |
|
2789 |
netdev_warn(priv->dev, "PTP not supported by HW\n"); |
|
2790 |
else if (ret) |
|
2791 |
netdev_warn(priv->dev, "PTP init failed\n"); |
|
2792 |
else if (ptp_register) |
|
2793 |
stmmac_ptp_register(priv); |
|
2794 |
|
|
2795 |
priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; |
|
2796 |
|
|
2797 |
/* Convert the timer from msec to usec */ |
|
2798 |
if (!priv->tx_lpi_timer) |
|
2799 |
priv->tx_lpi_timer = eee_timer * 1000; |
|
2800 |
|
|
2801 |
if (priv->use_riwt) { |
|
2802 |
if (!priv->rx_riwt) |
|
2803 |
priv->rx_riwt = DEF_DMA_RIWT; |
|
2804 |
|
|
2805 |
ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt); |
|
2806 |
} |
|
2807 |
|
|
2808 |
if (priv->hw->pcs) |
|
2809 |
stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); |
|
2810 |
|
|
2811 |
/* set TX and RX rings length */ |
|
2812 |
stmmac_set_rings_length(priv); |
|
2813 |
|
|
2814 |
/* Enable TSO */ |
|
2815 |
if (priv->tso) { |
|
2816 |
for (chan = 0; chan < tx_cnt; chan++) { |
|
2817 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; |
|
2818 |
|
|
2819 |
/* TSO and TBS cannot co-exist */ |
|
2820 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
2821 |
continue; |
|
2822 |
|
|
2823 |
stmmac_enable_tso(priv, priv->ioaddr, 1, chan); |
|
2824 |
} |
|
2825 |
} |
|
2826 |
|
|
2827 |
/* Enable Split Header */ |
|
2828 |
if (priv->sph && priv->hw->rx_csum) { |
|
2829 |
for (chan = 0; chan < rx_cnt; chan++) |
|
2830 |
stmmac_enable_sph(priv, priv->ioaddr, 1, chan); |
|
2831 |
} |
|
2832 |
|
|
2833 |
/* VLAN Tag Insertion */ |
|
2834 |
if (priv->dma_cap.vlins) |
|
2835 |
stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); |
|
2836 |
|
|
2837 |
/* TBS */ |
|
2838 |
for (chan = 0; chan < tx_cnt; chan++) { |
|
2839 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; |
|
2840 |
int enable = tx_q->tbs & STMMAC_TBS_AVAIL; |
|
2841 |
|
|
2842 |
stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); |
|
2843 |
} |
|
2844 |
|
|
2845 |
/* Configure real RX and TX queues */ |
|
2846 |
netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); |
|
2847 |
netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); |
|
2848 |
|
|
2849 |
/* Start the ball rolling... */ |
|
2850 |
stmmac_start_all_dma(priv); |
|
2851 |
|
|
2852 |
return 0; |
|
2853 |
} |
|
2854 |
|
|
2855 |
static void stmmac_hw_teardown(struct net_device *dev) |
|
2856 |
{ |
|
2857 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
2858 |
|
|
2859 |
clk_disable_unprepare(priv->plat->clk_ptp_ref); |
|
2860 |
} |
|
2861 |
|
|
2862 |
/** |
|
2863 |
* stmmac_open - open entry point of the driver |
|
2864 |
* @dev : pointer to the device structure. |
|
2865 |
* Description: |
|
2866 |
* This function is the open entry point of the driver. |
|
2867 |
* Return value: |
|
2868 |
* 0 on success and an appropriate (-)ve integer as defined in errno.h |
|
2869 |
* file on failure. |
|
2870 |
*/ |
|
2871 |
static int stmmac_open(struct net_device *dev) |
|
2872 |
{ |
|
2873 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
2874 |
int bfsize = 0; |
|
2875 |
u32 chan; |
|
2876 |
int ret; |
|
2877 |
|
|
2878 |
ret = pm_runtime_get_sync(priv->device); |
|
2879 |
if (ret < 0) { |
|
2880 |
pm_runtime_put_noidle(priv->device); |
|
2881 |
return ret; |
|
2882 |
} |
|
2883 |
|
|
2884 |
if (priv->hw->pcs != STMMAC_PCS_TBI && |
|
2885 |
priv->hw->pcs != STMMAC_PCS_RTBI && |
|
2886 |
priv->hw->xpcs == NULL) { |
|
2887 |
ret = stmmac_init_phy(dev); |
|
2888 |
if (ret) { |
|
2889 |
netdev_err(priv->dev, |
|
2890 |
"%s: Cannot attach to PHY (error: %d)\n", |
|
2891 |
__func__, ret); |
|
2892 |
goto init_phy_error; |
|
2893 |
} |
|
2894 |
} |
|
2895 |
|
|
2896 |
/* Extra statistics */ |
|
2897 |
memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); |
|
2898 |
priv->xstats.threshold = tc; |
|
2899 |
|
|
2900 |
bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); |
|
2901 |
if (bfsize < 0) |
|
2902 |
bfsize = 0; |
|
2903 |
|
|
2904 |
if (bfsize < BUF_SIZE_16KiB) |
|
2905 |
bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); |
|
2906 |
|
|
2907 |
priv->dma_buf_sz = bfsize; |
|
2908 |
buf_sz = bfsize; |
|
2909 |
|
|
2910 |
priv->rx_copybreak = STMMAC_RX_COPYBREAK; |
|
2911 |
|
|
2912 |
if (!priv->dma_tx_size) |
|
2913 |
priv->dma_tx_size = priv->plat->dma_tx_size ? priv->plat->dma_tx_size : |
|
2914 |
DMA_DEFAULT_TX_SIZE; |
|
2915 |
|
|
2916 |
if (!priv->dma_rx_size) |
|
2917 |
priv->dma_rx_size = priv->plat->dma_rx_size ? priv->plat->dma_rx_size : |
|
2918 |
DMA_DEFAULT_RX_SIZE; |
|
2919 |
|
|
2920 |
/* Earlier check for TBS */ |
|
2921 |
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { |
|
2922 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; |
|
2923 |
int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; |
|
2924 |
|
|
2925 |
/* Setup per-TXQ tbs flag before TX descriptor alloc */ |
|
2926 |
tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; |
|
2927 |
} |
|
2928 |
|
|
2929 |
ret = alloc_dma_desc_resources(priv); |
|
2930 |
if (ret < 0) { |
|
2931 |
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", |
|
2932 |
__func__); |
|
2933 |
goto dma_desc_error; |
|
2934 |
} |
|
2935 |
|
|
2936 |
ret = init_dma_desc_rings(dev, GFP_KERNEL); |
|
2937 |
if (ret < 0) { |
|
2938 |
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", |
|
2939 |
__func__); |
|
2940 |
goto init_error; |
|
2941 |
} |
|
2942 |
|
|
2943 |
if (priv->plat->serdes_powerup) { |
|
2944 |
ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); |
|
2945 |
if (ret < 0) { |
|
2946 |
netdev_err(priv->dev, "%s: Serdes powerup failed\n", |
|
2947 |
__func__); |
|
2948 |
goto init_error; |
|
2949 |
} |
|
2950 |
} |
|
2951 |
|
|
2952 |
ret = stmmac_hw_setup(dev, true); |
|
2953 |
if (ret < 0) { |
|
2954 |
netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); |
|
2955 |
goto init_error; |
|
2956 |
} |
|
2957 |
|
|
2958 |
stmmac_init_coalesce(priv); |
|
2959 |
|
|
2960 |
phylink_start(priv->phylink); |
|
2961 |
/* We may have called phylink_speed_down before */ |
|
2962 |
phylink_speed_up(priv->phylink); |
|
2963 |
|
|
2964 |
/* Request the IRQ lines */ |
|
2965 |
ret = request_irq(dev->irq, stmmac_interrupt, |
|
2966 |
IRQF_SHARED, dev->name, dev); |
|
2967 |
if (unlikely(ret < 0)) { |
|
2968 |
netdev_err(priv->dev, |
|
2969 |
"%s: ERROR: allocating the IRQ %d (error: %d)\n", |
|
2970 |
__func__, dev->irq, ret); |
|
2971 |
goto irq_error; |
|
2972 |
} |
|
2973 |
|
|
2974 |
/* Request the Wake IRQ in case of another line is used for WoL */ |
|
2975 |
if (priv->wol_irq != dev->irq) { |
|
2976 |
ret = request_irq(priv->wol_irq, stmmac_interrupt, |
|
2977 |
IRQF_SHARED, dev->name, dev); |
|
2978 |
if (unlikely(ret < 0)) { |
|
2979 |
netdev_err(priv->dev, |
|
2980 |
"%s: ERROR: allocating the WoL IRQ %d (%d)\n", |
|
2981 |
__func__, priv->wol_irq, ret); |
|
2982 |
goto wolirq_error; |
|
2983 |
} |
|
2984 |
} |
|
2985 |
|
|
2986 |
/* Request the IRQ lines */ |
|
2987 |
if (priv->lpi_irq > 0) { |
|
2988 |
ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, |
|
2989 |
dev->name, dev); |
|
2990 |
if (unlikely(ret < 0)) { |
|
2991 |
netdev_err(priv->dev, |
|
2992 |
"%s: ERROR: allocating the LPI IRQ %d (%d)\n", |
|
2993 |
__func__, priv->lpi_irq, ret); |
|
2994 |
goto lpiirq_error; |
|
2995 |
} |
|
2996 |
} |
|
2997 |
|
|
2998 |
stmmac_enable_all_queues(priv); |
|
2999 |
netif_tx_start_all_queues(priv->dev); |
|
3000 |
|
|
3001 |
return 0; |
|
3002 |
|
|
3003 |
lpiirq_error: |
|
3004 |
if (priv->wol_irq != dev->irq) |
|
3005 |
free_irq(priv->wol_irq, dev); |
|
3006 |
wolirq_error: |
|
3007 |
free_irq(dev->irq, dev); |
|
3008 |
irq_error: |
|
3009 |
phylink_stop(priv->phylink); |
|
3010 |
|
|
3011 |
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
|
3012 |
del_timer_sync(&priv->tx_queue[chan].txtimer); |
|
3013 |
|
|
3014 |
stmmac_hw_teardown(dev); |
|
3015 |
init_error: |
|
3016 |
free_dma_desc_resources(priv); |
|
3017 |
dma_desc_error: |
|
3018 |
phylink_disconnect_phy(priv->phylink); |
|
3019 |
init_phy_error: |
|
3020 |
pm_runtime_put(priv->device); |
|
3021 |
return ret; |
|
3022 |
} |
|
3023 |
|
|
3024 |
/** |
|
3025 |
* stmmac_release - close entry point of the driver |
|
3026 |
* @dev : device pointer. |
|
3027 |
* Description: |
|
3028 |
* This is the stop entry point of the driver. |
|
3029 |
*/ |
|
3030 |
static int stmmac_release(struct net_device *dev) |
|
3031 |
{ |
|
3032 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
3033 |
u32 chan; |
|
3034 |
|
|
3035 |
if (device_may_wakeup(priv->device)) |
|
3036 |
phylink_speed_down(priv->phylink, false); |
|
3037 |
/* Stop and disconnect the PHY */ |
|
3038 |
phylink_stop(priv->phylink); |
|
3039 |
phylink_disconnect_phy(priv->phylink); |
|
3040 |
|
|
3041 |
if (priv->plat->integrated_phy_power) |
|
3042 |
priv->plat->integrated_phy_power(priv->plat->bsp_priv, false); |
|
3043 |
|
|
3044 |
stmmac_disable_all_queues(priv); |
|
3045 |
|
|
3046 |
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
|
3047 |
del_timer_sync(&priv->tx_queue[chan].txtimer); |
|
3048 |
|
|
3049 |
/* Free the IRQ lines */ |
|
3050 |
free_irq(dev->irq, dev); |
|
3051 |
if (priv->wol_irq != dev->irq) |
|
3052 |
free_irq(priv->wol_irq, dev); |
|
3053 |
if (priv->lpi_irq > 0) |
|
3054 |
free_irq(priv->lpi_irq, dev); |
|
3055 |
|
|
3056 |
if (priv->eee_enabled) { |
|
3057 |
priv->tx_path_in_lpi_mode = false; |
|
3058 |
del_timer_sync(&priv->eee_ctrl_timer); |
|
3059 |
} |
|
3060 |
|
|
3061 |
/* Stop TX/RX DMA and clear the descriptors */ |
|
3062 |
stmmac_stop_all_dma(priv); |
|
3063 |
|
|
3064 |
/* Release and free the Rx/Tx resources */ |
|
3065 |
free_dma_desc_resources(priv); |
|
3066 |
|
|
3067 |
/* Disable the MAC Rx/Tx */ |
|
3068 |
stmmac_mac_set(priv, priv->ioaddr, false); |
|
3069 |
|
|
3070 |
/* Powerdown Serdes if there is */ |
|
3071 |
if (priv->plat->serdes_powerdown) |
|
3072 |
priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); |
|
3073 |
|
|
3074 |
netif_carrier_off(dev); |
|
3075 |
|
|
3076 |
stmmac_release_ptp(priv); |
|
3077 |
|
|
3078 |
pm_runtime_put(priv->device); |
|
3079 |
|
|
3080 |
return 0; |
|
3081 |
} |
|
3082 |
|
|
3083 |
static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, |
|
3084 |
struct stmmac_tx_queue *tx_q) |
|
3085 |
{ |
|
3086 |
u16 tag = 0x0, inner_tag = 0x0; |
|
3087 |
u32 inner_type = 0x0; |
|
3088 |
struct dma_desc *p; |
|
3089 |
|
|
3090 |
if (!priv->dma_cap.vlins) |
|
3091 |
return false; |
|
3092 |
if (!skb_vlan_tag_present(skb)) |
|
3093 |
return false; |
|
3094 |
if (skb->vlan_proto == htons(ETH_P_8021AD)) { |
|
3095 |
inner_tag = skb_vlan_tag_get(skb); |
|
3096 |
inner_type = STMMAC_VLAN_INSERT; |
|
3097 |
} |
|
3098 |
|
|
3099 |
tag = skb_vlan_tag_get(skb); |
|
3100 |
|
|
3101 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3102 |
p = &tx_q->dma_entx[tx_q->cur_tx].basic; |
|
3103 |
else |
|
3104 |
p = &tx_q->dma_tx[tx_q->cur_tx]; |
|
3105 |
|
|
3106 |
if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) |
|
3107 |
return false; |
|
3108 |
|
|
3109 |
stmmac_set_tx_owner(priv, p); |
|
3110 |
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); |
|
3111 |
return true; |
|
3112 |
} |
|
3113 |
|
|
3114 |
/** |
|
3115 |
* stmmac_tso_allocator - close entry point of the driver |
|
3116 |
* @priv: driver private structure |
|
3117 |
* @des: buffer start address |
|
3118 |
* @total_len: total length to fill in descriptors |
|
3119 |
* @last_segment: condition for the last descriptor |
|
3120 |
* @queue: TX queue index |
|
3121 |
* Description: |
|
3122 |
* This function fills descriptor and request new descriptors according to |
|
3123 |
* buffer length to fill |
|
3124 |
*/ |
|
3125 |
static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, |
|
3126 |
int total_len, bool last_segment, u32 queue) |
|
3127 |
{ |
|
3128 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
3129 |
struct dma_desc *desc; |
|
3130 |
u32 buff_size; |
|
3131 |
int tmp_len; |
|
3132 |
|
|
3133 |
tmp_len = total_len; |
|
3134 |
|
|
3135 |
while (tmp_len > 0) { |
|
3136 |
dma_addr_t curr_addr; |
|
3137 |
|
|
3138 |
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, |
|
3139 |
priv->dma_tx_size); |
|
3140 |
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); |
|
3141 |
|
|
3142 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3143 |
desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
|
3144 |
else |
|
3145 |
desc = &tx_q->dma_tx[tx_q->cur_tx]; |
|
3146 |
|
|
3147 |
curr_addr = des + (total_len - tmp_len); |
|
3148 |
if (priv->dma_cap.addr64 <= 32) |
|
3149 |
desc->des0 = cpu_to_le32(curr_addr); |
|
3150 |
else |
|
3151 |
stmmac_set_desc_addr(priv, desc, curr_addr); |
|
3152 |
|
|
3153 |
buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? |
|
3154 |
TSO_MAX_BUFF_SIZE : tmp_len; |
|
3155 |
|
|
3156 |
stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, |
|
3157 |
0, 1, |
|
3158 |
(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), |
|
3159 |
0, 0); |
|
3160 |
|
|
3161 |
tmp_len -= TSO_MAX_BUFF_SIZE; |
|
3162 |
} |
|
3163 |
} |
|
3164 |
|
|
3165 |
/** |
|
3166 |
* stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) |
|
3167 |
* @skb : the socket buffer |
|
3168 |
* @dev : device pointer |
|
3169 |
* Description: this is the transmit function that is called on TSO frames |
|
3170 |
* (support available on GMAC4 and newer chips). |
|
3171 |
* Diagram below show the ring programming in case of TSO frames: |
|
3172 |
* |
|
3173 |
* First Descriptor |
|
3174 |
* -------- |
|
3175 |
* | DES0 |---> buffer1 = L2/L3/L4 header |
|
3176 |
* | DES1 |---> TCP Payload (can continue on next descr...) |
|
3177 |
* | DES2 |---> buffer 1 and 2 len |
|
3178 |
* | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] |
|
3179 |
* -------- |
|
3180 |
* | |
|
3181 |
* ... |
|
3182 |
* | |
|
3183 |
* -------- |
|
3184 |
* | DES0 | --| Split TCP Payload on Buffers 1 and 2 |
|
3185 |
* | DES1 | --| |
|
3186 |
* | DES2 | --> buffer 1 and 2 len |
|
3187 |
* | DES3 | |
|
3188 |
* -------- |
|
3189 |
* |
|
3190 |
* mss is fixed when enable tso, so w/o programming the TDES3 ctx field. |
|
3191 |
*/ |
|
3192 |
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) |
|
3193 |
{ |
|
3194 |
struct dma_desc *desc, *first, *mss_desc = NULL; |
|
3195 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
3196 |
int desc_size, tmp_pay_len = 0, first_tx; |
|
3197 |
int nfrags = skb_shinfo(skb)->nr_frags; |
|
3198 |
u32 queue = skb_get_queue_mapping(skb); |
|
3199 |
unsigned int first_entry, tx_packets; |
|
3200 |
struct stmmac_tx_queue *tx_q; |
|
3201 |
bool has_vlan, set_ic; |
|
3202 |
u8 proto_hdr_len, hdr; |
|
3203 |
u32 pay_len, mss; |
|
3204 |
dma_addr_t des; |
|
3205 |
int i; |
|
3206 |
|
|
3207 |
tx_q = &priv->tx_queue[queue]; |
|
3208 |
first_tx = tx_q->cur_tx; |
|
3209 |
|
|
3210 |
/* Compute header lengths */ |
|
3211 |
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
|
3212 |
proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); |
|
3213 |
hdr = sizeof(struct udphdr); |
|
3214 |
} else { |
|
3215 |
proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3216 |
hdr = tcp_hdrlen(skb); |
|
3217 |
} |
|
3218 |
|
|
3219 |
/* Desc availability based on threshold should be enough safe */ |
|
3220 |
if (unlikely(stmmac_tx_avail(priv, queue) < |
|
3221 |
(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { |
|
3222 |
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { |
|
3223 |
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, |
|
3224 |
queue)); |
|
3225 |
/* This is a hard error, log it. */ |
|
3226 |
netdev_err(priv->dev, |
|
3227 |
"%s: Tx Ring full when queue awake\n", |
|
3228 |
__func__); |
|
3229 |
} |
|
3230 |
return NETDEV_TX_BUSY; |
|
3231 |
} |
|
3232 |
|
|
3233 |
pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ |
|
3234 |
|
|
3235 |
mss = skb_shinfo(skb)->gso_size; |
|
3236 |
|
|
3237 |
/* set new MSS value if needed */ |
|
3238 |
if (mss != tx_q->mss) { |
|
3239 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3240 |
mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
|
3241 |
else |
|
3242 |
mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; |
|
3243 |
|
|
3244 |
stmmac_set_mss(priv, mss_desc, mss); |
|
3245 |
tx_q->mss = mss; |
|
3246 |
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, |
|
3247 |
priv->dma_tx_size); |
|
3248 |
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); |
|
3249 |
} |
|
3250 |
|
|
3251 |
if (netif_msg_tx_queued(priv)) { |
|
3252 |
pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", |
|
3253 |
__func__, hdr, proto_hdr_len, pay_len, mss); |
|
3254 |
pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, |
|
3255 |
skb->data_len); |
|
3256 |
} |
|
3257 |
|
|
3258 |
/* Check if VLAN can be inserted by HW */ |
|
3259 |
has_vlan = stmmac_vlan_insert(priv, skb, tx_q); |
|
3260 |
|
|
3261 |
first_entry = tx_q->cur_tx; |
|
3262 |
WARN_ON(tx_q->tx_skbuff[first_entry]); |
|
3263 |
|
|
3264 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3265 |
desc = &tx_q->dma_entx[first_entry].basic; |
|
3266 |
else |
|
3267 |
desc = &tx_q->dma_tx[first_entry]; |
|
3268 |
first = desc; |
|
3269 |
|
|
3270 |
if (has_vlan) |
|
3271 |
stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); |
|
3272 |
|
|
3273 |
/* first descriptor: fill Headers on Buf1 */ |
|
3274 |
des = dma_map_single(priv->device, skb->data, skb_headlen(skb), |
|
3275 |
DMA_TO_DEVICE); |
|
3276 |
if (dma_mapping_error(priv->device, des)) |
|
3277 |
goto dma_map_err; |
|
3278 |
|
|
3279 |
tx_q->tx_skbuff_dma[first_entry].buf = des; |
|
3280 |
tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); |
|
3281 |
|
|
3282 |
if (priv->dma_cap.addr64 <= 32) { |
|
3283 |
first->des0 = cpu_to_le32(des); |
|
3284 |
|
|
3285 |
/* Fill start of payload in buff2 of first descriptor */ |
|
3286 |
if (pay_len) |
|
3287 |
first->des1 = cpu_to_le32(des + proto_hdr_len); |
|
3288 |
|
|
3289 |
/* If needed take extra descriptors to fill the remaining payload */ |
|
3290 |
tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; |
|
3291 |
} else { |
|
3292 |
stmmac_set_desc_addr(priv, first, des); |
|
3293 |
tmp_pay_len = pay_len; |
|
3294 |
des += proto_hdr_len; |
|
3295 |
pay_len = 0; |
|
3296 |
} |
|
3297 |
|
|
3298 |
stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); |
|
3299 |
|
|
3300 |
/* Prepare fragments */ |
|
3301 |
for (i = 0; i < nfrags; i++) { |
|
3302 |
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
|
3303 |
|
|
3304 |
des = skb_frag_dma_map(priv->device, frag, 0, |
|
3305 |
skb_frag_size(frag), |
|
3306 |
DMA_TO_DEVICE); |
|
3307 |
if (dma_mapping_error(priv->device, des)) |
|
3308 |
goto dma_map_err; |
|
3309 |
|
|
3310 |
stmmac_tso_allocator(priv, des, skb_frag_size(frag), |
|
3311 |
(i == nfrags - 1), queue); |
|
3312 |
|
|
3313 |
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; |
|
3314 |
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); |
|
3315 |
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; |
|
3316 |
} |
|
3317 |
|
|
3318 |
tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; |
|
3319 |
|
|
3320 |
/* Only the last descriptor gets to point to the skb. */ |
|
3321 |
tx_q->tx_skbuff[tx_q->cur_tx] = skb; |
|
3322 |
|
|
3323 |
/* Manage tx mitigation */ |
|
3324 |
tx_packets = (tx_q->cur_tx + 1) - first_tx; |
|
3325 |
tx_q->tx_count_frames += tx_packets; |
|
3326 |
|
|
3327 |
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) |
|
3328 |
set_ic = true; |
|
3329 |
else if (!priv->tx_coal_frames) |
|
3330 |
set_ic = false; |
|
3331 |
else if (tx_packets > priv->tx_coal_frames) |
|
3332 |
set_ic = true; |
|
3333 |
else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) |
|
3334 |
set_ic = true; |
|
3335 |
else |
|
3336 |
set_ic = false; |
|
3337 |
|
|
3338 |
if (set_ic) { |
|
3339 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3340 |
desc = &tx_q->dma_entx[tx_q->cur_tx].basic; |
|
3341 |
else |
|
3342 |
desc = &tx_q->dma_tx[tx_q->cur_tx]; |
|
3343 |
|
|
3344 |
tx_q->tx_count_frames = 0; |
|
3345 |
stmmac_set_tx_ic(priv, desc); |
|
3346 |
priv->xstats.tx_set_ic_bit++; |
|
3347 |
} |
|
3348 |
|
|
3349 |
/* We've used all descriptors we need for this skb, however, |
|
3350 |
* advance cur_tx so that it references a fresh descriptor. |
|
3351 |
* ndo_start_xmit will fill this descriptor the next time it's |
|
3352 |
* called and stmmac_tx_clean may clean up to this descriptor. |
|
3353 |
*/ |
|
3354 |
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); |
|
3355 |
|
|
3356 |
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { |
|
3357 |
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", |
|
3358 |
__func__); |
|
3359 |
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); |
|
3360 |
} |
|
3361 |
|
|
3362 |
dev->stats.tx_bytes += skb->len; |
|
3363 |
priv->xstats.tx_tso_frames++; |
|
3364 |
priv->xstats.tx_tso_nfrags += nfrags; |
|
3365 |
|
|
3366 |
if (priv->sarc_type) |
|
3367 |
stmmac_set_desc_sarc(priv, first, priv->sarc_type); |
|
3368 |
|
|
3369 |
skb_tx_timestamp(skb); |
|
3370 |
|
|
3371 |
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
|
3372 |
priv->hwts_tx_en)) { |
|
3373 |
/* declare that device is doing timestamping */ |
|
3374 |
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
|
3375 |
stmmac_enable_tx_timestamp(priv, first); |
|
3376 |
} |
|
3377 |
|
|
3378 |
/* Complete the first descriptor before granting the DMA */ |
|
3379 |
stmmac_prepare_tso_tx_desc(priv, first, 1, |
|
3380 |
proto_hdr_len, |
|
3381 |
pay_len, |
|
3382 |
1, tx_q->tx_skbuff_dma[first_entry].last_segment, |
|
3383 |
hdr / 4, (skb->len - proto_hdr_len)); |
|
3384 |
|
|
3385 |
/* If context desc is used to change MSS */ |
|
3386 |
if (mss_desc) { |
|
3387 |
/* Make sure that first descriptor has been completely |
|
3388 |
* written, including its own bit. This is because MSS is |
|
3389 |
* actually before first descriptor, so we need to make |
|
3390 |
* sure that MSS's own bit is the last thing written. |
|
3391 |
*/ |
|
3392 |
dma_wmb(); |
|
3393 |
stmmac_set_tx_owner(priv, mss_desc); |
|
3394 |
} |
|
3395 |
|
|
3396 |
/* The own bit must be the latest setting done when prepare the |
|
3397 |
* descriptor and then barrier is needed to make sure that |
|
3398 |
* all is coherent before granting the DMA engine. |
|
3399 |
*/ |
|
3400 |
wmb(); |
|
3401 |
|
|
3402 |
if (netif_msg_pktdata(priv)) { |
|
3403 |
pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", |
|
3404 |
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, |
|
3405 |
tx_q->cur_tx, first, nfrags); |
|
3406 |
pr_info(">>> frame to be transmitted: "); |
|
3407 |
print_pkt(skb->data, skb_headlen(skb)); |
|
3408 |
} |
|
3409 |
|
|
3410 |
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); |
|
3411 |
|
|
3412 |
if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3413 |
desc_size = sizeof(struct dma_edesc); |
|
3414 |
else |
|
3415 |
desc_size = sizeof(struct dma_desc); |
|
3416 |
|
|
3417 |
tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); |
|
3418 |
stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); |
|
3419 |
stmmac_tx_timer_arm(priv, queue); |
|
3420 |
|
|
3421 |
return NETDEV_TX_OK; |
|
3422 |
|
|
3423 |
dma_map_err: |
|
3424 |
dev_err(priv->device, "Tx dma map failed\n"); |
|
3425 |
dev_kfree_skb(skb); |
|
3426 |
priv->dev->stats.tx_dropped++; |
|
3427 |
return NETDEV_TX_OK; |
|
3428 |
} |
|
3429 |
|
|
3430 |
/** |
|
3431 |
* stmmac_xmit - Tx entry point of the driver |
|
3432 |
* @skb : the socket buffer |
|
3433 |
* @dev : device pointer |
|
3434 |
* Description : this is the tx entry point of the driver. |
|
3435 |
* It programs the chain or the ring and supports oversized frames |
|
3436 |
* and SG feature. |
|
3437 |
*/ |
|
3438 |
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) |
|
3439 |
{ |
|
3440 |
unsigned int first_entry, tx_packets, enh_desc; |
|
3441 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
3442 |
unsigned int nopaged_len = skb_headlen(skb); |
|
3443 |
int i, csum_insertion = 0, is_jumbo = 0; |
|
3444 |
u32 queue = skb_get_queue_mapping(skb); |
|
3445 |
int nfrags = skb_shinfo(skb)->nr_frags; |
|
3446 |
int gso = skb_shinfo(skb)->gso_type; |
|
3447 |
struct dma_edesc *tbs_desc = NULL; |
|
3448 |
int entry, desc_size, first_tx; |
|
3449 |
struct dma_desc *desc, *first; |
|
3450 |
struct stmmac_tx_queue *tx_q; |
|
3451 |
bool has_vlan, set_ic; |
|
3452 |
dma_addr_t des; |
|
3453 |
|
|
3454 |
tx_q = &priv->tx_queue[queue]; |
|
3455 |
first_tx = tx_q->cur_tx; |
|
3456 |
|
|
3457 |
if (priv->tx_path_in_lpi_mode) |
|
3458 |
stmmac_disable_eee_mode(priv); |
|
3459 |
|
|
3460 |
/* Manage oversized TCP frames for GMAC4 device */ |
|
3461 |
if (skb_is_gso(skb) && priv->tso) { |
|
3462 |
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) |
|
3463 |
return stmmac_tso_xmit(skb, dev); |
|
3464 |
if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) |
|
3465 |
return stmmac_tso_xmit(skb, dev); |
|
3466 |
} |
|
3467 |
|
|
3468 |
if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { |
|
3469 |
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { |
|
3470 |
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, |
|
3471 |
queue)); |
|
3472 |
/* This is a hard error, log it. */ |
|
3473 |
netdev_err(priv->dev, |
|
3474 |
"%s: Tx Ring full when queue awake\n", |
|
3475 |
__func__); |
|
3476 |
} |
|
3477 |
return NETDEV_TX_BUSY; |
|
3478 |
} |
|
3479 |
|
|
3480 |
/* Check if VLAN can be inserted by HW */ |
|
3481 |
has_vlan = stmmac_vlan_insert(priv, skb, tx_q); |
|
3482 |
|
|
3483 |
entry = tx_q->cur_tx; |
|
3484 |
first_entry = entry; |
|
3485 |
WARN_ON(tx_q->tx_skbuff[first_entry]); |
|
3486 |
|
|
3487 |
csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); |
|
3488 |
|
|
3489 |
if (likely(priv->extend_desc)) |
|
3490 |
desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
|
3491 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3492 |
desc = &tx_q->dma_entx[entry].basic; |
|
3493 |
else |
|
3494 |
desc = tx_q->dma_tx + entry; |
|
3495 |
|
|
3496 |
first = desc; |
|
3497 |
|
|
3498 |
if (has_vlan) |
|
3499 |
stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); |
|
3500 |
|
|
3501 |
enh_desc = priv->plat->enh_desc; |
|
3502 |
/* To program the descriptors according to the size of the frame */ |
|
3503 |
if (enh_desc) |
|
3504 |
is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); |
|
3505 |
|
|
3506 |
if (unlikely(is_jumbo)) { |
|
3507 |
entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); |
|
3508 |
if (unlikely(entry < 0) && (entry != -EINVAL)) |
|
3509 |
goto dma_map_err; |
|
3510 |
} |
|
3511 |
|
|
3512 |
for (i = 0; i < nfrags; i++) { |
|
3513 |
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
|
3514 |
int len = skb_frag_size(frag); |
|
3515 |
bool last_segment = (i == (nfrags - 1)); |
|
3516 |
|
|
3517 |
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); |
|
3518 |
WARN_ON(tx_q->tx_skbuff[entry]); |
|
3519 |
|
|
3520 |
if (likely(priv->extend_desc)) |
|
3521 |
desc = (struct dma_desc *)(tx_q->dma_etx + entry); |
|
3522 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3523 |
desc = &tx_q->dma_entx[entry].basic; |
|
3524 |
else |
|
3525 |
desc = tx_q->dma_tx + entry; |
|
3526 |
|
|
3527 |
des = skb_frag_dma_map(priv->device, frag, 0, len, |
|
3528 |
DMA_TO_DEVICE); |
|
3529 |
if (dma_mapping_error(priv->device, des)) |
|
3530 |
goto dma_map_err; /* should reuse desc w/o issues */ |
|
3531 |
|
|
3532 |
tx_q->tx_skbuff_dma[entry].buf = des; |
|
3533 |
|
|
3534 |
stmmac_set_desc_addr(priv, desc, des); |
|
3535 |
|
|
3536 |
tx_q->tx_skbuff_dma[entry].map_as_page = true; |
|
3537 |
tx_q->tx_skbuff_dma[entry].len = len; |
|
3538 |
tx_q->tx_skbuff_dma[entry].last_segment = last_segment; |
|
3539 |
|
|
3540 |
/* Prepare the descriptor and set the own bit too */ |
|
3541 |
stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, |
|
3542 |
priv->mode, 1, last_segment, skb->len); |
|
3543 |
} |
|
3544 |
|
|
3545 |
/* Only the last descriptor gets to point to the skb. */ |
|
3546 |
tx_q->tx_skbuff[entry] = skb; |
|
3547 |
|
|
3548 |
/* According to the coalesce parameter the IC bit for the latest |
|
3549 |
* segment is reset and the timer re-started to clean the tx status. |
|
3550 |
* This approach takes care about the fragments: desc is the first |
|
3551 |
* element in case of no SG. |
|
3552 |
*/ |
|
3553 |
tx_packets = (entry + 1) - first_tx; |
|
3554 |
tx_q->tx_count_frames += tx_packets; |
|
3555 |
|
|
3556 |
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) |
|
3557 |
set_ic = true; |
|
3558 |
else if (!priv->tx_coal_frames) |
|
3559 |
set_ic = false; |
|
3560 |
else if (tx_packets > priv->tx_coal_frames) |
|
3561 |
set_ic = true; |
|
3562 |
else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) |
|
3563 |
set_ic = true; |
|
3564 |
else |
|
3565 |
set_ic = false; |
|
3566 |
|
|
3567 |
if (set_ic) { |
|
3568 |
if (likely(priv->extend_desc)) |
|
3569 |
desc = &tx_q->dma_etx[entry].basic; |
|
3570 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3571 |
desc = &tx_q->dma_entx[entry].basic; |
|
3572 |
else |
|
3573 |
desc = &tx_q->dma_tx[entry]; |
|
3574 |
|
|
3575 |
tx_q->tx_count_frames = 0; |
|
3576 |
stmmac_set_tx_ic(priv, desc); |
|
3577 |
priv->xstats.tx_set_ic_bit++; |
|
3578 |
} |
|
3579 |
|
|
3580 |
/* We've used all descriptors we need for this skb, however, |
|
3581 |
* advance cur_tx so that it references a fresh descriptor. |
|
3582 |
* ndo_start_xmit will fill this descriptor the next time it's |
|
3583 |
* called and stmmac_tx_clean may clean up to this descriptor. |
|
3584 |
*/ |
|
3585 |
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); |
|
3586 |
tx_q->cur_tx = entry; |
|
3587 |
|
|
3588 |
if (netif_msg_pktdata(priv)) { |
|
3589 |
netdev_dbg(priv->dev, |
|
3590 |
"%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", |
|
3591 |
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, |
|
3592 |
entry, first, nfrags); |
|
3593 |
|
|
3594 |
netdev_dbg(priv->dev, ">>> frame to be transmitted: "); |
|
3595 |
print_pkt(skb->data, skb->len); |
|
3596 |
} |
|
3597 |
|
|
3598 |
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { |
|
3599 |
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", |
|
3600 |
__func__); |
|
3601 |
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); |
|
3602 |
} |
|
3603 |
|
|
3604 |
dev->stats.tx_bytes += skb->len; |
|
3605 |
|
|
3606 |
if (priv->sarc_type) |
|
3607 |
stmmac_set_desc_sarc(priv, first, priv->sarc_type); |
|
3608 |
|
|
3609 |
skb_tx_timestamp(skb); |
|
3610 |
|
|
3611 |
/* Ready to fill the first descriptor and set the OWN bit w/o any |
|
3612 |
* problems because all the descriptors are actually ready to be |
|
3613 |
* passed to the DMA engine. |
|
3614 |
*/ |
|
3615 |
if (likely(!is_jumbo)) { |
|
3616 |
bool last_segment = (nfrags == 0); |
|
3617 |
|
|
3618 |
des = dma_map_single(priv->device, skb->data, |
|
3619 |
nopaged_len, DMA_TO_DEVICE); |
|
3620 |
if (dma_mapping_error(priv->device, des)) |
|
3621 |
goto dma_map_err; |
|
3622 |
|
|
3623 |
tx_q->tx_skbuff_dma[first_entry].buf = des; |
|
3624 |
|
|
3625 |
stmmac_set_desc_addr(priv, first, des); |
|
3626 |
|
|
3627 |
tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; |
|
3628 |
tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; |
|
3629 |
|
|
3630 |
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
|
3631 |
priv->hwts_tx_en)) { |
|
3632 |
/* declare that device is doing timestamping */ |
|
3633 |
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
|
3634 |
stmmac_enable_tx_timestamp(priv, first); |
|
3635 |
} |
|
3636 |
|
|
3637 |
/* Prepare the first descriptor setting the OWN bit too */ |
|
3638 |
stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, |
|
3639 |
csum_insertion, priv->mode, 0, last_segment, |
|
3640 |
skb->len); |
|
3641 |
} |
|
3642 |
|
|
3643 |
if (tx_q->tbs & STMMAC_TBS_EN) { |
|
3644 |
struct timespec64 ts = ns_to_timespec64(skb->tstamp); |
|
3645 |
|
|
3646 |
tbs_desc = &tx_q->dma_entx[first_entry]; |
|
3647 |
stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); |
|
3648 |
} |
|
3649 |
|
|
3650 |
stmmac_set_tx_owner(priv, first); |
|
3651 |
|
|
3652 |
/* The own bit must be the latest setting done when prepare the |
|
3653 |
* descriptor and then barrier is needed to make sure that |
|
3654 |
* all is coherent before granting the DMA engine. |
|
3655 |
*/ |
|
3656 |
wmb(); |
|
3657 |
|
|
3658 |
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); |
|
3659 |
|
|
3660 |
stmmac_enable_dma_transmission(priv, priv->ioaddr); |
|
3661 |
|
|
3662 |
if (likely(priv->extend_desc)) |
|
3663 |
desc_size = sizeof(struct dma_extended_desc); |
|
3664 |
else if (tx_q->tbs & STMMAC_TBS_AVAIL) |
|
3665 |
desc_size = sizeof(struct dma_edesc); |
|
3666 |
else |
|
3667 |
desc_size = sizeof(struct dma_desc); |
|
3668 |
|
|
3669 |
tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); |
|
3670 |
stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); |
|
3671 |
stmmac_tx_timer_arm(priv, queue); |
|
3672 |
|
|
3673 |
return NETDEV_TX_OK; |
|
3674 |
|
|
3675 |
dma_map_err: |
|
3676 |
netdev_err(priv->dev, "Tx DMA map failed\n"); |
|
3677 |
dev_kfree_skb(skb); |
|
3678 |
priv->dev->stats.tx_dropped++; |
|
3679 |
return NETDEV_TX_OK; |
|
3680 |
} |
|
3681 |
|
|
3682 |
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) |
|
3683 |
{ |
|
3684 |
struct vlan_ethhdr *veth; |
|
3685 |
__be16 vlan_proto; |
|
3686 |
u16 vlanid; |
|
3687 |
|
|
3688 |
veth = (struct vlan_ethhdr *)skb->data; |
|
3689 |
vlan_proto = veth->h_vlan_proto; |
|
3690 |
|
|
3691 |
if ((vlan_proto == htons(ETH_P_8021Q) && |
|
3692 |
dev->features & NETIF_F_HW_VLAN_CTAG_RX) || |
|
3693 |
(vlan_proto == htons(ETH_P_8021AD) && |
|
3694 |
dev->features & NETIF_F_HW_VLAN_STAG_RX)) { |
|
3695 |
/* pop the vlan tag */ |
|
3696 |
vlanid = ntohs(veth->h_vlan_TCI); |
|
3697 |
memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); |
|
3698 |
skb_pull(skb, VLAN_HLEN); |
|
3699 |
__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); |
|
3700 |
} |
|
3701 |
} |
|
3702 |
|
|
3703 |
/** |
|
3704 |
* stmmac_rx_refill - refill used skb preallocated buffers |
|
3705 |
* @priv: driver private structure |
|
3706 |
* @queue: RX queue index |
|
3707 |
* Description : this is to reallocate the skb for the reception process |
|
3708 |
* that is based on zero-copy. |
|
3709 |
*/ |
|
3710 |
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) |
|
3711 |
{ |
|
3712 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
3713 |
int len, dirty = stmmac_rx_dirty(priv, queue); |
|
3714 |
unsigned int entry = rx_q->dirty_rx; |
|
3715 |
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); |
|
3716 |
|
|
3717 |
if (priv->dma_cap.addr64 <= 32) |
|
3718 |
gfp |= GFP_DMA32; |
|
3719 |
|
|
3720 |
len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; |
|
3721 |
|
|
3722 |
while (dirty-- > 0) { |
|
3723 |
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; |
|
3724 |
struct dma_desc *p; |
|
3725 |
bool use_rx_wd; |
|
3726 |
|
|
3727 |
if (priv->extend_desc) |
|
3728 |
p = (struct dma_desc *)(rx_q->dma_erx + entry); |
|
3729 |
else |
|
3730 |
p = rx_q->dma_rx + entry; |
|
3731 |
|
|
3732 |
if (!buf->page) { |
|
3733 |
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
|
3734 |
if (!buf->page) |
|
3735 |
break; |
|
3736 |
} |
|
3737 |
|
|
3738 |
if (priv->sph && !buf->sec_page) { |
|
3739 |
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); |
|
3740 |
if (!buf->sec_page) |
|
3741 |
break; |
|
3742 |
|
|
3743 |
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); |
|
3744 |
} |
|
3745 |
|
|
3746 |
buf->addr = page_pool_get_dma_addr(buf->page); |
|
3747 |
stmmac_set_desc_addr(priv, p, buf->addr); |
|
3748 |
if (priv->sph) |
|
3749 |
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); |
|
3750 |
else |
|
3751 |
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); |
|
3752 |
stmmac_refill_desc3(priv, rx_q, p); |
|
3753 |
|
|
3754 |
rx_q->rx_count_frames++; |
|
3755 |
rx_q->rx_count_frames += priv->rx_coal_frames; |
|
3756 |
if (rx_q->rx_count_frames > priv->rx_coal_frames) |
|
3757 |
rx_q->rx_count_frames = 0; |
|
3758 |
|
|
3759 |
use_rx_wd = !priv->rx_coal_frames; |
|
3760 |
use_rx_wd |= rx_q->rx_count_frames > 0; |
|
3761 |
if (!priv->use_riwt) |
|
3762 |
use_rx_wd = false; |
|
3763 |
|
|
3764 |
dma_wmb(); |
|
3765 |
stmmac_set_rx_owner(priv, p, use_rx_wd); |
|
3766 |
|
|
3767 |
entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); |
|
3768 |
} |
|
3769 |
rx_q->dirty_rx = entry; |
|
3770 |
rx_q->rx_tail_addr = rx_q->dma_rx_phy + |
|
3771 |
(rx_q->dirty_rx * sizeof(struct dma_desc)); |
|
3772 |
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); |
|
3773 |
} |
|
3774 |
|
|
3775 |
static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, |
|
3776 |
struct dma_desc *p, |
|
3777 |
int status, unsigned int len) |
|
3778 |
{ |
|
3779 |
unsigned int plen = 0, hlen = 0; |
|
3780 |
int coe = priv->hw->rx_csum; |
|
3781 |
|
|
3782 |
/* Not first descriptor, buffer is always zero */ |
|
3783 |
if (priv->sph && len) |
|
3784 |
return 0; |
|
3785 |
|
|
3786 |
/* First descriptor, get split header length */ |
|
3787 |
stmmac_get_rx_header_len(priv, p, &hlen); |
|
3788 |
if (priv->sph && hlen) { |
|
3789 |
priv->xstats.rx_split_hdr_pkt_n++; |
|
3790 |
return hlen; |
|
3791 |
} |
|
3792 |
|
|
3793 |
/* First descriptor, not last descriptor and not split header */ |
|
3794 |
if (status & rx_not_ls) |
|
3795 |
return priv->dma_buf_sz; |
|
3796 |
|
|
3797 |
plen = stmmac_get_rx_frame_len(priv, p, coe); |
|
3798 |
|
|
3799 |
/* First descriptor and last descriptor and not split header */ |
|
3800 |
return min_t(unsigned int, priv->dma_buf_sz, plen); |
|
3801 |
} |
|
3802 |
|
|
3803 |
static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, |
|
3804 |
struct dma_desc *p, |
|
3805 |
int status, unsigned int len) |
|
3806 |
{ |
|
3807 |
int coe = priv->hw->rx_csum; |
|
3808 |
unsigned int plen = 0; |
|
3809 |
|
|
3810 |
/* Not split header, buffer is not available */ |
|
3811 |
if (!priv->sph) |
|
3812 |
return 0; |
|
3813 |
|
|
3814 |
/* Not last descriptor */ |
|
3815 |
if (status & rx_not_ls) |
|
3816 |
return priv->dma_buf_sz; |
|
3817 |
|
|
3818 |
plen = stmmac_get_rx_frame_len(priv, p, coe); |
|
3819 |
|
|
3820 |
/* Last descriptor */ |
|
3821 |
return plen - len; |
|
3822 |
} |
|
3823 |
|
|
3824 |
/** |
|
3825 |
* stmmac_rx - manage the receive process |
|
3826 |
* @priv: driver private structure |
|
3827 |
* @limit: napi bugget |
|
3828 |
* @queue: RX queue index. |
|
3829 |
* Description : this the function called by the napi poll method. |
|
3830 |
* It gets all the frames inside the ring. |
|
3831 |
*/ |
|
3832 |
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) |
|
3833 |
{ |
|
3834 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
3835 |
struct stmmac_channel *ch = &priv->channel[queue]; |
|
3836 |
unsigned int count = 0, error = 0, len = 0; |
|
3837 |
int status = 0, coe = priv->hw->rx_csum; |
|
3838 |
unsigned int next_entry = rx_q->cur_rx; |
|
3839 |
unsigned int desc_size; |
|
3840 |
struct sk_buff *skb = NULL; |
|
3841 |
|
|
3842 |
if (netif_msg_rx_status(priv)) { |
|
3843 |
void *rx_head; |
|
3844 |
|
|
3845 |
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); |
|
3846 |
if (priv->extend_desc) { |
|
3847 |
rx_head = (void *)rx_q->dma_erx; |
|
3848 |
desc_size = sizeof(struct dma_extended_desc); |
|
3849 |
} else { |
|
3850 |
rx_head = (void *)rx_q->dma_rx; |
|
3851 |
desc_size = sizeof(struct dma_desc); |
|
3852 |
} |
|
3853 |
|
|
3854 |
stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, |
|
3855 |
rx_q->dma_rx_phy, desc_size); |
|
3856 |
} |
|
3857 |
while (count < limit) { |
|
3858 |
unsigned int buf1_len = 0, buf2_len = 0; |
|
3859 |
enum pkt_hash_types hash_type; |
|
3860 |
struct stmmac_rx_buffer *buf; |
|
3861 |
struct dma_desc *np, *p; |
|
3862 |
int entry; |
|
3863 |
u32 hash; |
|
3864 |
|
|
3865 |
if (!count && rx_q->state_saved) { |
|
3866 |
skb = rx_q->state.skb; |
|
3867 |
error = rx_q->state.error; |
|
3868 |
len = rx_q->state.len; |
|
3869 |
} else { |
|
3870 |
rx_q->state_saved = false; |
|
3871 |
skb = NULL; |
|
3872 |
error = 0; |
|
3873 |
len = 0; |
|
3874 |
} |
|
3875 |
|
|
3876 |
if ((count >= limit - 1) && limit > 1) |
|
3877 |
break; |
|
3878 |
|
|
3879 |
read_again: |
|
3880 |
buf1_len = 0; |
|
3881 |
buf2_len = 0; |
|
3882 |
entry = next_entry; |
|
3883 |
buf = &rx_q->buf_pool[entry]; |
|
3884 |
|
|
3885 |
if (priv->extend_desc) |
|
3886 |
p = (struct dma_desc *)(rx_q->dma_erx + entry); |
|
3887 |
else |
|
3888 |
p = rx_q->dma_rx + entry; |
|
3889 |
|
|
3890 |
/* read the status of the incoming frame */ |
|
3891 |
status = stmmac_rx_status(priv, &priv->dev->stats, |
|
3892 |
&priv->xstats, p); |
|
3893 |
/* check if managed by the DMA otherwise go ahead */ |
|
3894 |
if (unlikely(status & dma_own)) |
|
3895 |
break; |
|
3896 |
|
|
3897 |
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, |
|
3898 |
priv->dma_rx_size); |
|
3899 |
next_entry = rx_q->cur_rx; |
|
3900 |
|
|
3901 |
if (priv->extend_desc) |
|
3902 |
np = (struct dma_desc *)(rx_q->dma_erx + next_entry); |
|
3903 |
else |
|
3904 |
np = rx_q->dma_rx + next_entry; |
|
3905 |
|
|
3906 |
prefetch(np); |
|
3907 |
|
|
3908 |
if (priv->extend_desc) |
|
3909 |
stmmac_rx_extended_status(priv, &priv->dev->stats, |
|
3910 |
&priv->xstats, rx_q->dma_erx + entry); |
|
3911 |
if (unlikely(status == discard_frame)) { |
|
3912 |
page_pool_recycle_direct(rx_q->page_pool, buf->page); |
|
3913 |
buf->page = NULL; |
|
3914 |
error = 1; |
|
3915 |
if (!priv->hwts_rx_en) |
|
3916 |
priv->dev->stats.rx_errors++; |
|
3917 |
} |
|
3918 |
|
|
3919 |
if (unlikely(error && (status & rx_not_ls))) |
|
3920 |
goto read_again; |
|
3921 |
if (unlikely(error)) { |
|
3922 |
dev_kfree_skb(skb); |
|
3923 |
skb = NULL; |
|
3924 |
count++; |
|
3925 |
continue; |
|
3926 |
} |
|
3927 |
|
|
3928 |
/* Buffer is good. Go on. */ |
|
3929 |
|
|
3930 |
prefetch(page_address(buf->page)); |
|
3931 |
if (buf->sec_page) |
|
3932 |
prefetch(page_address(buf->sec_page)); |
|
3933 |
|
|
3934 |
buf1_len = stmmac_rx_buf1_len(priv, p, status, len); |
|
3935 |
len += buf1_len; |
|
3936 |
buf2_len = stmmac_rx_buf2_len(priv, p, status, len); |
|
3937 |
len += buf2_len; |
|
3938 |
|
|
3939 |
/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 |
|
3940 |
* Type frames (LLC/LLC-SNAP) |
|
3941 |
* |
|
3942 |
* llc_snap is never checked in GMAC >= 4, so this ACS |
|
3943 |
* feature is always disabled and packets need to be |
|
3944 |
* stripped manually. |
|
3945 |
*/ |
|
3946 |
if (likely(!(status & rx_not_ls)) && |
|
3947 |
(likely(priv->synopsys_id >= DWMAC_CORE_4_00) || |
|
3948 |
unlikely(status != llc_snap))) { |
|
3949 |
if (buf2_len) |
|
3950 |
buf2_len -= ETH_FCS_LEN; |
|
3951 |
else |
|
3952 |
buf1_len -= ETH_FCS_LEN; |
|
3953 |
|
|
3954 |
len -= ETH_FCS_LEN; |
|
3955 |
} |
|
3956 |
|
|
3957 |
if (!skb) { |
|
3958 |
skb = napi_alloc_skb(&ch->rx_napi, buf1_len); |
|
3959 |
if (!skb) { |
|
3960 |
priv->dev->stats.rx_dropped++; |
|
3961 |
count++; |
|
3962 |
goto drain_data; |
|
3963 |
} |
|
3964 |
|
|
3965 |
dma_sync_single_for_cpu(priv->device, buf->addr, |
|
3966 |
buf1_len, DMA_FROM_DEVICE); |
|
3967 |
skb_copy_to_linear_data(skb, page_address(buf->page), |
|
3968 |
buf1_len); |
|
3969 |
skb_put(skb, buf1_len); |
|
3970 |
|
|
3971 |
/* Data payload copied into SKB, page ready for recycle */ |
|
3972 |
page_pool_recycle_direct(rx_q->page_pool, buf->page); |
|
3973 |
buf->page = NULL; |
|
3974 |
} else if (buf1_len) { |
|
3975 |
dma_sync_single_for_cpu(priv->device, buf->addr, |
|
3976 |
buf1_len, DMA_FROM_DEVICE); |
|
3977 |
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
|
3978 |
buf->page, 0, buf1_len, |
|
3979 |
priv->dma_buf_sz); |
|
3980 |
|
|
3981 |
/* Data payload appended into SKB */ |
|
3982 |
page_pool_release_page(rx_q->page_pool, buf->page); |
|
3983 |
buf->page = NULL; |
|
3984 |
} |
|
3985 |
|
|
3986 |
if (buf2_len) { |
|
3987 |
dma_sync_single_for_cpu(priv->device, buf->sec_addr, |
|
3988 |
buf2_len, DMA_FROM_DEVICE); |
|
3989 |
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
|
3990 |
buf->sec_page, 0, buf2_len, |
|
3991 |
priv->dma_buf_sz); |
|
3992 |
|
|
3993 |
/* Data payload appended into SKB */ |
|
3994 |
page_pool_release_page(rx_q->page_pool, buf->sec_page); |
|
3995 |
buf->sec_page = NULL; |
|
3996 |
} |
|
3997 |
|
|
3998 |
drain_data: |
|
3999 |
if (likely(status & rx_not_ls)) |
|
4000 |
goto read_again; |
|
4001 |
if (!skb) |
|
4002 |
continue; |
|
4003 |
|
|
4004 |
/* Got entire packet into SKB. Finish it. */ |
|
4005 |
|
|
4006 |
stmmac_get_rx_hwtstamp(priv, p, np, skb); |
|
4007 |
stmmac_rx_vlan(priv->dev, skb); |
|
4008 |
skb->protocol = eth_type_trans(skb, priv->dev); |
|
4009 |
|
|
4010 |
if (unlikely(!coe)) |
|
4011 |
skb_checksum_none_assert(skb); |
|
4012 |
else |
|
4013 |
skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
4014 |
|
|
4015 |
if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) |
|
4016 |
skb_set_hash(skb, hash, hash_type); |
|
4017 |
|
|
4018 |
skb_record_rx_queue(skb, queue); |
|
4019 |
napi_gro_receive(&ch->rx_napi, skb); |
|
4020 |
skb = NULL; |
|
4021 |
|
|
4022 |
priv->dev->stats.rx_packets++; |
|
4023 |
priv->dev->stats.rx_bytes += len; |
|
4024 |
count++; |
|
4025 |
} |
|
4026 |
|
|
4027 |
if (status & rx_not_ls || skb) { |
|
4028 |
rx_q->state_saved = true; |
|
4029 |
rx_q->state.skb = skb; |
|
4030 |
rx_q->state.error = error; |
|
4031 |
rx_q->state.len = len; |
|
4032 |
} |
|
4033 |
|
|
4034 |
stmmac_rx_refill(priv, queue); |
|
4035 |
|
|
4036 |
priv->xstats.rx_pkt_n += count; |
|
4037 |
|
|
4038 |
return count; |
|
4039 |
} |
|
4040 |
|
|
4041 |
static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) |
|
4042 |
{ |
|
4043 |
struct stmmac_channel *ch = |
|
4044 |
container_of(napi, struct stmmac_channel, rx_napi); |
|
4045 |
struct stmmac_priv *priv = ch->priv_data; |
|
4046 |
u32 chan = ch->index; |
|
4047 |
int work_done; |
|
4048 |
|
|
4049 |
priv->xstats.napi_poll++; |
|
4050 |
|
|
4051 |
work_done = stmmac_rx(priv, budget, chan); |
|
4052 |
if (work_done < budget && napi_complete_done(napi, work_done)) { |
|
4053 |
unsigned long flags; |
|
4054 |
|
|
4055 |
spin_lock_irqsave(&ch->lock, flags); |
|
4056 |
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); |
|
4057 |
spin_unlock_irqrestore(&ch->lock, flags); |
|
4058 |
} |
|
4059 |
|
|
4060 |
return work_done; |
|
4061 |
} |
|
4062 |
|
|
4063 |
static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) |
|
4064 |
{ |
|
4065 |
struct stmmac_channel *ch = |
|
4066 |
container_of(napi, struct stmmac_channel, tx_napi); |
|
4067 |
struct stmmac_priv *priv = ch->priv_data; |
|
4068 |
u32 chan = ch->index; |
|
4069 |
int work_done; |
|
4070 |
|
|
4071 |
priv->xstats.napi_poll++; |
|
4072 |
|
|
4073 |
work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan); |
|
4074 |
work_done = min(work_done, budget); |
|
4075 |
|
|
4076 |
if (work_done < budget && napi_complete_done(napi, work_done)) { |
|
4077 |
unsigned long flags; |
|
4078 |
|
|
4079 |
spin_lock_irqsave(&ch->lock, flags); |
|
4080 |
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); |
|
4081 |
spin_unlock_irqrestore(&ch->lock, flags); |
|
4082 |
} |
|
4083 |
|
|
4084 |
return work_done; |
|
4085 |
} |
|
4086 |
|
|
4087 |
/** |
|
4088 |
* stmmac_tx_timeout |
|
4089 |
* @dev : Pointer to net device structure |
|
4090 |
* @txqueue: the index of the hanging transmit queue |
|
4091 |
* Description: this function is called when a packet transmission fails to |
|
4092 |
* complete within a reasonable time. The driver will mark the error in the |
|
4093 |
* netdev structure and arrange for the device to be reset to a sane state |
|
4094 |
* in order to transmit a new packet. |
|
4095 |
*/ |
|
4096 |
static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) |
|
4097 |
{ |
|
4098 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4099 |
|
|
4100 |
stmmac_global_err(priv); |
|
4101 |
} |
|
4102 |
|
|
4103 |
/** |
|
4104 |
* stmmac_set_rx_mode - entry point for multicast addressing |
|
4105 |
* @dev : pointer to the device structure |
|
4106 |
* Description: |
|
4107 |
* This function is a driver entry point which gets called by the kernel |
|
4108 |
* whenever multicast addresses must be enabled/disabled. |
|
4109 |
* Return value: |
|
4110 |
* void. |
|
4111 |
*/ |
|
4112 |
static void stmmac_set_rx_mode(struct net_device *dev) |
|
4113 |
{ |
|
4114 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4115 |
|
|
4116 |
stmmac_set_filter(priv, priv->hw, dev); |
|
4117 |
} |
|
4118 |
|
|
4119 |
/** |
|
4120 |
* stmmac_change_mtu - entry point to change MTU size for the device. |
|
4121 |
* @dev : device pointer. |
|
4122 |
* @new_mtu : the new MTU size for the device. |
|
4123 |
* Description: the Maximum Transfer Unit (MTU) is used by the network layer |
|
4124 |
* to drive packet transmission. Ethernet has an MTU of 1500 octets |
|
4125 |
* (ETH_DATA_LEN). This value can be changed with ifconfig. |
|
4126 |
* Return value: |
|
4127 |
* 0 on success and an appropriate (-)ve integer as defined in errno.h |
|
4128 |
* file on failure. |
|
4129 |
*/ |
|
4130 |
static int stmmac_change_mtu(struct net_device *dev, int new_mtu) |
|
4131 |
{ |
|
4132 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4133 |
int txfifosz = priv->plat->tx_fifo_size; |
|
4134 |
const int mtu = new_mtu; |
|
4135 |
|
|
4136 |
if (txfifosz == 0) |
|
4137 |
txfifosz = priv->dma_cap.tx_fifo_size; |
|
4138 |
|
|
4139 |
txfifosz /= priv->plat->tx_queues_to_use; |
|
4140 |
|
|
4141 |
if (netif_running(dev)) { |
|
4142 |
netdev_err(priv->dev, "must be stopped to change its MTU\n"); |
|
4143 |
return -EBUSY; |
|
4144 |
} |
|
4145 |
|
|
4146 |
new_mtu = STMMAC_ALIGN(new_mtu); |
|
4147 |
|
|
4148 |
/* If condition true, FIFO is too small or MTU too large */ |
|
4149 |
if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) |
|
4150 |
return -EINVAL; |
|
4151 |
|
|
4152 |
dev->mtu = mtu; |
|
4153 |
|
|
4154 |
netdev_update_features(dev); |
|
4155 |
|
|
4156 |
return 0; |
|
4157 |
} |
|
4158 |
|
|
4159 |
static netdev_features_t stmmac_fix_features(struct net_device *dev, |
|
4160 |
netdev_features_t features) |
|
4161 |
{ |
|
4162 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4163 |
|
|
4164 |
if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) |
|
4165 |
features &= ~NETIF_F_RXCSUM; |
|
4166 |
|
|
4167 |
if (!priv->plat->tx_coe) |
|
4168 |
features &= ~NETIF_F_CSUM_MASK; |
|
4169 |
|
|
4170 |
/* Some GMAC devices have a bugged Jumbo frame support that |
|
4171 |
* needs to have the Tx COE disabled for oversized frames |
|
4172 |
* (due to limited buffer sizes). In this case we disable |
|
4173 |
* the TX csum insertion in the TDES and not use SF. |
|
4174 |
*/ |
|
4175 |
if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) |
|
4176 |
features &= ~NETIF_F_CSUM_MASK; |
|
4177 |
|
|
4178 |
/* Disable tso if asked by ethtool */ |
|
4179 |
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { |
|
4180 |
if (features & NETIF_F_TSO) |
|
4181 |
priv->tso = true; |
|
4182 |
else |
|
4183 |
priv->tso = false; |
|
4184 |
} |
|
4185 |
|
|
4186 |
return features; |
|
4187 |
} |
|
4188 |
|
|
4189 |
static int stmmac_set_features(struct net_device *netdev, |
|
4190 |
netdev_features_t features) |
|
4191 |
{ |
|
4192 |
struct stmmac_priv *priv = netdev_priv(netdev); |
|
4193 |
bool sph_en; |
|
4194 |
u32 chan; |
|
4195 |
|
|
4196 |
/* Keep the COE Type in case of csum is supporting */ |
|
4197 |
if (features & NETIF_F_RXCSUM) |
|
4198 |
priv->hw->rx_csum = priv->plat->rx_coe; |
|
4199 |
else |
|
4200 |
priv->hw->rx_csum = 0; |
|
4201 |
/* No check needed because rx_coe has been set before and it will be |
|
4202 |
* fixed in case of issue. |
|
4203 |
*/ |
|
4204 |
stmmac_rx_ipc(priv, priv->hw); |
|
4205 |
|
|
4206 |
sph_en = (priv->hw->rx_csum > 0) && priv->sph; |
|
4207 |
for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) |
|
4208 |
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); |
|
4209 |
|
|
4210 |
return 0; |
|
4211 |
} |
|
4212 |
|
|
4213 |
/** |
|
4214 |
* stmmac_interrupt - main ISR |
|
4215 |
* @irq: interrupt number. |
|
4216 |
* @dev_id: to pass the net device pointer (must be valid). |
|
4217 |
* Description: this is the main driver interrupt service routine. |
|
4218 |
* It can call: |
|
4219 |
* o DMA service routine (to manage incoming frame reception and transmission |
|
4220 |
* status) |
|
4221 |
* o Core interrupts to manage: remote wake-up, management counter, LPI |
|
4222 |
* interrupts. |
|
4223 |
*/ |
|
4224 |
static irqreturn_t stmmac_interrupt(int irq, void *dev_id) |
|
4225 |
{ |
|
4226 |
struct net_device *dev = (struct net_device *)dev_id; |
|
4227 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4228 |
u32 rx_cnt = priv->plat->rx_queues_to_use; |
|
4229 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
4230 |
u32 queues_count; |
|
4231 |
u32 queue; |
|
4232 |
bool xmac; |
|
4233 |
|
|
4234 |
xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; |
|
4235 |
queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; |
|
4236 |
|
|
4237 |
if (priv->irq_wake) |
|
4238 |
pm_wakeup_event(priv->device, 0); |
|
4239 |
|
|
4240 |
/* Check if adapter is up */ |
|
4241 |
if (test_bit(STMMAC_DOWN, &priv->state)) |
|
4242 |
return IRQ_HANDLED; |
|
4243 |
/* Check if a fatal error happened */ |
|
4244 |
if (stmmac_safety_feat_interrupt(priv)) |
|
4245 |
return IRQ_HANDLED; |
|
4246 |
|
|
4247 |
/* To handle GMAC own interrupts */ |
|
4248 |
if ((priv->plat->has_gmac) || xmac) { |
|
4249 |
int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); |
|
4250 |
|
|
4251 |
if (unlikely(status)) { |
|
4252 |
/* For LPI we need to save the tx status */ |
|
4253 |
if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) |
|
4254 |
priv->tx_path_in_lpi_mode = true; |
|
4255 |
if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) |
|
4256 |
priv->tx_path_in_lpi_mode = false; |
|
4257 |
} |
|
4258 |
|
|
4259 |
for (queue = 0; queue < queues_count; queue++) { |
|
4260 |
status = stmmac_host_mtl_irq_status(priv, priv->hw, |
|
4261 |
queue); |
|
4262 |
} |
|
4263 |
|
|
4264 |
/* PCS link status */ |
|
4265 |
if (priv->hw->pcs) { |
|
4266 |
if (priv->xstats.pcs_link) |
|
4267 |
netif_carrier_on(dev); |
|
4268 |
else |
|
4269 |
netif_carrier_off(dev); |
|
4270 |
} |
|
4271 |
} |
|
4272 |
|
|
4273 |
/* To handle DMA interrupts */ |
|
4274 |
stmmac_dma_interrupt(priv); |
|
4275 |
|
|
4276 |
return IRQ_HANDLED; |
|
4277 |
} |
|
4278 |
|
|
4279 |
#ifdef CONFIG_NET_POLL_CONTROLLER |
|
4280 |
/* Polling receive - used by NETCONSOLE and other diagnostic tools |
|
4281 |
* to allow network I/O with interrupts disabled. |
|
4282 |
*/ |
|
4283 |
static void stmmac_poll_controller(struct net_device *dev) |
|
4284 |
{ |
|
4285 |
disable_irq(dev->irq); |
|
4286 |
stmmac_interrupt(dev->irq, dev); |
|
4287 |
enable_irq(dev->irq); |
|
4288 |
} |
|
4289 |
#endif |
|
4290 |
|
|
4291 |
/** |
|
4292 |
* stmmac_ioctl - Entry point for the Ioctl |
|
4293 |
* @dev: Device pointer. |
|
4294 |
* @rq: An IOCTL specefic structure, that can contain a pointer to |
|
4295 |
* a proprietary structure used to pass information to the driver. |
|
4296 |
* @cmd: IOCTL command |
|
4297 |
* Description: |
|
4298 |
* Currently it supports the phy_mii_ioctl(...) and HW time stamping. |
|
4299 |
*/ |
|
4300 |
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
|
4301 |
{ |
|
4302 |
struct stmmac_priv *priv = netdev_priv (dev); |
|
4303 |
int ret = -EOPNOTSUPP; |
|
4304 |
|
|
4305 |
if (!netif_running(dev)) |
|
4306 |
return -EINVAL; |
|
4307 |
|
|
4308 |
switch (cmd) { |
|
4309 |
case SIOCGMIIPHY: |
|
4310 |
case SIOCGMIIREG: |
|
4311 |
case SIOCSMIIREG: |
|
4312 |
ret = phylink_mii_ioctl(priv->phylink, rq, cmd); |
|
4313 |
break; |
|
4314 |
case SIOCSHWTSTAMP: |
|
4315 |
ret = stmmac_hwtstamp_set(dev, rq); |
|
4316 |
break; |
|
4317 |
case SIOCGHWTSTAMP: |
|
4318 |
ret = stmmac_hwtstamp_get(dev, rq); |
|
4319 |
break; |
|
4320 |
default: |
|
4321 |
break; |
|
4322 |
} |
|
4323 |
|
|
4324 |
return ret; |
|
4325 |
} |
|
4326 |
|
|
4327 |
static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, |
|
4328 |
void *cb_priv) |
|
4329 |
{ |
|
4330 |
struct stmmac_priv *priv = cb_priv; |
|
4331 |
int ret = -EOPNOTSUPP; |
|
4332 |
|
|
4333 |
if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) |
|
4334 |
return ret; |
|
4335 |
|
|
4336 |
stmmac_disable_all_queues(priv); |
|
4337 |
|
|
4338 |
switch (type) { |
|
4339 |
case TC_SETUP_CLSU32: |
|
4340 |
ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); |
|
4341 |
break; |
|
4342 |
case TC_SETUP_CLSFLOWER: |
|
4343 |
ret = stmmac_tc_setup_cls(priv, priv, type_data); |
|
4344 |
break; |
|
4345 |
default: |
|
4346 |
break; |
|
4347 |
} |
|
4348 |
|
|
4349 |
stmmac_enable_all_queues(priv); |
|
4350 |
return ret; |
|
4351 |
} |
|
4352 |
|
|
4353 |
static LIST_HEAD(stmmac_block_cb_list); |
|
4354 |
|
|
4355 |
static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, |
|
4356 |
void *type_data) |
|
4357 |
{ |
|
4358 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
4359 |
|
|
4360 |
switch (type) { |
|
4361 |
case TC_SETUP_BLOCK: |
|
4362 |
return flow_block_cb_setup_simple(type_data, |
|
4363 |
&stmmac_block_cb_list, |
|
4364 |
stmmac_setup_tc_block_cb, |
|
4365 |
priv, priv, true); |
|
4366 |
case TC_SETUP_QDISC_CBS: |
|
4367 |
return stmmac_tc_setup_cbs(priv, priv, type_data); |
|
4368 |
case TC_SETUP_QDISC_TAPRIO: |
|
4369 |
return stmmac_tc_setup_taprio(priv, priv, type_data); |
|
4370 |
case TC_SETUP_QDISC_ETF: |
|
4371 |
return stmmac_tc_setup_etf(priv, priv, type_data); |
|
4372 |
default: |
|
4373 |
return -EOPNOTSUPP; |
|
4374 |
} |
|
4375 |
} |
|
4376 |
|
|
4377 |
static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, |
|
4378 |
struct net_device *sb_dev) |
|
4379 |
{ |
|
4380 |
int gso = skb_shinfo(skb)->gso_type; |
|
4381 |
|
|
4382 |
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { |
|
4383 |
/* |
|
4384 |
* There is no way to determine the number of TSO/USO |
|
4385 |
* capable Queues. Let's use always the Queue 0 |
|
4386 |
* because if TSO/USO is supported then at least this |
|
4387 |
* one will be capable. |
|
4388 |
*/ |
|
4389 |
return 0; |
|
4390 |
} |
|
4391 |
|
|
4392 |
return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; |
|
4393 |
} |
|
4394 |
|
|
4395 |
static int stmmac_set_mac_address(struct net_device *ndev, void *addr) |
|
4396 |
{ |
|
4397 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
4398 |
int ret = 0; |
|
4399 |
|
|
4400 |
ret = pm_runtime_get_sync(priv->device); |
|
4401 |
if (ret < 0) { |
|
4402 |
pm_runtime_put_noidle(priv->device); |
|
4403 |
return ret; |
|
4404 |
} |
|
4405 |
|
|
4406 |
ret = eth_mac_addr(ndev, addr); |
|
4407 |
if (ret) |
|
4408 |
goto set_mac_error; |
|
4409 |
|
|
4410 |
stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); |
|
4411 |
|
|
4412 |
set_mac_error: |
|
4413 |
pm_runtime_put(priv->device); |
|
4414 |
|
|
4415 |
return ret; |
|
4416 |
} |
|
4417 |
|
|
4418 |
#ifdef CONFIG_DEBUG_FS |
|
4419 |
static struct dentry *stmmac_fs_dir; |
|
4420 |
|
|
4421 |
static void sysfs_display_ring(void *head, int size, int extend_desc, |
|
4422 |
struct seq_file *seq, dma_addr_t dma_phy_addr) |
|
4423 |
{ |
|
4424 |
int i; |
|
4425 |
struct dma_extended_desc *ep = (struct dma_extended_desc *)head; |
|
4426 |
struct dma_desc *p = (struct dma_desc *)head; |
|
4427 |
dma_addr_t dma_addr; |
|
4428 |
|
|
4429 |
for (i = 0; i < size; i++) { |
|
4430 |
if (extend_desc) { |
|
4431 |
dma_addr = dma_phy_addr + i * sizeof(*ep); |
|
4432 |
seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", |
|
4433 |
i, &dma_addr, |
|
4434 |
le32_to_cpu(ep->basic.des0), |
|
4435 |
le32_to_cpu(ep->basic.des1), |
|
4436 |
le32_to_cpu(ep->basic.des2), |
|
4437 |
le32_to_cpu(ep->basic.des3)); |
|
4438 |
ep++; |
|
4439 |
} else { |
|
4440 |
dma_addr = dma_phy_addr + i * sizeof(*p); |
|
4441 |
seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", |
|
4442 |
i, &dma_addr, |
|
4443 |
le32_to_cpu(p->des0), le32_to_cpu(p->des1), |
|
4444 |
le32_to_cpu(p->des2), le32_to_cpu(p->des3)); |
|
4445 |
p++; |
|
4446 |
} |
|
4447 |
seq_printf(seq, "\n"); |
|
4448 |
} |
|
4449 |
} |
|
4450 |
|
|
4451 |
static int stmmac_rings_status_show(struct seq_file *seq, void *v) |
|
4452 |
{ |
|
4453 |
struct net_device *dev = seq->private; |
|
4454 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4455 |
u32 rx_count = priv->plat->rx_queues_to_use; |
|
4456 |
u32 tx_count = priv->plat->tx_queues_to_use; |
|
4457 |
u32 queue; |
|
4458 |
|
|
4459 |
if ((dev->flags & IFF_UP) == 0) |
|
4460 |
return 0; |
|
4461 |
|
|
4462 |
for (queue = 0; queue < rx_count; queue++) { |
|
4463 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
4464 |
|
|
4465 |
seq_printf(seq, "RX Queue %d:\n", queue); |
|
4466 |
|
|
4467 |
if (priv->extend_desc) { |
|
4468 |
seq_printf(seq, "Extended descriptor ring:\n"); |
|
4469 |
sysfs_display_ring((void *)rx_q->dma_erx, |
|
4470 |
priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); |
|
4471 |
} else { |
|
4472 |
seq_printf(seq, "Descriptor ring:\n"); |
|
4473 |
sysfs_display_ring((void *)rx_q->dma_rx, |
|
4474 |
priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); |
|
4475 |
} |
|
4476 |
} |
|
4477 |
|
|
4478 |
for (queue = 0; queue < tx_count; queue++) { |
|
4479 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
4480 |
|
|
4481 |
seq_printf(seq, "TX Queue %d:\n", queue); |
|
4482 |
|
|
4483 |
if (priv->extend_desc) { |
|
4484 |
seq_printf(seq, "Extended descriptor ring:\n"); |
|
4485 |
sysfs_display_ring((void *)tx_q->dma_etx, |
|
4486 |
priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); |
|
4487 |
} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { |
|
4488 |
seq_printf(seq, "Descriptor ring:\n"); |
|
4489 |
sysfs_display_ring((void *)tx_q->dma_tx, |
|
4490 |
priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); |
|
4491 |
} |
|
4492 |
} |
|
4493 |
|
|
4494 |
return 0; |
|
4495 |
} |
|
4496 |
DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); |
|
4497 |
|
|
4498 |
static int stmmac_dma_cap_show(struct seq_file *seq, void *v) |
|
4499 |
{ |
|
4500 |
struct net_device *dev = seq->private; |
|
4501 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4502 |
|
|
4503 |
if (!priv->hw_cap_support) { |
|
4504 |
seq_printf(seq, "DMA HW features not supported\n"); |
|
4505 |
return 0; |
|
4506 |
} |
|
4507 |
|
|
4508 |
seq_printf(seq, "==============================\n"); |
|
4509 |
seq_printf(seq, "\tDMA HW features\n"); |
|
4510 |
seq_printf(seq, "==============================\n"); |
|
4511 |
|
|
4512 |
seq_printf(seq, "\t10/100 Mbps: %s\n", |
|
4513 |
(priv->dma_cap.mbps_10_100) ? "Y" : "N"); |
|
4514 |
seq_printf(seq, "\t1000 Mbps: %s\n", |
|
4515 |
(priv->dma_cap.mbps_1000) ? "Y" : "N"); |
|
4516 |
seq_printf(seq, "\tHalf duplex: %s\n", |
|
4517 |
(priv->dma_cap.half_duplex) ? "Y" : "N"); |
|
4518 |
seq_printf(seq, "\tHash Filter: %s\n", |
|
4519 |
(priv->dma_cap.hash_filter) ? "Y" : "N"); |
|
4520 |
seq_printf(seq, "\tMultiple MAC address registers: %s\n", |
|
4521 |
(priv->dma_cap.multi_addr) ? "Y" : "N"); |
|
4522 |
seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", |
|
4523 |
(priv->dma_cap.pcs) ? "Y" : "N"); |
|
4524 |
seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", |
|
4525 |
(priv->dma_cap.sma_mdio) ? "Y" : "N"); |
|
4526 |
seq_printf(seq, "\tPMT Remote wake up: %s\n", |
|
4527 |
(priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); |
|
4528 |
seq_printf(seq, "\tPMT Magic Frame: %s\n", |
|
4529 |
(priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); |
|
4530 |
seq_printf(seq, "\tRMON module: %s\n", |
|
4531 |
(priv->dma_cap.rmon) ? "Y" : "N"); |
|
4532 |
seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", |
|
4533 |
(priv->dma_cap.time_stamp) ? "Y" : "N"); |
|
4534 |
seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", |
|
4535 |
(priv->dma_cap.atime_stamp) ? "Y" : "N"); |
|
4536 |
seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", |
|
4537 |
(priv->dma_cap.eee) ? "Y" : "N"); |
|
4538 |
seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); |
|
4539 |
seq_printf(seq, "\tChecksum Offload in TX: %s\n", |
|
4540 |
(priv->dma_cap.tx_coe) ? "Y" : "N"); |
|
4541 |
if (priv->synopsys_id >= DWMAC_CORE_4_00) { |
|
4542 |
seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", |
|
4543 |
(priv->dma_cap.rx_coe) ? "Y" : "N"); |
|
4544 |
} else { |
|
4545 |
seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", |
|
4546 |
(priv->dma_cap.rx_coe_type1) ? "Y" : "N"); |
|
4547 |
seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", |
|
4548 |
(priv->dma_cap.rx_coe_type2) ? "Y" : "N"); |
|
4549 |
} |
|
4550 |
seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", |
|
4551 |
(priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); |
|
4552 |
seq_printf(seq, "\tNumber of Additional RX channel: %d\n", |
|
4553 |
priv->dma_cap.number_rx_channel); |
|
4554 |
seq_printf(seq, "\tNumber of Additional TX channel: %d\n", |
|
4555 |
priv->dma_cap.number_tx_channel); |
|
4556 |
seq_printf(seq, "\tNumber of Additional RX queues: %d\n", |
|
4557 |
priv->dma_cap.number_rx_queues); |
|
4558 |
seq_printf(seq, "\tNumber of Additional TX queues: %d\n", |
|
4559 |
priv->dma_cap.number_tx_queues); |
|
4560 |
seq_printf(seq, "\tEnhanced descriptors: %s\n", |
|
4561 |
(priv->dma_cap.enh_desc) ? "Y" : "N"); |
|
4562 |
seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); |
|
4563 |
seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); |
|
4564 |
seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); |
|
4565 |
seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); |
|
4566 |
seq_printf(seq, "\tNumber of PPS Outputs: %d\n", |
|
4567 |
priv->dma_cap.pps_out_num); |
|
4568 |
seq_printf(seq, "\tSafety Features: %s\n", |
|
4569 |
priv->dma_cap.asp ? "Y" : "N"); |
|
4570 |
seq_printf(seq, "\tFlexible RX Parser: %s\n", |
|
4571 |
priv->dma_cap.frpsel ? "Y" : "N"); |
|
4572 |
seq_printf(seq, "\tEnhanced Addressing: %d\n", |
|
4573 |
priv->dma_cap.addr64); |
|
4574 |
seq_printf(seq, "\tReceive Side Scaling: %s\n", |
|
4575 |
priv->dma_cap.rssen ? "Y" : "N"); |
|
4576 |
seq_printf(seq, "\tVLAN Hash Filtering: %s\n", |
|
4577 |
priv->dma_cap.vlhash ? "Y" : "N"); |
|
4578 |
seq_printf(seq, "\tSplit Header: %s\n", |
|
4579 |
priv->dma_cap.sphen ? "Y" : "N"); |
|
4580 |
seq_printf(seq, "\tVLAN TX Insertion: %s\n", |
|
4581 |
priv->dma_cap.vlins ? "Y" : "N"); |
|
4582 |
seq_printf(seq, "\tDouble VLAN: %s\n", |
|
4583 |
priv->dma_cap.dvlan ? "Y" : "N"); |
|
4584 |
seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", |
|
4585 |
priv->dma_cap.l3l4fnum); |
|
4586 |
seq_printf(seq, "\tARP Offloading: %s\n", |
|
4587 |
priv->dma_cap.arpoffsel ? "Y" : "N"); |
|
4588 |
seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", |
|
4589 |
priv->dma_cap.estsel ? "Y" : "N"); |
|
4590 |
seq_printf(seq, "\tFrame Preemption (FPE): %s\n", |
|
4591 |
priv->dma_cap.fpesel ? "Y" : "N"); |
|
4592 |
seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", |
|
4593 |
priv->dma_cap.tbssel ? "Y" : "N"); |
|
4594 |
return 0; |
|
4595 |
} |
|
4596 |
DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); |
|
4597 |
|
|
4598 |
/* Use network device events to rename debugfs file entries. |
|
4599 |
*/ |
|
4600 |
static int stmmac_device_event(struct notifier_block *unused, |
|
4601 |
unsigned long event, void *ptr) |
|
4602 |
{ |
|
4603 |
struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
|
4604 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4605 |
|
|
4606 |
if (dev->netdev_ops != &stmmac_netdev_ops) |
|
4607 |
goto done; |
|
4608 |
|
|
4609 |
switch (event) { |
|
4610 |
case NETDEV_CHANGENAME: |
|
4611 |
if (priv->dbgfs_dir) |
|
4612 |
priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, |
|
4613 |
priv->dbgfs_dir, |
|
4614 |
stmmac_fs_dir, |
|
4615 |
dev->name); |
|
4616 |
break; |
|
4617 |
} |
|
4618 |
done: |
|
4619 |
return NOTIFY_DONE; |
|
4620 |
} |
|
4621 |
|
|
4622 |
static struct notifier_block stmmac_notifier = { |
|
4623 |
.notifier_call = stmmac_device_event, |
|
4624 |
}; |
|
4625 |
|
|
4626 |
static void stmmac_init_fs(struct net_device *dev) |
|
4627 |
{ |
|
4628 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4629 |
|
|
4630 |
rtnl_lock(); |
|
4631 |
|
|
4632 |
/* Create per netdev entries */ |
|
4633 |
priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); |
|
4634 |
|
|
4635 |
/* Entry to report DMA RX/TX rings */ |
|
4636 |
debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, |
|
4637 |
&stmmac_rings_status_fops); |
|
4638 |
|
|
4639 |
/* Entry to report the DMA HW features */ |
|
4640 |
debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, |
|
4641 |
&stmmac_dma_cap_fops); |
|
4642 |
|
|
4643 |
rtnl_unlock(); |
|
4644 |
} |
|
4645 |
|
|
4646 |
static void stmmac_exit_fs(struct net_device *dev) |
|
4647 |
{ |
|
4648 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4649 |
|
|
4650 |
debugfs_remove_recursive(priv->dbgfs_dir); |
|
4651 |
} |
|
4652 |
#endif /* CONFIG_DEBUG_FS */ |
|
4653 |
|
|
4654 |
static u32 stmmac_vid_crc32_le(__le16 vid_le) |
|
4655 |
{ |
|
4656 |
unsigned char *data = (unsigned char *)&vid_le; |
|
4657 |
unsigned char data_byte = 0; |
|
4658 |
u32 crc = ~0x0; |
|
4659 |
u32 temp = 0; |
|
4660 |
int i, bits; |
|
4661 |
|
|
4662 |
bits = get_bitmask_order(VLAN_VID_MASK); |
|
4663 |
for (i = 0; i < bits; i++) { |
|
4664 |
if ((i % 8) == 0) |
|
4665 |
data_byte = data[i / 8]; |
|
4666 |
|
|
4667 |
temp = ((crc & 1) ^ data_byte) & 1; |
|
4668 |
crc >>= 1; |
|
4669 |
data_byte >>= 1; |
|
4670 |
|
|
4671 |
if (temp) |
|
4672 |
crc ^= 0xedb88320; |
|
4673 |
} |
|
4674 |
|
|
4675 |
return crc; |
|
4676 |
} |
|
4677 |
|
|
4678 |
static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) |
|
4679 |
{ |
|
4680 |
u32 crc, hash = 0; |
|
4681 |
__le16 pmatch = 0; |
|
4682 |
int count = 0; |
|
4683 |
u16 vid = 0; |
|
4684 |
|
|
4685 |
for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { |
|
4686 |
__le16 vid_le = cpu_to_le16(vid); |
|
4687 |
crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; |
|
4688 |
hash |= (1 << crc); |
|
4689 |
count++; |
|
4690 |
} |
|
4691 |
|
|
4692 |
if (!priv->dma_cap.vlhash) { |
|
4693 |
if (count > 2) /* VID = 0 always passes filter */ |
|
4694 |
return -EOPNOTSUPP; |
|
4695 |
|
|
4696 |
pmatch = cpu_to_le16(vid); |
|
4697 |
hash = 0; |
|
4698 |
} |
|
4699 |
|
|
4700 |
return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); |
|
4701 |
} |
|
4702 |
|
|
4703 |
static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) |
|
4704 |
{ |
|
4705 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
4706 |
bool is_double = false; |
|
4707 |
int ret; |
|
4708 |
|
|
4709 |
if (be16_to_cpu(proto) == ETH_P_8021AD) |
|
4710 |
is_double = true; |
|
4711 |
|
|
4712 |
set_bit(vid, priv->active_vlans); |
|
4713 |
ret = stmmac_vlan_update(priv, is_double); |
|
4714 |
if (ret) { |
|
4715 |
clear_bit(vid, priv->active_vlans); |
|
4716 |
return ret; |
|
4717 |
} |
|
4718 |
|
|
4719 |
if (priv->hw->num_vlan) { |
|
4720 |
ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); |
|
4721 |
if (ret) |
|
4722 |
return ret; |
|
4723 |
} |
|
4724 |
|
|
4725 |
return 0; |
|
4726 |
} |
|
4727 |
|
|
4728 |
static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) |
|
4729 |
{ |
|
4730 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
4731 |
bool is_double = false; |
|
4732 |
int ret; |
|
4733 |
|
|
4734 |
ret = pm_runtime_get_sync(priv->device); |
|
4735 |
if (ret < 0) { |
|
4736 |
pm_runtime_put_noidle(priv->device); |
|
4737 |
return ret; |
|
4738 |
} |
|
4739 |
|
|
4740 |
if (be16_to_cpu(proto) == ETH_P_8021AD) |
|
4741 |
is_double = true; |
|
4742 |
|
|
4743 |
clear_bit(vid, priv->active_vlans); |
|
4744 |
|
|
4745 |
if (priv->hw->num_vlan) { |
|
4746 |
ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); |
|
4747 |
if (ret) |
|
4748 |
goto del_vlan_error; |
|
4749 |
} |
|
4750 |
|
|
4751 |
ret = stmmac_vlan_update(priv, is_double); |
|
4752 |
|
|
4753 |
del_vlan_error: |
|
4754 |
pm_runtime_put(priv->device); |
|
4755 |
|
|
4756 |
return ret; |
|
4757 |
} |
|
4758 |
|
|
4759 |
static const struct net_device_ops stmmac_netdev_ops = { |
|
4760 |
.ndo_open = stmmac_open, |
|
4761 |
.ndo_start_xmit = stmmac_xmit, |
|
4762 |
.ndo_stop = stmmac_release, |
|
4763 |
.ndo_change_mtu = stmmac_change_mtu, |
|
4764 |
.ndo_fix_features = stmmac_fix_features, |
|
4765 |
.ndo_set_features = stmmac_set_features, |
|
4766 |
.ndo_set_rx_mode = stmmac_set_rx_mode, |
|
4767 |
.ndo_tx_timeout = stmmac_tx_timeout, |
|
4768 |
.ndo_do_ioctl = stmmac_ioctl, |
|
4769 |
.ndo_setup_tc = stmmac_setup_tc, |
|
4770 |
.ndo_select_queue = stmmac_select_queue, |
|
4771 |
#ifdef CONFIG_NET_POLL_CONTROLLER |
|
4772 |
.ndo_poll_controller = stmmac_poll_controller, |
|
4773 |
#endif |
|
4774 |
.ndo_set_mac_address = stmmac_set_mac_address, |
|
4775 |
.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, |
|
4776 |
.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, |
|
4777 |
}; |
|
4778 |
|
|
4779 |
static void stmmac_reset_subtask(struct stmmac_priv *priv) |
|
4780 |
{ |
|
4781 |
if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) |
|
4782 |
return; |
|
4783 |
if (test_bit(STMMAC_DOWN, &priv->state)) |
|
4784 |
return; |
|
4785 |
|
|
4786 |
netdev_err(priv->dev, "Reset adapter.\n"); |
|
4787 |
|
|
4788 |
rtnl_lock(); |
|
4789 |
netif_trans_update(priv->dev); |
|
4790 |
while (test_and_set_bit(STMMAC_RESETING, &priv->state)) |
|
4791 |
usleep_range(1000, 2000); |
|
4792 |
|
|
4793 |
set_bit(STMMAC_DOWN, &priv->state); |
|
4794 |
dev_close(priv->dev); |
|
4795 |
dev_open(priv->dev, NULL); |
|
4796 |
clear_bit(STMMAC_DOWN, &priv->state); |
|
4797 |
clear_bit(STMMAC_RESETING, &priv->state); |
|
4798 |
rtnl_unlock(); |
|
4799 |
} |
|
4800 |
|
|
4801 |
static void stmmac_service_task(struct work_struct *work) |
|
4802 |
{ |
|
4803 |
struct stmmac_priv *priv = container_of(work, struct stmmac_priv, |
|
4804 |
service_task); |
|
4805 |
|
|
4806 |
stmmac_reset_subtask(priv); |
|
4807 |
clear_bit(STMMAC_SERVICE_SCHED, &priv->state); |
|
4808 |
} |
|
4809 |
|
|
4810 |
/** |
|
4811 |
* stmmac_hw_init - Init the MAC device |
|
4812 |
* @priv: driver private structure |
|
4813 |
* Description: this function is to configure the MAC device according to |
|
4814 |
* some platform parameters or the HW capability register. It prepares the |
|
4815 |
* driver to use either ring or chain modes and to setup either enhanced or |
|
4816 |
* normal descriptors. |
|
4817 |
*/ |
|
4818 |
static int stmmac_hw_init(struct stmmac_priv *priv) |
|
4819 |
{ |
|
4820 |
int ret; |
|
4821 |
|
|
4822 |
/* dwmac-sun8i only work in chain mode */ |
|
4823 |
if (priv->plat->has_sun8i) |
|
4824 |
chain_mode = 1; |
|
4825 |
priv->chain_mode = chain_mode; |
|
4826 |
|
|
4827 |
/* Initialize HW Interface */ |
|
4828 |
ret = stmmac_hwif_init(priv); |
|
4829 |
if (ret) |
|
4830 |
return ret; |
|
4831 |
|
|
4832 |
/* Get the HW capability (new GMAC newer than 3.50a) */ |
|
4833 |
priv->hw_cap_support = stmmac_get_hw_features(priv); |
|
4834 |
if (priv->hw_cap_support) { |
|
4835 |
dev_info(priv->device, "DMA HW capability register supported\n"); |
|
4836 |
|
|
4837 |
/* We can override some gmac/dma configuration fields: e.g. |
|
4838 |
* enh_desc, tx_coe (e.g. that are passed through the |
|
4839 |
* platform) with the values from the HW capability |
|
4840 |
* register (if supported). |
|
4841 |
*/ |
|
4842 |
priv->plat->enh_desc = priv->dma_cap.enh_desc; |
|
4843 |
priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; |
|
4844 |
priv->hw->pmt = priv->plat->pmt; |
|
4845 |
if (priv->dma_cap.hash_tb_sz) { |
|
4846 |
priv->hw->multicast_filter_bins = |
|
4847 |
(BIT(priv->dma_cap.hash_tb_sz) << 5); |
|
4848 |
priv->hw->mcast_bits_log2 = |
|
4849 |
ilog2(priv->hw->multicast_filter_bins); |
|
4850 |
} |
|
4851 |
|
|
4852 |
/* TXCOE doesn't work in thresh DMA mode */ |
|
4853 |
if (priv->plat->force_thresh_dma_mode) |
|
4854 |
priv->plat->tx_coe = 0; |
|
4855 |
else |
|
4856 |
priv->plat->tx_coe = priv->dma_cap.tx_coe; |
|
4857 |
|
|
4858 |
/* In case of GMAC4 rx_coe is from HW cap register. */ |
|
4859 |
priv->plat->rx_coe = priv->dma_cap.rx_coe; |
|
4860 |
|
|
4861 |
if (priv->dma_cap.rx_coe_type2) |
|
4862 |
priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; |
|
4863 |
else if (priv->dma_cap.rx_coe_type1) |
|
4864 |
priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; |
|
4865 |
|
|
4866 |
} else { |
|
4867 |
dev_info(priv->device, "No HW DMA feature register supported\n"); |
|
4868 |
} |
|
4869 |
|
|
4870 |
if (priv->plat->rx_coe) { |
|
4871 |
priv->hw->rx_csum = priv->plat->rx_coe; |
|
4872 |
dev_info(priv->device, "RX Checksum Offload Engine supported\n"); |
|
4873 |
if (priv->synopsys_id < DWMAC_CORE_4_00) |
|
4874 |
dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); |
|
4875 |
} |
|
4876 |
if (priv->plat->tx_coe) |
|
4877 |
dev_info(priv->device, "TX Checksum insertion supported\n"); |
|
4878 |
|
|
4879 |
if (priv->plat->pmt) { |
|
4880 |
dev_info(priv->device, "Wake-Up On Lan supported\n"); |
|
4881 |
device_set_wakeup_capable(priv->device, 1); |
|
4882 |
} |
|
4883 |
|
|
4884 |
if (priv->dma_cap.tsoen) |
|
4885 |
dev_info(priv->device, "TSO supported\n"); |
|
4886 |
|
|
4887 |
priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; |
|
4888 |
priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; |
|
4889 |
|
|
4890 |
/* Run HW quirks, if any */ |
|
4891 |
if (priv->hwif_quirks) { |
|
4892 |
ret = priv->hwif_quirks(priv); |
|
4893 |
if (ret) |
|
4894 |
return ret; |
|
4895 |
} |
|
4896 |
|
|
4897 |
/* Rx Watchdog is available in the COREs newer than the 3.40. |
|
4898 |
* In some case, for example on bugged HW this feature |
|
4899 |
* has to be disable and this can be done by passing the |
|
4900 |
* riwt_off field from the platform. |
|
4901 |
*/ |
|
4902 |
if (((priv->synopsys_id >= DWMAC_CORE_3_50) || |
|
4903 |
(priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { |
|
4904 |
priv->use_riwt = 1; |
|
4905 |
dev_info(priv->device, |
|
4906 |
"Enable RX Mitigation via HW Watchdog Timer\n"); |
|
4907 |
} |
|
4908 |
|
|
4909 |
return 0; |
|
4910 |
} |
|
4911 |
|
|
4912 |
static void stmmac_napi_add(struct net_device *dev) |
|
4913 |
{ |
|
4914 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4915 |
u32 queue, maxq; |
|
4916 |
|
|
4917 |
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); |
|
4918 |
|
|
4919 |
for (queue = 0; queue < maxq; queue++) { |
|
4920 |
struct stmmac_channel *ch = &priv->channel[queue]; |
|
4921 |
int rx_budget = ((priv->plat->dma_rx_size < NAPI_POLL_WEIGHT) && |
|
4922 |
(priv->plat->dma_rx_size > 0)) ? |
|
4923 |
priv->plat->dma_rx_size : NAPI_POLL_WEIGHT; |
|
4924 |
int tx_budget = ((priv->plat->dma_tx_size < NAPI_POLL_WEIGHT) && |
|
4925 |
(priv->plat->dma_tx_size > 0)) ? |
|
4926 |
priv->plat->dma_tx_size : NAPI_POLL_WEIGHT; |
|
4927 |
|
|
4928 |
ch->priv_data = priv; |
|
4929 |
ch->index = queue; |
|
4930 |
spin_lock_init(&ch->lock); |
|
4931 |
|
|
4932 |
if (queue < priv->plat->rx_queues_to_use) { |
|
4933 |
netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, |
|
4934 |
rx_budget); |
|
4935 |
} |
|
4936 |
if (queue < priv->plat->tx_queues_to_use) { |
|
4937 |
netif_tx_napi_add(dev, &ch->tx_napi, |
|
4938 |
stmmac_napi_poll_tx, tx_budget); |
|
4939 |
} |
|
4940 |
} |
|
4941 |
} |
|
4942 |
|
|
4943 |
static void stmmac_napi_del(struct net_device *dev) |
|
4944 |
{ |
|
4945 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4946 |
u32 queue, maxq; |
|
4947 |
|
|
4948 |
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); |
|
4949 |
|
|
4950 |
for (queue = 0; queue < maxq; queue++) { |
|
4951 |
struct stmmac_channel *ch = &priv->channel[queue]; |
|
4952 |
|
|
4953 |
if (queue < priv->plat->rx_queues_to_use) |
|
4954 |
netif_napi_del(&ch->rx_napi); |
|
4955 |
if (queue < priv->plat->tx_queues_to_use) |
|
4956 |
netif_napi_del(&ch->tx_napi); |
|
4957 |
} |
|
4958 |
} |
|
4959 |
|
|
4960 |
int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) |
|
4961 |
{ |
|
4962 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4963 |
int ret = 0; |
|
4964 |
|
|
4965 |
if (netif_running(dev)) |
|
4966 |
stmmac_release(dev); |
|
4967 |
|
|
4968 |
stmmac_napi_del(dev); |
|
4969 |
|
|
4970 |
priv->plat->rx_queues_to_use = rx_cnt; |
|
4971 |
priv->plat->tx_queues_to_use = tx_cnt; |
|
4972 |
|
|
4973 |
stmmac_napi_add(dev); |
|
4974 |
|
|
4975 |
if (netif_running(dev)) |
|
4976 |
ret = stmmac_open(dev); |
|
4977 |
|
|
4978 |
return ret; |
|
4979 |
} |
|
4980 |
|
|
4981 |
int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) |
|
4982 |
{ |
|
4983 |
struct stmmac_priv *priv = netdev_priv(dev); |
|
4984 |
int ret = 0; |
|
4985 |
|
|
4986 |
if (netif_running(dev)) |
|
4987 |
stmmac_release(dev); |
|
4988 |
|
|
4989 |
priv->dma_rx_size = rx_size; |
|
4990 |
priv->dma_tx_size = tx_size; |
|
4991 |
|
|
4992 |
if (netif_running(dev)) |
|
4993 |
ret = stmmac_open(dev); |
|
4994 |
|
|
4995 |
return ret; |
|
4996 |
} |
|
4997 |
|
|
4998 |
#ifdef LED_FIX |
|
4999 |
static int phy_dp83848_led_fixup(struct phy_device *phydev) |
|
5000 |
{ |
|
5001 |
int value; |
|
5002 |
|
|
5003 |
if (phydev->phy_id != DP_83848_PHY_ID) |
|
5004 |
return 0; |
|
5005 |
|
|
5006 |
printk("%s in\n", __func__); |
|
5007 |
|
|
5008 |
value = phy_read(phydev, 0x18); |
|
5009 |
value &= ~(1<<2); |
|
5010 |
phy_write(phydev, 0x18, value); |
|
5011 |
|
|
5012 |
value = phy_read(phydev, 0x19); |
|
5013 |
value &= ~(1<<5); |
|
5014 |
phy_write(phydev, 0x19, value); |
|
5015 |
|
|
5016 |
return 0; |
|
5017 |
} |
|
5018 |
|
|
5019 |
static int phy_rtl8201f_led_fixup(struct phy_device *phydev) |
|
5020 |
{ |
|
5021 |
int value; |
|
5022 |
|
|
5023 |
printk("%s in\n", __func__); |
|
5024 |
|
|
5025 |
/* switch to page 7 */ |
|
5026 |
value = phy_read(phydev, 31); |
|
5027 |
value &= 0xff00; |
|
5028 |
value |= 0x0007; |
|
5029 |
value = phy_write(phydev, 31, value); |
|
5030 |
|
|
5031 |
/* set customized led enable */ |
|
5032 |
value = phy_read(phydev, 19); |
|
5033 |
value |= (0x1<<3); |
|
5034 |
phy_write(phydev, 19, value); |
|
5035 |
|
|
5036 |
value &= 0x0000; |
|
5037 |
value |= (0x1<<1); |
|
5038 |
value |= (0x1<<7); |
|
5039 |
phy_write(phydev, 17, value); |
|
5040 |
|
|
5041 |
/* back to page 0 */ |
|
5042 |
value = phy_read(phydev, 31); |
|
5043 |
value &= 0x0000; |
|
5044 |
value = phy_write(phydev, 31, value); |
|
5045 |
|
|
5046 |
return 0; |
|
5047 |
} |
|
5048 |
|
|
5049 |
static int phy_rtl8211e_led_fixup(struct phy_device *phydev) |
|
5050 |
{ |
|
5051 |
int val; |
|
5052 |
|
|
5053 |
printk("%s in\n", __func__); |
|
5054 |
val = phy_read(phydev, 3); |
|
5055 |
printk("%s in val=0x%04x\n", __func__, val); |
|
5056 |
|
|
5057 |
/*switch to extension page44*/ |
|
5058 |
phy_write(phydev, 31, 0x07); |
|
5059 |
phy_write(phydev, 30, 0x2c); |
|
5060 |
|
|
5061 |
/*set led1(yellow) act*/ |
|
5062 |
val = phy_read(phydev, 26); |
|
5063 |
val &= (~(1<<4));// bit4=0 |
|
5064 |
val |= (1<<5);// bit5=1 |
|
5065 |
val &= (~(1<<6));// bit6=0 |
|
5066 |
phy_write(phydev, 26, val); |
|
5067 |
|
|
5068 |
/*set led0(green) link*/ |
|
5069 |
val = phy_read(phydev, 28); |
|
5070 |
val |= (7<<0);// bit0,1,2=1 |
|
5071 |
val &= (~(7<<4));// bit4,5,6=0 |
|
5072 |
val &= (~(7<<8));// bit8,9,10=0 |
|
5073 |
phy_write(phydev, 28, val); |
|
5074 |
|
|
5075 |
/*switch back to page0*/ |
|
5076 |
phy_write(phydev,31,0x00); |
|
5077 |
|
|
5078 |
return 0; |
|
5079 |
} |
|
5080 |
|
|
5081 |
static int phy_rtl8211f_led_fixup(struct phy_device *phydev) |
|
5082 |
{ |
|
5083 |
int val; |
|
5084 |
|
|
5085 |
printk("%s in\n", __func__); |
|
5086 |
|
|
5087 |
val = phy_read(phydev, 31); |
|
5088 |
printk("%s in val=0x%04x\n", __func__, val); |
|
5089 |
|
|
5090 |
/*switch to extension page31*/ |
|
5091 |
phy_write(phydev, 31, 0xd04); |
|
5092 |
|
d5ef2f
|
5093 |
phy_write(phydev, 0x10, 0x0d3B); /*led1-green led2-yellow */ |
f258bb
|
5094 |
//phy_write(phydev, 0x10, 0xc160); /*led1-green led2-yellow */ |
d5ef2f
|
5095 |
phy_write(phydev, 0x11, 0x6002); /*led0 EEE enable*/ |
a07526
|
5096 |
|
H |
5097 |
/*switch back to page0*/ |
|
5098 |
phy_write(phydev,31,0x0); |
|
5099 |
|
|
5100 |
return 0; |
|
5101 |
} |
|
5102 |
#endif |
|
5103 |
|
|
5104 |
/** |
|
5105 |
* stmmac_dvr_probe |
|
5106 |
* @device: device pointer |
|
5107 |
* @plat_dat: platform data pointer |
|
5108 |
* @res: stmmac resource pointer |
|
5109 |
* Description: this is the main probe function used to |
|
5110 |
* call the alloc_etherdev, allocate the priv structure. |
|
5111 |
* Return: |
|
5112 |
* returns 0 on success, otherwise errno. |
|
5113 |
*/ |
|
5114 |
int stmmac_dvr_probe(struct device *device, |
|
5115 |
struct plat_stmmacenet_data *plat_dat, |
|
5116 |
struct stmmac_resources *res) |
|
5117 |
{ |
|
5118 |
struct net_device *ndev = NULL; |
|
5119 |
struct stmmac_priv *priv; |
|
5120 |
u32 rxq; |
|
5121 |
int i, ret = 0; |
|
5122 |
|
|
5123 |
ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), |
|
5124 |
MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); |
|
5125 |
if (!ndev) |
|
5126 |
return -ENOMEM; |
|
5127 |
|
|
5128 |
SET_NETDEV_DEV(ndev, device); |
|
5129 |
|
|
5130 |
priv = netdev_priv(ndev); |
|
5131 |
priv->device = device; |
|
5132 |
priv->dev = ndev; |
|
5133 |
|
|
5134 |
stmmac_set_ethtool_ops(ndev); |
|
5135 |
priv->pause = pause; |
|
5136 |
priv->plat = plat_dat; |
|
5137 |
priv->ioaddr = res->addr; |
|
5138 |
priv->dev->base_addr = (unsigned long)res->addr; |
|
5139 |
|
|
5140 |
priv->dev->irq = res->irq; |
|
5141 |
priv->wol_irq = res->wol_irq; |
|
5142 |
priv->lpi_irq = res->lpi_irq; |
|
5143 |
|
|
5144 |
if (!IS_ERR_OR_NULL(res->mac)) |
|
5145 |
memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); |
|
5146 |
|
|
5147 |
dev_set_drvdata(device, priv->dev); |
|
5148 |
|
|
5149 |
/* Verify driver arguments */ |
|
5150 |
stmmac_verify_args(); |
|
5151 |
|
|
5152 |
/* Allocate workqueue */ |
|
5153 |
priv->wq = create_singlethread_workqueue("stmmac_wq"); |
|
5154 |
if (!priv->wq) { |
|
5155 |
dev_err(priv->device, "failed to create workqueue\n"); |
|
5156 |
return -ENOMEM; |
|
5157 |
} |
|
5158 |
|
|
5159 |
INIT_WORK(&priv->service_task, stmmac_service_task); |
|
5160 |
|
|
5161 |
/* Override with kernel parameters if supplied XXX CRS XXX |
|
5162 |
* this needs to have multiple instances |
|
5163 |
*/ |
|
5164 |
if ((phyaddr >= 0) && (phyaddr <= 31)) |
|
5165 |
priv->plat->phy_addr = phyaddr; |
|
5166 |
|
|
5167 |
if (priv->plat->stmmac_rst) { |
|
5168 |
ret = reset_control_assert(priv->plat->stmmac_rst); |
|
5169 |
reset_control_deassert(priv->plat->stmmac_rst); |
|
5170 |
/* Some reset controllers have only reset callback instead of |
|
5171 |
* assert + deassert callbacks pair. |
|
5172 |
*/ |
|
5173 |
if (ret == -ENOTSUPP) |
|
5174 |
reset_control_reset(priv->plat->stmmac_rst); |
|
5175 |
} |
|
5176 |
|
|
5177 |
/* Init MAC and get the capabilities */ |
|
5178 |
ret = stmmac_hw_init(priv); |
|
5179 |
if (ret) |
|
5180 |
goto error_hw_init; |
|
5181 |
|
|
5182 |
stmmac_check_ether_addr(priv); |
|
5183 |
|
|
5184 |
ndev->netdev_ops = &stmmac_netdev_ops; |
|
5185 |
|
|
5186 |
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
|
5187 |
NETIF_F_RXCSUM; |
|
5188 |
|
|
5189 |
ret = stmmac_tc_init(priv, priv); |
|
5190 |
if (!ret) { |
|
5191 |
ndev->hw_features |= NETIF_F_HW_TC; |
|
5192 |
} |
|
5193 |
|
|
5194 |
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { |
|
5195 |
ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; |
|
5196 |
if (priv->plat->has_gmac4) |
|
5197 |
ndev->hw_features |= NETIF_F_GSO_UDP_L4; |
|
5198 |
priv->tso = true; |
|
5199 |
dev_info(priv->device, "TSO feature enabled\n"); |
|
5200 |
} |
|
5201 |
|
|
5202 |
if (priv->dma_cap.sphen && !priv->plat->sph_disable) { |
|
5203 |
ndev->hw_features |= NETIF_F_GRO; |
|
5204 |
if (!priv->plat->sph_disable) { |
|
5205 |
priv->sph = true; |
|
5206 |
dev_info(priv->device, "SPH feature enabled\n"); |
|
5207 |
} |
|
5208 |
} |
|
5209 |
|
|
5210 |
/* The current IP register MAC_HW_Feature1[ADDR64] only define |
|
5211 |
* 32/40/64 bit width, but some SOC support others like i.MX8MP |
|
5212 |
* support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. |
|
5213 |
* So overwrite dma_cap.addr64 according to HW real design. |
|
5214 |
*/ |
|
5215 |
if (priv->plat->addr64) |
|
5216 |
priv->dma_cap.addr64 = priv->plat->addr64; |
|
5217 |
|
|
5218 |
if (priv->dma_cap.addr64) { |
|
5219 |
ret = dma_set_mask_and_coherent(device, |
|
5220 |
DMA_BIT_MASK(priv->dma_cap.addr64)); |
|
5221 |
if (!ret) { |
|
5222 |
dev_info(priv->device, "Using %d bits DMA width\n", |
|
5223 |
priv->dma_cap.addr64); |
|
5224 |
|
|
5225 |
/* |
|
5226 |
* If more than 32 bits can be addressed, make sure to |
|
5227 |
* enable enhanced addressing mode. |
|
5228 |
*/ |
|
5229 |
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) |
|
5230 |
priv->plat->dma_cfg->eame = true; |
|
5231 |
} else { |
|
5232 |
ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); |
|
5233 |
if (ret) { |
|
5234 |
dev_err(priv->device, "Failed to set DMA Mask\n"); |
|
5235 |
goto error_hw_init; |
|
5236 |
} |
|
5237 |
|
|
5238 |
priv->dma_cap.addr64 = 32; |
|
5239 |
} |
|
5240 |
} |
|
5241 |
|
|
5242 |
ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; |
|
5243 |
ndev->watchdog_timeo = msecs_to_jiffies(watchdog); |
|
5244 |
#ifdef STMMAC_VLAN_TAG_USED |
|
5245 |
/* Both mac100 and gmac support receive VLAN tag detection */ |
|
5246 |
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; |
|
5247 |
if (priv->dma_cap.vlhash) { |
|
5248 |
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; |
|
5249 |
ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; |
|
5250 |
} |
|
5251 |
if (priv->dma_cap.vlins) { |
|
5252 |
ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; |
|
5253 |
if (priv->dma_cap.dvlan) |
|
5254 |
ndev->features |= NETIF_F_HW_VLAN_STAG_TX; |
|
5255 |
} |
|
5256 |
#endif |
|
5257 |
priv->msg_enable = netif_msg_init(debug, default_msg_level); |
|
5258 |
|
|
5259 |
/* Initialize RSS */ |
|
5260 |
rxq = priv->plat->rx_queues_to_use; |
|
5261 |
netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); |
|
5262 |
for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) |
|
5263 |
priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); |
|
5264 |
|
|
5265 |
if (priv->dma_cap.rssen && priv->plat->rss_en) |
|
5266 |
ndev->features |= NETIF_F_RXHASH; |
|
5267 |
|
|
5268 |
/* MTU range: 46 - hw-specific max */ |
|
5269 |
ndev->min_mtu = ETH_ZLEN - ETH_HLEN; |
|
5270 |
if (priv->plat->has_xgmac) |
|
5271 |
ndev->max_mtu = XGMAC_JUMBO_LEN; |
|
5272 |
else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) |
|
5273 |
ndev->max_mtu = JUMBO_LEN; |
|
5274 |
else |
|
5275 |
ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); |
|
5276 |
/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu |
|
5277 |
* as well as plat->maxmtu < ndev->min_mtu which is a invalid range. |
|
5278 |
*/ |
|
5279 |
if ((priv->plat->maxmtu < ndev->max_mtu) && |
|
5280 |
(priv->plat->maxmtu >= ndev->min_mtu)) |
|
5281 |
ndev->max_mtu = priv->plat->maxmtu; |
|
5282 |
else if (priv->plat->maxmtu < ndev->min_mtu) |
|
5283 |
dev_warn(priv->device, |
|
5284 |
"%s: warning: maxmtu having invalid value (%d)\n", |
|
5285 |
__func__, priv->plat->maxmtu); |
|
5286 |
|
|
5287 |
if (flow_ctrl) |
|
5288 |
priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ |
|
5289 |
|
|
5290 |
/* Setup channels NAPI */ |
|
5291 |
stmmac_napi_add(ndev); |
|
5292 |
|
|
5293 |
mutex_init(&priv->lock); |
|
5294 |
|
|
5295 |
/* If a specific clk_csr value is passed from the platform |
|
5296 |
* this means that the CSR Clock Range selection cannot be |
|
5297 |
* changed at run-time and it is fixed. Viceversa the driver'll try to |
|
5298 |
* set the MDC clock dynamically according to the csr actual |
|
5299 |
* clock input. |
|
5300 |
*/ |
|
5301 |
if (priv->plat->clk_csr >= 0) |
|
5302 |
priv->clk_csr = priv->plat->clk_csr; |
|
5303 |
else |
|
5304 |
stmmac_clk_csr_set(priv); |
|
5305 |
|
|
5306 |
stmmac_check_pcs_mode(priv); |
|
5307 |
|
|
5308 |
pm_runtime_get_noresume(device); |
|
5309 |
pm_runtime_set_active(device); |
|
5310 |
pm_runtime_enable(device); |
|
5311 |
|
|
5312 |
if (priv->hw->pcs != STMMAC_PCS_TBI && |
|
5313 |
priv->hw->pcs != STMMAC_PCS_RTBI) { |
|
5314 |
/* MDIO bus Registration */ |
|
5315 |
ret = stmmac_mdio_register(ndev); |
|
5316 |
if (ret < 0) { |
|
5317 |
dev_err(priv->device, |
|
5318 |
"%s: MDIO bus (id: %d) registration failed", |
|
5319 |
__func__, priv->plat->bus_id); |
|
5320 |
goto error_mdio_register; |
|
5321 |
} |
|
5322 |
} |
|
5323 |
|
a46a1a
|
5324 |
snprintf(ndev->name, IFNAMSIZ, ndev->name, 3); |
H |
5325 |
printk(">>> troy fixup ndev->name=%s\n", ndev->name); |
a07526
|
5326 |
ret = stmmac_phy_setup(priv); |
H |
5327 |
if (ret) { |
|
5328 |
netdev_err(ndev, "failed to setup phy (%d)\n", ret); |
|
5329 |
goto error_phy_setup; |
|
5330 |
} |
|
5331 |
|
|
5332 |
ret = register_netdev(ndev); |
|
5333 |
if (ret) { |
|
5334 |
dev_err(priv->device, "%s: ERROR %i registering the device\n", |
|
5335 |
__func__, ret); |
|
5336 |
goto error_netdev_register; |
|
5337 |
} |
|
5338 |
|
|
5339 |
#ifdef LED_FIX |
|
5340 |
/* register the PHY board fixup */ |
|
5341 |
ret = phy_register_fixup_for_uid(RTL_8211E_PHY_ID, 0xffffffff, phy_rtl8211e_led_fixup); |
|
5342 |
if (ret) |
|
5343 |
pr_warn("Cannot register PHY board fixup.\n"); |
|
5344 |
ret = phy_register_fixup_for_uid(RTL_8211F_PHY_ID, 0xffffffff, phy_rtl8211f_led_fixup); |
|
5345 |
if (ret) |
|
5346 |
pr_warn("Cannot register PHY board fixup.\n"); |
|
5347 |
ret = phy_register_fixup_for_uid(RTL_8201F_PHY_ID, 0xffffffff, phy_rtl8201f_led_fixup); |
|
5348 |
if (ret) |
|
5349 |
pr_warn("Cannot register PHY board fixup.\n"); |
|
5350 |
ret = phy_register_fixup_for_uid(DP_83848_PHY_ID, 0xffffffff, phy_dp83848_led_fixup); |
|
5351 |
if (ret) |
|
5352 |
pr_warn("Cannot register PHY board fixup.\n"); |
|
5353 |
#endif |
|
5354 |
|
|
5355 |
#ifdef CONFIG_DEBUG_FS |
|
5356 |
stmmac_init_fs(ndev); |
|
5357 |
#endif |
|
5358 |
|
|
5359 |
/* Let pm_runtime_put() disable the clocks. |
|
5360 |
* If CONFIG_PM is not enabled, the clocks will stay powered. |
|
5361 |
*/ |
|
5362 |
pm_runtime_put(device); |
|
5363 |
|
|
5364 |
return ret; |
|
5365 |
|
|
5366 |
error_netdev_register: |
|
5367 |
phylink_destroy(priv->phylink); |
|
5368 |
error_phy_setup: |
|
5369 |
if (priv->hw->pcs != STMMAC_PCS_TBI && |
|
5370 |
priv->hw->pcs != STMMAC_PCS_RTBI) |
|
5371 |
stmmac_mdio_unregister(ndev); |
|
5372 |
error_mdio_register: |
|
5373 |
stmmac_napi_del(ndev); |
|
5374 |
error_hw_init: |
|
5375 |
destroy_workqueue(priv->wq); |
|
5376 |
|
|
5377 |
return ret; |
|
5378 |
} |
|
5379 |
EXPORT_SYMBOL_GPL(stmmac_dvr_probe); |
|
5380 |
|
|
5381 |
/** |
|
5382 |
* stmmac_dvr_remove |
|
5383 |
* @dev: device pointer |
|
5384 |
* Description: this function resets the TX/RX processes, disables the MAC RX/TX |
|
5385 |
* changes the link status, releases the DMA descriptor rings. |
|
5386 |
*/ |
|
5387 |
int stmmac_dvr_remove(struct device *dev) |
|
5388 |
{ |
|
5389 |
struct net_device *ndev = dev_get_drvdata(dev); |
|
5390 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
5391 |
|
|
5392 |
netdev_info(priv->dev, "%s: removing driver", __func__); |
|
5393 |
|
|
5394 |
stmmac_stop_all_dma(priv); |
|
5395 |
stmmac_mac_set(priv, priv->ioaddr, false); |
|
5396 |
netif_carrier_off(ndev); |
|
5397 |
unregister_netdev(ndev); |
|
5398 |
|
|
5399 |
/* Serdes power down needs to happen after VLAN filter |
|
5400 |
* is deleted that is triggered by unregister_netdev(). |
|
5401 |
*/ |
|
5402 |
if (priv->plat->serdes_powerdown) |
|
5403 |
priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); |
|
5404 |
|
|
5405 |
#ifdef CONFIG_DEBUG_FS |
|
5406 |
stmmac_exit_fs(ndev); |
|
5407 |
#endif |
|
5408 |
phylink_destroy(priv->phylink); |
|
5409 |
if (priv->plat->stmmac_rst) |
|
5410 |
reset_control_assert(priv->plat->stmmac_rst); |
|
5411 |
pm_runtime_put(dev); |
|
5412 |
pm_runtime_disable(dev); |
|
5413 |
if (priv->hw->pcs != STMMAC_PCS_TBI && |
|
5414 |
priv->hw->pcs != STMMAC_PCS_RTBI) |
|
5415 |
stmmac_mdio_unregister(ndev); |
|
5416 |
destroy_workqueue(priv->wq); |
|
5417 |
mutex_destroy(&priv->lock); |
|
5418 |
|
|
5419 |
return 0; |
|
5420 |
} |
|
5421 |
EXPORT_SYMBOL_GPL(stmmac_dvr_remove); |
|
5422 |
|
|
5423 |
/** |
|
5424 |
* stmmac_suspend - suspend callback |
|
5425 |
* @dev: device pointer |
|
5426 |
* Description: this is the function to suspend the device and it is called |
|
5427 |
* by the platform driver to stop the network queue, release the resources, |
|
5428 |
* program the PMT register (for WoL), clean and release driver resources. |
|
5429 |
*/ |
|
5430 |
int stmmac_suspend(struct device *dev) |
|
5431 |
{ |
|
5432 |
struct net_device *ndev = dev_get_drvdata(dev); |
|
5433 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
5434 |
u32 chan; |
|
5435 |
|
|
5436 |
if (!ndev || !netif_running(ndev)) |
|
5437 |
return 0; |
|
5438 |
|
|
5439 |
phylink_mac_change(priv->phylink, false); |
|
5440 |
|
|
5441 |
mutex_lock(&priv->lock); |
|
5442 |
|
|
5443 |
netif_device_detach(ndev); |
|
5444 |
|
|
5445 |
stmmac_disable_all_queues(priv); |
|
5446 |
|
|
5447 |
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) |
|
5448 |
del_timer_sync(&priv->tx_queue[chan].txtimer); |
|
5449 |
|
|
5450 |
if (priv->eee_enabled) { |
|
5451 |
priv->tx_path_in_lpi_mode = false; |
|
5452 |
del_timer_sync(&priv->eee_ctrl_timer); |
|
5453 |
} |
|
5454 |
|
|
5455 |
/* Stop TX/RX DMA */ |
|
5456 |
stmmac_stop_all_dma(priv); |
|
5457 |
|
|
5458 |
if (priv->plat->serdes_powerdown) |
|
5459 |
priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); |
|
5460 |
|
|
5461 |
/* Enable Power down mode by programming the PMT regs */ |
|
5462 |
if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
|
5463 |
stmmac_pmt(priv, priv->hw, priv->wolopts); |
|
5464 |
priv->irq_wake = 1; |
|
5465 |
} else { |
|
5466 |
mutex_unlock(&priv->lock); |
|
5467 |
rtnl_lock(); |
|
5468 |
if (device_may_wakeup(priv->device)) |
|
5469 |
phylink_speed_down(priv->phylink, false); |
|
5470 |
if (priv->plat->integrated_phy_power) |
|
5471 |
priv->plat->integrated_phy_power(priv->plat->bsp_priv, |
|
5472 |
false); |
|
5473 |
phylink_stop(priv->phylink); |
|
5474 |
rtnl_unlock(); |
|
5475 |
mutex_lock(&priv->lock); |
|
5476 |
|
|
5477 |
stmmac_mac_set(priv, priv->ioaddr, false); |
|
5478 |
pinctrl_pm_select_sleep_state(priv->device); |
|
5479 |
} |
|
5480 |
mutex_unlock(&priv->lock); |
|
5481 |
|
|
5482 |
priv->speed = SPEED_UNKNOWN; |
|
5483 |
return 0; |
|
5484 |
} |
|
5485 |
EXPORT_SYMBOL_GPL(stmmac_suspend); |
|
5486 |
|
|
5487 |
/** |
|
5488 |
* stmmac_reset_queues_param - reset queue parameters |
|
5489 |
* @priv: device pointer |
|
5490 |
*/ |
|
5491 |
static void stmmac_reset_queues_param(struct stmmac_priv *priv) |
|
5492 |
{ |
|
5493 |
u32 rx_cnt = priv->plat->rx_queues_to_use; |
|
5494 |
u32 tx_cnt = priv->plat->tx_queues_to_use; |
|
5495 |
u32 queue; |
|
5496 |
|
|
5497 |
for (queue = 0; queue < rx_cnt; queue++) { |
|
5498 |
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; |
|
5499 |
|
|
5500 |
rx_q->cur_rx = 0; |
|
5501 |
rx_q->dirty_rx = 0; |
|
5502 |
} |
|
5503 |
|
|
5504 |
for (queue = 0; queue < tx_cnt; queue++) { |
|
5505 |
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; |
|
5506 |
|
|
5507 |
tx_q->cur_tx = 0; |
|
5508 |
tx_q->dirty_tx = 0; |
|
5509 |
tx_q->mss = 0; |
|
5510 |
|
|
5511 |
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); |
|
5512 |
} |
|
5513 |
} |
|
5514 |
|
|
5515 |
/** |
|
5516 |
* stmmac_resume - resume callback |
|
5517 |
* @dev: device pointer |
|
5518 |
* Description: when resume this function is invoked to setup the DMA and CORE |
|
5519 |
* in a usable state. |
|
5520 |
*/ |
|
5521 |
int stmmac_resume(struct device *dev) |
|
5522 |
{ |
|
5523 |
struct net_device *ndev = dev_get_drvdata(dev); |
|
5524 |
struct stmmac_priv *priv = netdev_priv(ndev); |
|
5525 |
int ret; |
|
5526 |
|
|
5527 |
if (!netif_running(ndev)) |
|
5528 |
return 0; |
|
5529 |
|
|
5530 |
/* Power Down bit, into the PM register, is cleared |
|
5531 |
* automatically as soon as a magic packet or a Wake-up frame |
|
5532 |
* is received. Anyway, it's better to manually clear |
|
5533 |
* this bit because it can generate problems while resuming |
|
5534 |
* from another devices (e.g. serial console). |
|
5535 |
*/ |
|
5536 |
if (device_may_wakeup(priv->device) && priv->plat->pmt) { |
|
5537 |
mutex_lock(&priv->lock); |
|
5538 |
stmmac_pmt(priv, priv->hw, 0); |
|
5539 |
mutex_unlock(&priv->lock); |
|
5540 |
priv->irq_wake = 0; |
|
5541 |
} else { |
|
5542 |
pinctrl_pm_select_default_state(priv->device); |
|
5543 |
/* reset the phy so that it's ready */ |
|
5544 |
if (priv->mii) |
|
5545 |
stmmac_mdio_reset(priv->mii); |
|
5546 |
if (priv->plat->integrated_phy_power) |
|
5547 |
priv->plat->integrated_phy_power(priv->plat->bsp_priv, |
|
5548 |
true); |
|
5549 |
} |
|
5550 |
|
|
5551 |
if (priv->plat->serdes_powerup) { |
|
5552 |
ret = priv->plat->serdes_powerup(ndev, |
|
5553 |
priv->plat->bsp_priv); |
|
5554 |
|
|
5555 |
if (ret < 0) |
|
5556 |
return ret; |
|
5557 |
} |
|
5558 |
|
|
5559 |
if (!device_may_wakeup(priv->device) || !priv->plat->pmt) { |
|
5560 |
rtnl_lock(); |
|
5561 |
phylink_start(priv->phylink); |
|
5562 |
/* We may have called phylink_speed_down before */ |
|
5563 |
phylink_speed_up(priv->phylink); |
|
5564 |
rtnl_unlock(); |
|
5565 |
} |
|
5566 |
|
|
5567 |
rtnl_lock(); |
|
5568 |
mutex_lock(&priv->lock); |
|
5569 |
|
|
5570 |
stmmac_reset_queues_param(priv); |
|
5571 |
|
|
5572 |
stmmac_free_tx_skbufs(priv); |
|
5573 |
stmmac_clear_descriptors(priv); |
|
5574 |
|
|
5575 |
stmmac_hw_setup(ndev, false); |
|
5576 |
stmmac_init_coalesce(priv); |
|
5577 |
stmmac_set_rx_mode(ndev); |
|
5578 |
|
|
5579 |
stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); |
|
5580 |
|
|
5581 |
stmmac_enable_all_queues(priv); |
|
5582 |
|
|
5583 |
mutex_unlock(&priv->lock); |
|
5584 |
rtnl_unlock(); |
|
5585 |
|
|
5586 |
phylink_mac_change(priv->phylink, true); |
|
5587 |
|
|
5588 |
netif_device_attach(ndev); |
|
5589 |
|
|
5590 |
return 0; |
|
5591 |
} |
|
5592 |
EXPORT_SYMBOL_GPL(stmmac_resume); |
|
5593 |
|
|
5594 |
#ifndef MODULE |
|
5595 |
static int __init stmmac_cmdline_opt(char *str) |
|
5596 |
{ |
|
5597 |
char *opt; |
|
5598 |
|
|
5599 |
if (!str || !*str) |
|
5600 |
return 1; |
|
5601 |
while ((opt = strsep(&str, ",")) != NULL) { |
|
5602 |
if (!strncmp(opt, "debug:", 6)) { |
|
5603 |
if (kstrtoint(opt + 6, 0, &debug)) |
|
5604 |
goto err; |
|
5605 |
} else if (!strncmp(opt, "phyaddr:", 8)) { |
|
5606 |
if (kstrtoint(opt + 8, 0, &phyaddr)) |
|
5607 |
goto err; |
|
5608 |
} else if (!strncmp(opt, "buf_sz:", 7)) { |
|
5609 |
if (kstrtoint(opt + 7, 0, &buf_sz)) |
|
5610 |
goto err; |
|
5611 |
} else if (!strncmp(opt, "tc:", 3)) { |
|
5612 |
if (kstrtoint(opt + 3, 0, &tc)) |
|
5613 |
goto err; |
|
5614 |
} else if (!strncmp(opt, "watchdog:", 9)) { |
|
5615 |
if (kstrtoint(opt + 9, 0, &watchdog)) |
|
5616 |
goto err; |
|
5617 |
} else if (!strncmp(opt, "flow_ctrl:", 10)) { |
|
5618 |
if (kstrtoint(opt + 10, 0, &flow_ctrl)) |
|
5619 |
goto err; |
|
5620 |
} else if (!strncmp(opt, "pause:", 6)) { |
|
5621 |
if (kstrtoint(opt + 6, 0, &pause)) |
|
5622 |
goto err; |
|
5623 |
} else if (!strncmp(opt, "eee_timer:", 10)) { |
|
5624 |
if (kstrtoint(opt + 10, 0, &eee_timer)) |
|
5625 |
goto err; |
|
5626 |
} else if (!strncmp(opt, "chain_mode:", 11)) { |
|
5627 |
if (kstrtoint(opt + 11, 0, &chain_mode)) |
|
5628 |
goto err; |
|
5629 |
} |
|
5630 |
} |
|
5631 |
return 1; |
|
5632 |
|
|
5633 |
err: |
|
5634 |
pr_err("%s: ERROR broken module parameter conversion", __func__); |
|
5635 |
return 1; |
|
5636 |
} |
|
5637 |
|
|
5638 |
__setup("stmmaceth=", stmmac_cmdline_opt); |
|
5639 |
#endif /* MODULE */ |
|
5640 |
|
|
5641 |
static int __init stmmac_init(void) |
|
5642 |
{ |
|
5643 |
#ifdef CONFIG_DEBUG_FS |
|
5644 |
/* Create debugfs main directory if it doesn't exist yet */ |
|
5645 |
if (!stmmac_fs_dir) |
|
5646 |
stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); |
|
5647 |
register_netdevice_notifier(&stmmac_notifier); |
|
5648 |
#endif |
|
5649 |
|
|
5650 |
return 0; |
|
5651 |
} |
|
5652 |
|
|
5653 |
static void __exit stmmac_exit(void) |
|
5654 |
{ |
|
5655 |
#ifdef CONFIG_DEBUG_FS |
|
5656 |
unregister_netdevice_notifier(&stmmac_notifier); |
|
5657 |
debugfs_remove_recursive(stmmac_fs_dir); |
|
5658 |
#endif |
|
5659 |
} |
|
5660 |
|
|
5661 |
module_init(stmmac_init) |
|
5662 |
module_exit(stmmac_exit) |
|
5663 |
|
|
5664 |
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); |
|
5665 |
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); |
|
5666 |
MODULE_LICENSE("GPL"); |